Silurian and Lowermost Devonian Conodonts from the Passo Volaia Area (Carnic Alps, Italy)

Total Page:16

File Type:pdf, Size:1020Kb

Silurian and Lowermost Devonian Conodonts from the Passo Volaia Area (Carnic Alps, Italy) Bollettino della Società Paleontologica Italiana, 49 (3), 2010, 237-253. Modena, 15 dicembre 2010237 Silurian and lowermost Devonian conodonts from the Passo Volaia area (Carnic Alps, Italy) Carlo CORRADINI & Maria G. CORRIGA Carlo Corradini, Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, I-09127 Cagliari; [email protected] Maria G. Corriga, Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, I-09127 Cagliari; [email protected] KEY WORDS - Silurian/Devonian boundary, Conodonts, Biostratigraphy, Taxonomy, Carnic Alps. ABSTRACT - Two sections (Rifugio Lambertenghi Fontana - RLF - and Rifugio Lambertenghi Fontana III - RLF III) of the Orthoceras limestones that crop out just South of Passo Volaia in the Carnic Alps yielded a rich and diverse conodont fauna. Twenty-six taxa belonging to eleven genera (Belodella, Coryssognathus, Dapsilodus, Dvorakia, Icriodus, Oulodus, Ozarkodina, Panderodus, Pseudooneotodus, Wurmiella and Zieglerodina) were discriminated. Wurmiella alternata n. sp. is described, and Belodella coarctata, Dvorakia amsdeni and Zieglerodina zellmeri are reported for the first time from the Carnic Alps. The fauna allows recognition of five late Silurian-earliest Lochkovian conodont zones (snajdri, crispa, eosteinhornensis s.l., detortus and woschmidti). The Silurian/Devonian boundary is interpreted to occur in the upper part of the RLF III section. RIASSUNTO - [Conodonti del Siluriano e Devoniano basale nell’area di Passo Volaia (Alpi Carniche, Italia)] - Nelle Alpi Carniche affiora una delle più complete sequenze paleozoiche pre-erciniche d’Italia, costituita da successioni sedimentarie debolmente metamorfiche di età compresa tra l’Ordoviciano Sup. e il Carbonifero. Le rocce del Siluriano e del Devoniano basale affiorano in modo discontinuo e, soprattutto nel versante italiano, gli affioramenti non sono molto estesi. Immediatamente a sud del Passo Volaia, situato nella parte occidentale delle Alpi Carniche, affiorano una quarantina di metri di calcari a Orthoceras depositatesi in un mare poco profondo. L’associazione faunistica è dominata da crinoidi, brachiopodi, cefalopodi, con associati più rari bivalvi e trilobiti. Qui sono state misurate e campionate due sezioni a conodonti, denominate rispettivamente “Rifugio Lambertenghi Fontana (RLF)” e “Rifugio Lambertenghi Fontana III (RLF III)”. La ricca fauna a conodonti raccolta (circa quattromila elementi) comprende ventisei taxa appartenenti a undici generi (Belodella, Coryssognathus, Dapsilodus, Dvorakia, Icriodus, Oulodus, Ozarkodina, Panderodus, Pseudooneotodus, Wurmiella e Zieglerodina), che hanno consentito di riconoscere le ultime quattro biozone del Siluriano (snajdri, crispa, eosteinhornensis s.l. e detortus) e la prima del Devoniano (woschmidti). Il limite Siluriano/Devoniano è localizzato nella parte alta della sezione RLF III. Tre specie (Belodella coarctata Barrick & Klapper, Dvorakia amsdeni Barrick & Klapper e Zieglerodina zellmeri Carls et al.) sono segnalate per la prima volta nelle Alpi Carniche; inoltre, viene descritta la nuova specie Wurmiella alternata n. sp. INTRODUCTION of Passo Volaia (Fig. 1). Here about thirty meters of Orthoceras limestones of Pridoli and earliest Lochkovian In the Carnic Alps, one of the most complete Palaeozoic age are exposed, which are characterized by extremely sedimentary successions in Europe is exposed at the shallow-water sediments across the Silurian Devonian Italian-Austrian border. Deposition was almost continuous boundary. from the Late Ordovician into the Permian. Silurian and lowermost Devonian sediments are irregularly distributed