Diversity, Phylogeny and Pathogenicity Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
Species of Botryosphaeriaceae Occurring on Proteaceae
Persoonia 21, 2008: 111–118 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158508X372387 Species of Botryosphaeriaceae occurring on Proteaceae S. Marincowitz1, J.Z. Groenewald 2, M.J. Wingfield1, P.W. Crous1,2 Key words Abstract The Botryosphaeriaceae includes several species that are serious canker and leaf pathogens of Pro- teaceae. In the present study, sequence data for the ITS nrDNA region were used in conjunction with morphological Botryosphaeria observations to resolve the taxonomy of species of Botryosphaeriaceae associated with Proteaceae. Neofusicoccum Fusicoccum luteum was confirmed from Buckinghamia and Banksia in Australia, and on Protea cynaroides in South Africa. Neofusicoccum A major pathogen of Banksia coccinea in Australia was shown to be N. australe and not N. luteum as previously Saccharata reported. Neofusicoccum protearum was previously reported on Proteaceae from Australia, Madeira, Portugal and South Africa, and is shown here to also occur in Hawaii and Tenerife (Canary Islands). Furthermore, several previous records of N. ribis on Proteaceae were shown to be N. parvum. Saccharata capensis is described as a new species that is morphologically similar to S. proteae. There is no information currently available regarding its potential importance as plant pathogen and pathogenicity tests should be conducted with it in the future. Article info Received: 4 September 2008; Accepted: 25 September 2008; Published: 1 October 2008. INTRODUCTION recently added lineage representing the anamorph genus Aplosporella (Damm et al. 2007b). Botryosphaeria spp. and The Proteaceae (proteas) is a prominent Southern Hemisphere similar species are prevalent on proteas under environmental plant family consisting of approximately seven subfamilies, 60 stress, causing stem cankers, dieback or leaf blight (Crous et genera and 1 400 species (Rebelo 2001). -
Three Species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) Associated with Woody Plants from Southern China
Mycosphere 8(2): 797–808 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/2/4 Copyright © Guizhou Academy of Agricultural Sciences Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from southern China Zhang M1,2, Lin S1,2, He W2, * and Zhang Y1, * 1Institute of Microbiology, P.O. Box 61, Beijing Forestry University, Beijing 100083, PR China. 2Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, PR China. Zhang M, Lin S, He W, Zhang Y 2017 – Three species of Neofusicoccum (Botryosphaeriaceae, Botryosphaeriales) associated with woody plants from Southern China. Mycosphere 8(2), 797–808, Doi 10.5943/mycosphere/8/2/4 Abstract Two new species, namely N. sinense and N. illicii, collected from Guizhou and Guangxi provinces in China, are described and illustrated. Phylogenetic analysis based on combined ITS, tef1-α and TUB loci supported their separation from other reported species of Neofusicoccum. Morphologically, the relatively large conidia of N. illicii, which become 1–3-septate and pale yellow when aged, can be distinguishable from all other reported species of Neofusicoccum. Phylogenetically, N. sinense is closely related to N. brasiliense, N. grevilleae and N. kwambonambiense. The smaller conidia of N. sinense, which have lower L/W ratio and become 1– 2-septate when aged, differ from the other three species. Neofusicoccum mangiferae was isolated from the dieback symptoms of mango in Guangdong Province. Key words – Asia – endophytes – Morphology– Taxonomy Introduction Neofusicoccum Crous, Slippers & A.J.L. Phillips was introduced by Crous et al. (2006) for species that are morphologically similar to, but phylogenetically distinct from Botryosphaeria species, which are commonly associated with numerous woody hosts world-wide (Arx 1987, Phillips et al. -
Phylogenetic Lineages in the Botryosphaeriaceae
STUDIES IN MYCOLOGY 55: 235–253. 2006. Phylogenetic lineages in the Botryosphaeriaceae Pedro W. Crous1*, Bernard Slippers2, Michael J. Wingfield2, John Rheeder3, Walter F.O. Marasas3, Alan J.L. Philips4, Artur Alves5, Treena Burgess6, Paul Barber6 and Johannes Z. Groenewald1 1Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD, Utrecht, The Netherlands; 2Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; 3PROMEC Unit, Medical Research Council, P.O. Box 19070, 7505 Tygerberg, South Africa; 4Centro de Recursos Microbiológicos, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; 5Centro de Biologia Celular, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; 6School of Biological Sciences & Biotechnology, Murdoch University, Murdoch 6150, WA, Australia *Correspondence: Pedro W. Crous, [email protected] Abstract: Botryosphaeria is a species-rich genus with a cosmopolitan distribution, commonly associated with dieback and cankers of woody plants. As many as 18 anamorph genera have been associated with Botryosphaeria, most of which have been reduced to synonymy under Diplodia (conidia mostly ovoid, pigmented, thick-walled), or Fusicoccum (conidia mostly fusoid, hyaline, thin-walled). However, there are numerous conidial anamorphs having morphological characteristics intermediate between Diplodia and Fusicoccum, and there are several records of species outside the Botryosphaeriaceae that have anamorphs apparently typical of Botryosphaeria s.str. Recent studies have also linked Botryosphaeria to species with pigmented, septate ascospores, and Dothiorella anamorphs, or Fusicoccum anamorphs with Dichomera synanamorphs. The aim of this study was to employ DNA sequence data of the 28S rDNA to resolve apparent lineages within the Botryosphaeriaceae. -
Mycosphere Essays 5: Is It Important to Name Species of Botryosphaeriaceae?
