A&A 634, A73 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935219 & c ESO 2020 Astrophysics NGC 4993, the shell galaxy host of GW170817: constraints on the recent galactic merger I. Ebrová1, M. Bílek2,3, M. K. Yıldız4,5, and J. Eliášek6 1 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland e-mail:
[email protected] 2 Astronomical Institute, Czech Academy of Sciences, Bocníˇ II 1401/1a, 141 00 Prague, Czech Republic 3 Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg (ObAS), UMR 7550, 67000 Strasbourg, France 4 Astronomy and Space Sciences Department, Science Faculty, Erciyes University, Kayseri 38039, Turkey 5 Erciyes University, Astronomy and Space Sciences Observatory Applied and Research Center (UZAYBIMER),˙ 38039 Kayseri, Turkey 6 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, 180 00 Prague, Czech Republic Received 6 February 2019 / Accepted 26 December 2019 ABSTRACT Context. NGC 4993 is the shell galaxy host of the GRB170817A short gamma-ray burst and the GW170817 gravitational-wave event produced during a binary-neutron-star coalescence. Aims. The galaxy shows signs, including the stellar shells, that it has recently accreted a smaller, late-type galaxy. The accreted galaxy might be the original host of the binary neutron star. Methods. We measured the positions of the stellar shells of NGC 4993 in an HST/ACS archival image and use the shell positions to constrain the time of the galactic merger. Results. According to the analytical model of the evolution of the shell structure in the expected gravitational potential of NGC 4993, the galactic merger happened at least 200 Myr ago, with a probable time roughly around 400 Myr, and the estimates higher than 600 Myr being improbable.