within the Carnic Alps, from the Monte Cocco area at the THE SILURIAN AND LOWER DEVONIAN east, to Lake Wolayer at the west. In general, outcrops are IN THE CARNIC ALPS quite small, mainly on the Italian side, with the exception of the Mt. Cocco and La Valute areas. Silurian and Lower Devonian deposits are irregularly The sections presented in this paper are located just distributed within the Carnic Alps, and range from south of Lake Wolayer. The area is well known for the shallow water bioclastic limestones to nautiloid-bearing numerous outcrops of Upper Ordovician to Devonian limestones, interbedded shales and limestones to black sediments, which formed mainly in shallow water graptolitic shales and cherts. The overall thickness does environments. Several other sections across the Silurian/ not exceed 60 m. The Silurian transgression started at the Devonian boundary in the area have been studied: base of the Llandovery, and, owing to the disconformity Rauchkofel Boden (Ferretti et al., 1999, and references separating the Ordovician and the Silurian, a varying of therein), Costone Lambertenghi/Seekopf Sockel (Vai, sediments is locally missing, which corresponds to several 1963; Schönlaub, 1980), Valentin Torl (Vai, 1963; Histon conodont zones of Llandovery to Ludlow age (Histon & et al., 1999, and references therein), Seewarte (Suttner, Schönlaub, 1999). 2007). The famous Cellon section (Walliser, 1964), which The Silurian and lowermost Devonian of the Carnic can be considered the reference section for the Silurian, Alps is subdivided into four lithofacies associations is located only a few kilometers to the east. representing different depths of deposition and This paper reports on the conodont fauna from two hydrodynamic conditions (Wenzel, 1997). The Wolayer- new sections, Rifugio Lambertenghi Fontana and Rifugio facies is characterised by proximal shelf sediments and the Lambertenghi Fontana III, which crop out just south Bischofalm-facies by deep water deposits; the Plöcken- ISSN 0375-7633 238 Bollettino della Società Paleontologica Italiana, 49 (3), 2010 Fig. 1 - Location map of the studied area (asterisk) within the Carnic Alps. facies and the Findenig-facies represent intermediate facies associations. The pattern of depositional lithofacies suggests an overall transgressive regime from the Llandovery through the Ludlow. Uniform limestone sedimentation during the Pridoli indicates that more stable conditions were developed at that time (Schönlaub, 1997). For a more detailed description of the Silurian of the Carnic Alps refer to Histon & Schönlaub (1999) and Schönlaub & Histon (2000). Fig. 2 - Aereal view (Immagine TerraItaly™ - © Blom CGR) of the Passo Volaia area with location of the studied sections. GEOLOGICAL SETTING STUDIED SECTIONS The region around Passo Volaia is one of the better studied area of the Carnic Alps because of the variety of Two sections were measured and sampled for facies represented in Upper Ordovician to Upper Devonian conodonts a few tens of meters south of Passo Volaia and strata, which were deposited either in relatively shallow the state boundary (Fig. 2). They have been designated or deep water environments, for the quality of the outcrop the Rifugio Lambertenghi Fontana (RLF) and Rifugio exposures, and the abundant fossils. Lambertenghi Fontana III (RLF III) sections, respectively. The Silurian and lowermost Devonian sequence Although the two sections are very close each other, in is represented here by shallow water sediments of the the field it is difficult to correlate them precisely because “Wolayer facies” (Wenzel, 1997). The sequence starts of the topography of the area, the dip of the strata and with about 15 m of middle Wenlock to Ludlow highly effects of trench construction from the First World War. fossiliferous neritic Orthoceras