Mycosphere 7 (7): 870–882 (2016) www.mycosphere.org ISSN 2077 7019 Article– special issue Doi 10.5943/mycosphere/si/1b/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Essays 5: Is it important to name species of Botryosphaeriaceae? Chethana KWT1,2, Phillips AJL3, Zhang W1, Chen Z1, Hao YY4, Hyde KD2, Li XH1,* and Yan JY1,* 1 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, People’s Republic of China 2 Center of Excellence in Fungal Research and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand 3University of Lisbon, Faculty of Sciences, Bio systems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal 4The Yellow River Delta Sustainable Development Institute of Shandong Province, Dongying 257091, People’s Republic of China Chethana KWT, Phillips AJL, Zhang W, Chen Z, Hao YY, Hyde KD, Li XH, Yan JY 2016 – Mycosphere Essays 5: Is it important to name species of Botryosphaeriaceae?. Mycosphere 7(7), 870–882, Doi 10.5943/mycosphere/si/1b/3 Abstract Botryosphaeriaceae is species rich family comprising numerous plant pathogens and endophytes. Due to their importance, many studies have focused on this family and as a result, the family, genera and species are relatively well defined. Plant pathologists as well as workers involved in the agricultural and forestry sections rely heavily on accurate information concerning species. Scientific names are the primary means of communication concerning these fungal taxa. Names are linked to information such as their biology, ecological niches, distribution, possible threats and even control measures. Hence, naming Botryosphaeriacae species is of utmost importance. -
Of Premature Decline of Norfolk Island Pine Town of Cottesloe
Investigation into the cause(s) of premature decline of Norfolk Island Pine Town of Cottesloe Report No. J20490 2nd November 2020 Page | 1 Company Name: ArborCarbon Pty Ltd ACN: 145 766 472 ABN: 62 145 766 472 Address: 1 City Farm Place, East Perth WA 6004 Phone Number: +61 8 9467 9876 Name and Position of Authorised Signatory: Dr Paul Barber | Managing Director Contact Phone Number: +61 419 216 229 Website: www.arborcarbon.com.au DOCUMENT QUALITY ASSURANCE Prepared by Reviewed by Dr Harry Eslick Dr Paul Barber Naviin Hardy Briony Williams Dr Paul Barber Approved & Released by Position Approval Signature Dr Paul Barber Managing Director REVISION SCHEDULE Revision Report Description Submission Date Author(s) A Norfolk Island Pine Decline 25/09/2020 Dr Harry Eslick Naviin Hardy Dr Paul Barber 0 Norfolk Island Pine Decline 2/11/2020 Briony Williams Dr Paul Barber DISCLAIMER ArborCarbon Pty Ltd has prepared this document using data and information supplied from the Town of Cottesloe and other individuals and organisations, who have been referred to in this document. This document is confidential and intended to be read in its entirety, and sections or parts of the document should therefore not be read and relied on out of context. The sole use of this document is for the Town of Cottesloe only for which it was prepared. While the information contained in this report has been formulated with due care, the author(s) and ArborCarbon Pty Ltd take no responsibility for any person acting or relying on the information contained in this report, and disclaim any liability for any error, omission, loss or other consequence which may arise from any person acting or relying on anything contained in this report. -
Proposed Generic Names for Dothideomycetes
Naming and outline of Dothideomycetes–2014 Nalin N. Wijayawardene1, 2, Pedro W. Crous3, Paul M. Kirk4, David L. Hawksworth4, 5, 6, Dongqin Dai1, 2, Eric Boehm7, Saranyaphat Boonmee1, 2, Uwe Braun8, Putarak Chomnunti1, 2, , Melvina J. D'souza1, 2, Paul Diederich9, Asha Dissanayake1, 2, 10, Mingkhuan Doilom1, 2, Francesco Doveri11, Singang Hongsanan1, 2, E.B. Gareth Jones12, 13, Johannes Z. Groenewald3, Ruvishika Jayawardena1, 2, 10, James D. Lawrey14, Yan Mei Li15, 16, Yong Xiang Liu17, Robert Lücking18, Hugo Madrid3, Dimuthu S. Manamgoda1, 2, Jutamart Monkai1, 2, Lucia Muggia19, 20, Matthew P. Nelsen18, 21, Ka-Lai Pang22, Rungtiwa Phookamsak1, 2, Indunil Senanayake1, 2, Carol A. Shearer23, Satinee Suetrong24, Kazuaki Tanaka25, Kasun M. Thambugala1, 2, 17, Saowanee Wikee1, 2, Hai-Xia Wu15, 16, Ying Zhang26, Begoña Aguirre-Hudson5, Siti A. Alias27, André Aptroot28, Ali H. Bahkali29, Jose L. Bezerra30, Jayarama D. Bhat1, 2, 31, Ekachai Chukeatirote1, 2, Cécile Gueidan5, Kazuyuki Hirayama25, G. Sybren De Hoog3, Ji Chuan Kang32, Kerry Knudsen33, Wen Jing Li1, 2, Xinghong Li10, ZouYi Liu17, Ausana Mapook1, 2, Eric H.C. McKenzie34, Andrew N. Miller35, Peter E. Mortimer36, 37, Dhanushka Nadeeshan1, 2, Alan J.L. Phillips38, Huzefa A. Raja39, Christian Scheuer19, Felix Schumm40, Joanne E. Taylor41, Qing Tian1, 2, Saowaluck Tibpromma1, 2, Yong Wang42, Jianchu Xu3, 4, Jiye Yan10, Supalak Yacharoen1, 2, Min Zhang15, 16, Joyce Woudenberg3 and K. D. Hyde1, 2, 37, 38 1Institute of Excellence in Fungal Research and 2School of Science, Mae Fah Luang University, -
