Cluster Algebras Bernard Leclerca and Lauren K
SPECIAL FEATURE: INTRODUCTION Cluster algebras Bernard Leclerca and Lauren K. Williamsb,1 See Fig. 2 for a picture of the flip graph of aLaboratoire de Mathématiques Nicolas Oresme, Université de Caen, 14032 Caen, France; the hexagon. and bDepartment of Mathematics, University of California, Berkeley, CA 94720 Now we can associate a cluster variable (an element of F) to each of the diagonals of the n-gon by imposing a relation for every flip: What Is a Cluster Algebra? cluster x′ = (x − {x}) ∪ {x′}, with the new cluster variable x′ determined by an ex- Given a quadrilateral, with sides a, b, c,and Cluster algebras were conceived by Fomin d and diagonals e and f,westipulatethat and Zelevinsky (1) in the spring of 2000 as change relation of the form x x = x x + x x (Fig. 3). Using the fact a tool for studying dual canonical bases and e f a c b d + + − − that the flip graph is connected (i.e., we can total positivity in semisimple Lie groups. xx′ = y M + y M : get from the initial triangulation to any However, the theory of cluster algebras + − + other by a series of flips), it is clear that we has since taken on a life of its own, as Here y and y are coefficients, whereas M − can attach in this way an element x of F to connections and applications have been and M are monomials in the elements of i each diagonal i.Itisanexercisetoshowthat discovered in diverse areas of mathematics, x − {x}. this construction is well defined, that is, x including representation theory of quivers i Example: The Type A Cluster Algebra does not depend on the sequence of flips and finite dimensional algebras, cf., for used to pass from the initial triangulation example, refs.
[Show full text]