limestones (neritic Based on field correlations, they do not overlap for a few equivalent of the Kok Formation; Schönlaub, 1997), which tens of centimetres, with top of the RLF section slightly disconformably overlie the Upper Ordovician crinoidal older than the bas of the RLF III section. Conodont data Wolayer Limestone. Nautiloid cephalopods, bivalves, confirm this correlation. brachiopods and trilobites are abundant; in some levels microstromatolites are evident in the lower part of the unit (Histon & Schönlaub, 1999), as well as ooidal ironstones (Ferretti, 2005). The overlying Cardiola Formation (Ludlow) is represented by a very thin level of dark limestone rich in cephalopods and bivalves. The overlying sequence comprises up to 30 m of fine grey micritic limestone (Alticola limestone Auct. + Megaerella limestone Auct.) with abundant bioclasts and nautiloids and a fossiliferous content similar to the neritic Kok Formation (Histon & Schönlaub, 1999). In the Rauchkofel Boden section (Schönlaub, 1970; Ferretti et al., 1999 and references herein) the base of the Devonian is marked by a Scyphocrinites bed at the top of the unit. The lowermost Devonian is represented by more of 100 m of very shallow water sediments of the “neritic Fig. 3 - Panoramic view of the Rifugio Lambertenghi Fontana Rauchkofel Formation Auct.” (grey crinoidal limestone, Section, with location of samples. Samples from 7 to 10 have been rich of bioclasts) or deeper water well bedded dark grey collected in a World War I cave, where beds are well exposed and limestones of the “Pelagic Rauchkofel Formation”. precisely correlated with beds outside. C. Corradini, M.G. Corriga - Silurian and Lower Devonian conodonts from the Carnic Alps 239 The Rifugio Lambertenghi Fontana (RLF) section coordinates N 46°26’22.6” E 12°52’07.8”, more or less The Rifugio Lambertenghi Fontana section is located where a fountain is placed (Figs. 2-3). About 18 m of on along the path to Rifugio Lambertenghi Romanin, at Orthoceras limestone are here exposed (Fig. 4). Fig. 4 - Stratigraphic log of
Recommended publications
  • Conodonts from the Niur Formation (Silurian) of the Derenjal Mountains, Central Iran
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/239735578 Conodonts from the Niur Formation (Silurian) of the Derenjal Mountains, Central Iran Article in Geological Magazine · July 2013 DOI: 10.1017/S001675681200088X CITATIONS READS 15 315 3 authors: Peep Mannik C. Giles Miller Tallinn University of Technology Natural History Museum, London 101 PUBLICATIONS 2,383 CITATIONS 81 PUBLICATIONS 586 CITATIONS SEE PROFILE SEE PROFILE Vachik Hairapetian Islamic Azad University Isfahan (Khorasgan) Branch 77 PUBLICATIONS 587 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: TERSANE: Temperature-Related Stresses as a Unifying Principle in Ancient Extinctions View project Studies on Silurian conodonts from eastern Qinling and the related strata View project All content following this page was uploaded by C. Giles Miller on 27 May 2014. The user has requested enhancement of the downloaded file. Geol. Mag. 150 (4), 2013, pp. 639–650. c Cambridge University Press 2013 639 doi:10.1017/S001675681200088X Conodonts from the Niur Formation (Silurian) of the Derenjal Mountains, Central Iran ∗ P. MÄNNIK †, C. G. MILLER‡ & V. HAIRAPETIAN§ ∗ Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia ‡Department of Palaeontology, Natural History Museum, London SW7 5BD, UK §Department of Geology, Khorasgan (Esfahan) Branch, Islamic Azad University, PO Box 81595−158, Esfahan, Iran (Received 5 October 2011; accepted 25 September 2012; first published online 24 January 2013) Abstract – A Llandovery to Ludlow age for the Niur Formation in the Derenjal Mountains (east-central Iran) is proposed based on new conodont data and previous work on other fossils.