Secondary Metabolites Produced by Neofusicoccum Species Associated with Plants: a Review
agriculture Review Secondary Metabolites Produced by Neofusicoccum Species Associated with Plants: A Review Maria Michela Salvatore 1 , Artur Alves 2 and Anna Andolfi 1,3,* 1 Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; [email protected] 2 CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] 3 BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy * Correspondence: andolfi@unina.it; Tel.: +39-081-2539179 Abstract: The genus Neofusicoccum is comprised of approximately 50 species with a worldwide distribution and is typically associated with plants. Neofusicoccum is well-known for the diseases it causes on economically and ecologically relevant host plants. In particular, members of this genus are responsible for grapevine diseases, such as leaf spots, fruit rots, shoot dieback, bud necrosis, vascular discoloration of the wood, and perennial cankers. Many secondary metabolites, including (−)-botryoisocoumarin A, botryosphaerones, cyclobotryoxide and isosclerone, were identified from species of Neofusicoccum and their structural variability and bioactivities might be associated with the role of these compounds in the fungal pathogenicity and virulence. In this review, we summarize the secondary metabolites from Neofusicoccum species focusing on the role of these compounds in the interaction between the fungus -
Project Title: Progressive Die-Back Symptoms in Blueberry: Identification and Control
Project title: Progressive die-back symptoms in blueberry: Identification and control. Project number: SF 132 Project leader: Graham Moore FAST LLP, Crop Technology Centre, Brogdale Farm, Brogdale Road, Faversham, Kent, ME13 8XZ Tel: 01795 533225 (mobile 07738 885820) Fax: 01795 532422 Email: [email protected] Report: Final Report Previous report: Annual Report, March 2013 Key staff: Graham Moore (FAST) Dan Chiuan (FAST) Charles Lane (FERA) Paul Beales (FERA) Philip Jennings (FERA) Ann Barnes (FERA) Angela Berrie (EMR) Robert Saville (EMR) Location of project: Main site: Food & Environment Research Agency The Food and Environment Research Agency Sand Hutton, York YO41 1LZ, UK Other sites: East Malling Research New Road, East Malling, Kent, ME19 6BJ FAST Llp, Crop Technology Centre, Brogdale Farm, Faversham, Kent, ME13 8XZ Collaborating farm businesses at various locations across England and Scotland Industry Representatives: Name: Peter Thomson Address: Thomas Thomson (Blairgowrie) Ltd., Haugh Road, Blairgowrie, Perthshire, PH10 7BJ Tel: 01250 875500 Email: [email protected] Name: George Leeds Address: The Withers Fruit Farm, Wellington Heath, Ledbury, Herefordshire, HR8 1NF Tel: 01531 634053 Email: [email protected] Date project commenced: 1st April 2012 Date project completed 31st March 2014 (or expected completion date): 2 DISCLAIMER AHDB, operating through its HDC division seeks to ensure that the information contained within this document is accurate at the time of printing. No warranty is given in respect thereof and, to the maximum extent permitted by law the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document. -
Botryosphaeriaceae Associated with Eucalyptus Canker Diseases in Colombia
For. Path. 39 (2009) 110–123 doi: 10.1111/j.1439-0329.2008.00569.x Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Verlag, Berlin Botryosphaeriaceae associated with Eucalyptus canker diseases in Colombia By C. A. Rodas1,3, B. Slippers2,4, M. Gryzenhout1 and M. J. Wingfield1 1Department of Microbiology and Plant Pathology; 2Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa; 3Smurfit Carto´ n de Colombia, Investigacio´ n Forestal, Carrera 3 No. 10-36, Cali, Valle, Colombia. 