    [Show full text]
  • Aeronian–Telychian) of the East-Central Iowa Basin, Iowa, USA
    Newsletters on Stratigraphy, Vol. 50/4 (2017), 391–416 Article Published online February 2017; published in print September 2017 Integrated carbon isotope and conodont biochemo- stratigraphy of the Silurian (Aeronian–Telychian) of the East-Central Iowa Basin, Iowa, USA Neo E. B. McAdams1*, Alyssa M. Bancroft1,2, Bradley D. Cramer1, and Brian J. Witzke1 With 7 figures and 3 appendices Abstract. Global integrated biochemostratigraphic studies of Silurian conodont biostratigraphy and carbon isotope chemostratigraphy typically focus on the biogeochemical events of the Wenlock through Pridoli epochs (Ireviken, Mulde, Lau, and Klonk events). The global change events that took place during the Llan- dovery Epoch (early Aeronian, late Aeronian, and Valgu events) are poorly understood in comparison. One major contributing factor is the fact that Llandovery strata are often shale-dominated or replete with uncon- formities in carbonate-dominated successions. As a result, only a handful of stratigraphically complete carbon isotopic and conodont biostratigraphic data sets are presently available from this interval worldwide. The Knapp Creek Core, Johnson County, east-central Iowa, preserves 228 feet (69.5 m) of dolomitic Silurian stra- ta from the East-Central Iowa Basin and contains the Blanding, Hopkinton, Scotch Grove, and Gower for- mations. Integrated high-resolution carbon isotope chemostratigraphy and conodont biostratigraphy produced here demonstrate the presence of the late Aeronian, early Telychian ʻValguʼ, and early Sheinwoodian ʻIre- vikenʼ positive carbon isotope excursions in the core. Biostratigraphically significant conodonts recovered from the core include Pseudolonchodina (formerly Aspelundia) fluegeli, Distomodus staurognathoides, Aulacognathus kuehni, Aulacognathus bullatus, Wurmiella? polinclinata polinclinata, Pterospathodus eopennatus, Pterospathodus amorphognathoides angulatus, Pterospathodus amorphognathoides amorphog- nathoides, and Kockelella ranuliformis.
    [Show full text]
  • Tips on the SW-Gondwana Margin: Ordovician Conodont-Graptolite Biostratigraphy of Allochthonous Blocks in the Rinconada Mélange, Argentine Precordillera
    Andean Geology 45 (3): 399-409. September, 2018 Andean Geology doi: 10.5027/andgeoV45n3-3095 www.andeangeology.cl Tips on the SW-Gondwana margin: Ordovician conodont-graptolite biostratigraphy of allochthonous blocks in the Rinconada mélange, Argentine Precordillera *Gustavo G. Voldman1, Juan L. Alonso2, Luis P. Fernández2, Gladys Ortega3, Guillermo L. Albanesi1, 3, Aldo L. Banchig4, Raúl Cardó4, 5 1 Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Ciencias de la Tierra, Universidad Nacional de Córdoba, CIGEA, Av. Vélez Sarsfield 1611, X5016GCA, Córdoba, Argentina. [email protected]; [email protected] 2 Departamento de Geología, Universidad de Oviedo, Arias de Velasco s/n, 33005, Oviedo, Spain. [email protected]; [email protected] 3 Consejo Nacional de Investigaciones Científicas y Técnicas, CIGEA and Museo de Paleontología, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 249, X5000JJC, Córdoba, Argentina. [email protected] 4 Departamento de Geología, Universidad Nacional de San Juan, Ignacio de La Rosa y Meglioli s/n, 5400, San Juan, Argentina. [email protected]; [email protected] 5 Servicio Geológico y Minero Argentino, Sargento Cabral 685 (oeste), 5400, San Juan, Argentina. * Corresponding author: [email protected] ABSTRACT. The Rinconada Formation is a mélange that crops out in the eastern margin of the Argentine Precordillera, an exotic terrane accreted to Gondwana in Ordovician times. Its gravity-driven deposits have been studied by means of conodont and graptolite biostratigraphy, and complemented with stratigraphic analyses. 46 rock samples (85 kg total weight) were obtained from blocks of limestones and of carbonate-cemented quartz-arenites, and from limestone clasts included in conglomerate blocks and debrites.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Acadian Orogeny 224 Ancyrodelloides delta biozone 15 Acanthopyge Limestone 126, 128 Ancyrodelloides transitans biozone 15, 17,19 Acastella 52, 68, 69, 70 Ancyrodelloides trigonicus biozone 15, 17,19 Acastoides 52, 54 Ancyrospora 31, 32,37 Acinosporites lindlarensis 27, 30, 32, 35, 147 Anetoceras 82 Acrimeroceras 302, 313 ?Aneurospora 33 acritarchs Aneurospora minuta 148 Appalachian Basin 143, 145, 146, 147, 148–149 Angochitina 32, 36, 141, 142, 146, 147 extinction 395 annulata Events 1, 2, 291–344 Falkand Islands 29, 30, 31, 32, 33, 34, 36, 37 comparison of conodonts 327–331 late Devonian–Mississippian 443 effects on fauna 292–293 Prague Basin 137 global recognition 294–299, 343 see also Umbellasphaeridium saharicum limestone beds 3, 246, 291–292, 301, 308, 309, Acrospirifer 46, 51, 52, 73, 82 311, 321 Acrospirifer eckfeldensis 58, 59, 81, 82 conodonts 329, 331 Acrospirifer primaevus 58, 63, 72, 74–77, 81, 82 Tafilalt fauna 59, 63, 72, 74, 76, 103 ammonoid succession 302–305, 310–311 Actinodesma 52 comparison of facies 319, 321, 323, 325, 327 Actinosporites 135 conodont zonation 299–302, 310–311, 320 Acuticryphops 253, 254, 255, 256, 257, 264 Anoplia theorassensis 86 Acutimitoceras 369, 392 anoxia 2, 3–4, 171, 191–192, 191 Acutimitoceras (Stockumites) 357, 359, 366, 367, 368, Hangenberg Crisis 391, 392, 394, 401–402, 369, 372, 413 414–417, 456 agnathans 65, 71, 72, 273–286 and carbon cycle 410–413 Ahbach Formation 172 Kellwasser Events 237–239, 243, 245, 252
    [Show full text]
  • New Biostratigraphical Findings on the Padeha Formation Based on Conodont Accumulation in Yazdanshahr, Kerman, Central Iran - 993
    Nasehi: New biostratigraphical findings on the Padeha formation based on conodont accumulation in Yazdanshahr, Kerman, central Iran - 993 - NEW BIOSTRATIGRAPHICAL FINDINGS ON THE PADEHA FORMATION BASED ON CONODONT ACCUMULATION IN YAZDANSHAHR, KERMAN, CENTRAL IRAN NASEHI, E. Department of Geology, Faculty of Science, Islamic Azad University, Natanz Branch Natanz, Iran e-mail: [email protected] (Received 9th Jun 2017; accepted 27th Oct 2017) Abstract. The aim of the study was the biostratigraphical evaluation of Padeha Formation based on conodont accumulation in Yazdanshahr. The section under study is located north of Yazdanshahr in northwestern Zarand County in Kerman, central Iran. After investigating several sections of the Padeha formation in the Kerman area, one fossiliferous section was chosen for study. In terms of lithology, the section is composed mainly of red-colored clastic and evaporative rock with carbonate intercalations. The conodont accumulations indicate two local biozones: the Zieglerodina remscheidensis and Pandorinellina steinhornensis assemblage zones and the Eugenathodontidae-Icriodus assemblage zone. Based on the abundance of Spathognathodontidae and similarities to global biozones, these biozones were found to be of the Late Silurian (Early Pridoli) age. No evidence of the Icriodus genus (especially woschmidti or post- woschmidti species) was observed in this assemblage. The latter biozones manifest the appearance of Eugenathodontidae in the Early Devonian; therefore, a sedimentary hiatus exists within the Late Silurian to the start of Early Devonian (Late Pridoli to Pragian). The sediment was deposited in a depositional environment ranging from lagoons to shallow waters (inner carbonate platform). The Yazdanshahr section was the most complete of the Padeha formation because conodonts were found in the lower, middle and upper parts of the section.