4E-mail: [email protected] (for correspondence) Summary The identities of Botryosphaeriaceae causing cankers on Eucalyptus in Colombia were investigated using morphological and DNA sequence comparisons. The pathogenicity of the species was also assessed on 42 Eucalyptus grandis clones planted at four different sites. Two species of the Botryosphaeriaceae were found to occur on E. grandis in Colombia. Neofusicoccum ribis was the more common species, and also the most pathogenic. Botryosphaeria dothidea was found only in one zone of Colombia, and was also less pathogenic than N. ribis. These two species could be distinguished easily based on DNA sequences of the ITS1 ⁄ ITS2 rDNA region and EF1-a, in addition to conidial sizes. Significant differences in resistance of clones to these pathogens were also evident from the various trials. 1 Introduction Species of the Botryosphaeriaceae include an important group of opportunistic and pathogenic fungi that infect a wide range of woody plants world-wide (Slippers and Wingfield 2007). These fungi are well-adapted facultative parasites or saprophytes on dead wood and other plant material. -
Botryosphaeria Dothidea and Neofusicoccum Yunnanense Causing Canker and Die-Back of Sequoiadendron Giganteum in Croatia
Article Botryosphaeria Dothidea and Neofusicoccum Yunnanense Causing Canker and Die-Back of Sequoiadendron Giganteum in Croatia Marta Kovaˇc 1 , Danko Dimini´c 2, Saša Orlovi´c 3 and Milica Zlatkovi´c 3,* 1 Croatian Forest Research Institute, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia; [email protected] 2 Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska Cesta 23, 10000 Zagreb, Croatia; [email protected] 3 Institute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehovaˇ 13d, 21000 Novi Sad, Serbia; [email protected] * Correspondence: [email protected]; Tel.: +381-21-540-383 Abstract: Sequoiadendron giganteum Lindl. [Buchholz] is a long-lived tree species endemic to the Sierra Nevada Mountains in California. Due to its massive size and beauty, S. giganteum is a popular ornamental tree planted in many parts of the world, including Europe. Since 2017, scattered branch die-back has been observed on S. giganteum trees in Zagreb, Croatia. Other symptoms included resinous branch cankers, reddish-brown discoloration of the sapwood and, in severe cases, crown die-back. Branches showing symptoms of die-back and cankers were collected from six S. giganteum trees in Zagreb and the aim of this study was to identify the causal agent of the disease. The constantly isolated fungi were identified using morphology and phylogenetic analyses based on the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA), and partial sequencing of two housekeeping Citation: Kovaˇc, M.; Dimini´c, D.; genes, i.e., translation elongation factor 1-α (TEF 1-α), and β tubulin 2 (TUB2). The fungi were Orlovi´c, S.; Zlatkovi´c, M. -
Phylogenetic Lineages in the Botryosphaeriales: a Systematic and Evolutionary Framework
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 76: 31–49. Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework B. Slippers1#*, E. Boissin1,2#, A.J.L. Phillips3, J.Z. Groenewald4, L. Lombard4, M.J. Wingfield1, A. Postma1, T. Burgess5, and P.W. Crous1,4 1Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa; 2USR3278-Criobe-CNRS-EPHE, Laboratoire d’Excellence “CORAIL”, Université de Perpignan-CBETM, 58 rue Paul Alduy, 66860 Perpignan Cedex, France; 3Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal; 4CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 5School of Biological Sciences and Biotechnology, Murdoch University, Perth, Australia *Correspondence: B. Slippers, [email protected] # These authors contributed equally to this paper. Abstract: The order Botryosphaeriales represents several ecologically diverse fungal families that are commonly isolated as endophytes or pathogens from various woody hosts. The taxonomy of members of this order has been strongly influenced by sequence-based phylogenetics, and the abandonment of dual nomenclature. In this study, the phylogenetic relationships of the genera known from culture are evaluated based on DNA sequence data for six loci (SSU, LSU, ITS, EF1, BT, mtSSU). The results make it possible to recognise a total of six families. Other than the Botryosphaeriaceae (17 genera), Phyllostictaceae (Phyllosticta) and Planistromellaceae (Kellermania), newly introduced families include Aplosporellaceae (Aplosporella and Bagnisiella), Melanopsaceae (Melanops), and Saccharataceae (Saccharata). Furthermore, the evolution of morphological characters in the Botryosphaeriaceae were investigated via analysis of phylogeny-trait association.