    [Show full text]
  • Conodonts (Vertebrata)
    Journal of Systematic Palaeontology 6 (2): 119–153 Issued 23 May 2008 doi:10.1017/S1477201907002234 Printed in the United Kingdom C The Natural History Museum The interrelationships of ‘complex’ conodonts (Vertebrata) Philip C. J. Donoghue Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ, UK Mark A. Purnell Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK Richard J. Aldridge Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK Shunxin Zhang Canada – Nunavut Geoscience Office, 626 Tumit Plaza, Suite 202, PO Box 2319, Iqaluit, Nunavut, Canada X0A 0H0 SYNOPSIS Little attention has been paid to the suprageneric classification for conodonts and ex- isting schemes have been formulated without attention to homology, diagnosis and definition. We propose that cladistics provides an appropriate methodology to test existing schemes of classification and in which to explore the evolutionary relationships of conodonts. The development of a multi- element taxonomy and a concept of homology based upon the position, not morphology, of elements within the apparatus provide the ideal foundation for the application of cladistics to conodonts. In an attempt to unravel the evolutionary relationships between ‘complex’ conodonts (prioniodontids and derivative lineages) we have compiled a data matrix based upon 95 characters and 61 representative taxa. The dataset was analysed using parsimony and the resulting hypotheses were assessed using a number of measures of support. These included bootstrap, Bremer Support and double-decay; we also compared levels of homoplasy to those expected given the size of the dataset and to those expected in a random dataset.
    [Show full text]
  • Upper Silurian and Lower Devonian Conodonts from the Monte Cocco II Section (Carnic Alps, Italy)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Cagliari Upper Silurian and Lower Devonian conodonts from the Monte Cocco II Section (Carnic Alps, Italy) MARIA G. CORRIGA & CARLO CORRADINI The upper Silurian-Lower Devonian Monte Cocco II section, located in the eastern part of the Carnic Alps, yielded abundant conodonts from five conodont biozones (snajdri, crispa, eosteinhornensis s.l., detortus and woschmidti). The eosteinhornensis s.l. interval Zone is introduced here to replace the “Oz. remscheidensis i.Z.” of Corradini & Serpagli (1999). The Silurian/Devonian boundary is located in the upper part of the section; problems related to the accurate loca- tion of the Silurian/Devonian boundary on the basis of conodonts are discussed. A new taxon of the genus Pele- kysgnathus is described, but left in open nomenclature. A few taxonomic notes on other selected taxa are also presented. • Key words: Silurian/Devonian boundary, conodonts, biostratigraphy, taxonomy, Carnic Alps. CORRIGA, M.G. & CORRADINI, C. 2009. Upper Silurian and Lower Devonian conodonts from the Monte Cocco II Sec- tion (Carnic Alps, Italy). Bulletin of Geosciences 84(1), 155–168 (6 figures, 1 table). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received November 24, 2008; accepted in revised form March 10, 2009; published online March 23, 2009; issued March 31, 2009. Maria G. Corriga, Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, I-09127 Cagliari; [email protected] • Carlo Corradini (corresponding author), Dipartimento di Scienze della Terra, Università di Cagliari, via Trentino 51, I-09127 Cagliari; [email protected] This paper is a contribution to a cooperative research pro- section in the area where the Silurian/Devonian boundary ject on the Silurian of the Carnic Alps arranged between se- is exposed and yields a quite rich conodont fauna.
    [Show full text]
  • Conodonts from the Laporte City Formation of Eastern Iowa
    Palaeontologia Electronica palaeo-electronica.org Telychian (Llandovery, Silurian) conodonts from the LaPorte City Formation of eastern Iowa, USA (East-Central Iowa Basin) and their implications for global Telychian conodont biostratigraphic correlation Christopher B.T. Waid and Bradley D. Cramer ABSTRACT Conodonts from the LaPorte City Formation of eastern Iowa (East-Central Iowa Basin) indicate an early to middle Telychian age for the formation. Conodonts diagnos- tic of the Pterospathodus eopennatus Superzone, Pterospathodus eopennatus ssp. n. 2 Zone, and Pterospathodus amorphognathoides angulatus Zone were recovered, allowing for the first direct comparison of the stratigraphic ranges of conodont species in the Illinois and Baltic Basins. A heretofore undescribed species of Pseudoloncho- dina similar to Pseudolonchodina fluegeli occurs in the LaPorte City Formation. It is distinguished from Pseudolonchodina fluegeli by the absence of fused denticles on Pa elements and discrete to nearly-discrete denticles on the other elements. Due to the fragmented nature of the specimens, the species is left in open nomenclature. Wur- miella? polinclinata polinclinata ranges much lower in the East-Central Iowa Basin (Pt. eopennatus ssp. n. 2 Zone) than the Baltic Basin, and therefore cannot be used as an index fossil diagnostic of the Pt. am. amorphognathoides Zone in global correlations. This study documents the utility of the small limestone formations on the northwest flank of the East-Central Iowa Basin for refining global Silurian conodont biostrati- graphic zonation. Christopher B.T. Waid. Department of Earth and Environmental Sciences, University of Iowa, 115 Trowbridge Hall, Iowa City, IA 52242, USA; Present address: Ohio Geological Survey, 2045 Morse Rd. Building C, Columbus, OH 43229, USA.
    [Show full text]
  • A New Icriodontid Conodont Cluster with Specific Mesowear Supports an Alternative Apparatus Motion Model for Icriodontidae
    Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: http://www.tandfonline.com/loi/tjsp20 A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae Thomas J. Suttner , Erika Kido & Antonino Briguglio To cite this article: Thomas J. Suttner , Erika Kido & Antonino Briguglio (2017): A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus motion model for Icriodontidae, Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2017.1354090 To link to this article: http://dx.doi.org/10.1080/14772019.2017.1354090 © 2017 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis GroupThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Published online: 15 Aug 2017. Submit your article to this journal Article views: 124 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Download by: [University of Brunei Darussalam] Date: 28 August 2017, At: 19:23 Journal of Systematic Palaeontology, 2017 https://doi.org/10.1080/14772019.2017.1354090 A new icriodontid conodont cluster with specific mesowear supports an alternative apparatus
    [Show full text]
  • Hopkins and Lidgard, Appendix B, P. 1
    Hopkins and Lidgard Fossil species lineages and their defining traits—taxonomic “usefulness” and evolutionary modes Appendix B. Justification for coding assignments, arranged in alphabetical order. *AICc results from Hunt 2007 #taxonomic importance coded by SL; all others by MJH. Acuticryphops acuticeps from France Data from Cronier et al 2004 Cronier and Feist (2000) note that the number of eye lenses is quite variable within samples that otherwise show no variation within traits. Other closely related species (the genus Acuticryphops is monospecific) are characterized by similarly low numbers of eye lenses (though species of Weyerites are distinguished by number of eye lenses among other traits). Because the authors lump specimens despite the high variation in this characters, this character is considered “not useful” for classification within Acuticryphops. #Afrobolivina afra from west Africa Data from Campbell and Reyment 1978 Campbell and Reyment (1978) state on p. 348 that metric variables were "selected for analysis as it was thought they might be useful for exposing possible differences due to polymorphism in the foraminiferal life cycle." They do not present criteria for distinguishing A. afra from related species. Reyment (1959) erected both the genus and the species. In the latter paper, the generic diagnosis includes among the "peculiarities": "roughly cylindrical with the greatest breadth in or around the middle, or sides slightly convex with the greatest breadth near the top of the test." (p. 19). The species diagnosis (p. 21) includes these characteristics: "Test roughly cylindrical, site of greatest inflation in the middle or in the last third of the length of megalosphcric individuals and usually across the last two chambers of microspheric individuals." The species description (p 23) notes, " The following details were measured: Number of chambers (C), length of the test (L), breadth of the test (B), the maximum thickness of the test (T), distance of maximum breadth from top of last chamber (E), the diameter of the proloculus (P).
    [Show full text]
  • 262 the Cellon Section
    Ber. Inst. Erdwiss. K.-F.-Univ. Graz ISSN 1608-8166 Band 23 Valencia 2017 International Conodont Symposium 4 Valencia, 25-30th June 2017 The Cellon section Carlo Corradini1, Maria G. Corriga1, Annalisa Ferretti2 & Hans Peter Schönlaub3 1Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, via Trentino 51, I-09127 Cagliari, Italy. [email protected]; [email protected] 2Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via Campi 103, I-41125 Modena, Italy; [email protected] 3Austrian Academy of Sciences, Commission for Geosciences, Dr. Ignaz Seipel-Platz 2, A-1010 Vienna, Austria; [email protected] Locality - On the eastern flank of Mt. Cellon/Creta di Collinetta, at coordinates N 46°36’32", E 12°56'31". Lithostratigraphic unit - Uqua Fm., Ploecken Fm., Kok Fm., Cardiola Fm., Alticola Fm. and Rauchkofel Fm. Age - Katian-Lochkovian (Upper Ordovician – Lower Devonian); Am. ordovicicus Zone to Icr. postwoschmidti Zone. What to see - The reference section for many Silurian studies in the world. The stratotype of Uqua, Plöcken, Kok, Cardiola and Alticola formations, and type locality of several Silurian fossils. How to get there The Cellon section is located in a narrow avalanche gorge on the eastern flank of Mt. Cellon, at an altitude of about 1500 m, close to the Austrian/Italian border. It is accessible by a short walk along path n. 427-3 from Plöcken Pass/Passo di Monte Croce Carnico (Fig. 1). Historical outline The Cellon section probably represents the most famous Silurian section in the world, and is the reference section for many Ordovician, Silurian and Devonian studies.
    [Show full text]
  • A New, Unusual Rhynchonellide Brachiopod with a Strophic Shell from the Silurian of Iran
    A new, unusual rhynchonellide brachiopod with a strophic shell from the Silurian of Iran LEONID E. POPOV, VACHIK HAIRAPETIAN, MANSOUREH GHOBADI POUR, and TATIANA L. MODZALEVSKAYA Popov, L.E., Hairapetian, V., Ghobadi Pour, M., and Modzalevskaya, T.L. 2015. A new, unusual rhynchonellide brachio- pod with a strophic shell from the Silurian of Iran. Acta Palaeontologica Polonica 60 (3): 747–754. A new, unusual rhynchonellide brachiopod Jafarirhynchus alatus assigned to the newly established family Jafarirhynchidae is described from the Silurian (Telychian) of the Boghu Mountains in east-central Iran. It forms a low diversity association with the spiriferide Striispirifer? ocissimus, which exhibits well preserved calcified brachial supports. A strophic shell, well-developed ventral interarea and liberosessile mode of life make this taxon unique among Palaeozoic rhynchonellide brachiopods. In spite of a superficial similarity to spiriferides and the atrypide family Davidsonioidea, Jafarirhynchus re- tains the typical rhynchotrematoid cardinalia with a septalium supported by the median septum, a septiform cardinal process and long, raduliform crura. It is considered as an offshoot of the local lineage, which includes two successive species of Stegocornu (family Rhynchotrematidae) which proliferated in Central Iran and adjacent Afghanistan during Aeronian time. Key words: Rhynchonellida, morphology, taxonomy, Silurian, Telychian, Iran. Leonid E. Popov [[email protected]], Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, UK. Vachik Hairapetian [[email protected]], Department of Geology, Khorasgan (Isfahan) Branch, Islamic Azad Univer- sity, PO Box 81595-158, Isfahan, Iran. Mansoureh Ghobadi Pour [[email protected]], Department of Geology, Faculty of Sciences, Golestan Uni- versity, Gorgan 49138-15739, Iran.
    [Show full text]