Common Carp Management Plan for the Rice Creek Watershed District, Minnesota

Total Page:16

File Type:pdf, Size:1020Kb

Common Carp Management Plan for the Rice Creek Watershed District, Minnesota ABSTRACT This document describes the Common Carp Management Plan for the Rice Creek Watershed District, Minnesota COMMON CARP MANAGEMENT PLAN December 2018 Rice Creek Watershed District Common Carp Management Plan Matt Kocian Lake and Stream Specialist Rice Creek Watershed District 4325 Pheasant Ridge Dr. NE, Suite 611 Blaine, MN 55449‐4539 Voice: 763.398.3075 Fax: 763.398.3088 [email protected] Cover photos Above: Young‐of‐the‐year common carp captured in trap nets in Rice Lake, Anoka County, MN Below: Adult common carp harvested with box nets in Long Lake, Ramsey County, MN 1 December 2018 Contents Executive Summary ....................................................................................................................................... 3 Introduction .................................................................................................................................................. 4 Carp Management Goals .............................................................................................................................. 5 Carp Management Tools ............................................................................................................................... 6 Monitoring and Modelling ........................................................................................................................ 8 Inducing or Increasing Adult Mortality ................................................................................................... 12 Suppressing Recruitment ........................................................................................................................ 15 Adaptive Management Approach ............................................................................................................... 18 System Plans ............................................................................................................................................... 20 Literature Cited ........................................................................................................................................... 21 2 December 2018 Executive Summary This document will describe a plan for common carp management for the Rice Creek Watershed District in Minnesota, USA. The report is organized into two main components: 1) an overview of common carp ecology and available management tools, and 2) specific system management plans. Both components are subject to change as new data and research become available. In this context, “systems” are defined as geographic areas that encompass an individual carp populations, including adult and juvenile seasonal habitats. Specific plans will be updated at individually defined intervals. Common carp are ubiquitous within the Rice Creek Watershed. Although natural resources managers have long known that carp have a negative impact on lake ecology and water quality, recent research has shed light on the magnitude and mechanisms of their impact. Additionally, new management tools have been developed and tested by the University of Minnesota and their many partners. With this information and promising new tools, common carp management has the potential to drastically improve ecological function and water quality in many lakes around the Rice Creek Watershed and Minnesota. 3 December 2018 Introduction Common carp (Cyprinus carpio), indigenous to Eastern Europe and Western Asia, were first introduced in the United States in the late 1800’s. The introduction was purposeful, carried‐out by the U.S. Commission of Fish and Fisheries, and indented to promote a fishery for sport and food sources. Since introduction, common carp spread quickly across the United States; most states now have reproducing populations. In Minnesota, common carp are widespread and often found in high abundance. Several other species of carp have also been introduced to the United States and Minnesota – for example, silver carp (Hypopthalmichthys molitrix), known for their jumping ability, and bighead carp (Hypopthalmichthys nobilis). For the purposes of this report, the term “carp” will be used to describe common carp (Cyprinus carpio) (Figure 1). Figure 1. Common carp (Cyprinus carpio). Image credit: Joseph Tomelleri In North America, common carp negatively impact native ecosystems, fish populations, and water quality by their feeding and spawning behavior (Parkos III, Santucci et al. 2003, Bajer, Sullivan et al. 2009, Weber and Brown 2009). When carp are abundant, the abundance and distribution of native plants declines, nutrients (phosphorus) and chlorophyll‐a (algae) increase, and water clarity decreases. Carp root in lake sediments, destroying native vegetation that would otherwise stabilize lake sediments. Their rooting behavior also disturbs and entrains lake sediments, which carries phosphorus into the water column. Carp ingest invertebrates that live in sediment and excrete dissolved nutrients into the water column. By these mechanisms, carp behavior directly increases phosphorus loading, which fuels algae blooms. Carp also indirectly degrade water quality and are often referred to as “ecosystem engineers”. Ecosystem services that would mitigate phosphorus loading and dampen algae blooms are 4 December 2018 also lost; aquatic plants cannot stabilize sediments or take‐up and store phosphorus, and zooplankton populations decline due to loss of refuge provided by plants. Most research on carp and their negative impacts on lake ecosystems focuses on adult fish. However recent research indicates that juvenile carp have similar negative effects on nutrient concentrations, water clarity, and algae blooms (Weber and Brown 2015). This bolsters that argument for managing common carp on a system‐wide scale – including spawning and juvenile nursery areas ‐ instead of on a lake‐by‐lake basis. The negative effects of carp on lakes are not uniform. Impacts are greater in shallow lakes with more littoral habitat, where ecological mechanisms play a large role in lake nutrient dynamics. Also, the density of carp plays a key role in the magnitude of their impact. The approximate threshold at which the negative effects are observed is 100 kg/ha (Bajer, Sullivan et al. 2009, Bajer, Headrick et al. 2014). When carp density is below this threshold, negative effects may be minor. At higher densities, carp can have a significant negative effect. Although specific details about the impacts of carp on water quality have only recently been identified (e.g. Bajer 2009), lake managers have long understood the general link between carp and poor water quality. Carp management has occurred in Minnesota dating back to the mid‐1900’s. Early management tools included the use of non‐selective fish toxins (rotenone) and winter seining. For example, the Minnesota Department of Natural Resources (MNDNR) has used trap‐nets and seines to remove carp and bullhead in the 1950’s. Based on MNDNR reports, these efforts were met with mixed success, and any positive outcomes were temporary. In recent years, several carp management efforts have found success in reducing carp biomass below the ecological damage threshold and improving water quality (Schrage and Downing 2004). In the Rice Creek Watershed, significant improvements in water clarity have been achieved in Howard (02‐0016) and Silver (62‐0083) Lakes by common carp management. Carp Management Goals Given the currently available management tools, it is not economically feasible to eradicate common carp from the Rice Creek Watershed. Further, it may not generally feasible, regardless of effort. Thus, the management goal for common carp is to attain and maintain a population density below which they 5 December 2018 negatively affect water quality. This threshold is approximately 100 kg/ha (90 lbs/acre) (Bajer, Sullivan et al. 2009, Bajer, Headrick et al. 2014). The actual threshold may vary among systems, and positive outcomes may be achieved at slightly higher or lower carp densities. The variability of density threshold among systems highlights the importance of monitoring and adaptive management. Management of common carp alone will not always fully restore lake water clarity (Weber and Brown 2009, Bajer and Sorensen 2015). For those degraded systems with high carp density, reducing that density below the ecological impact threshold will be a necessary component of lake restoration. However, other phosphorus loading sources must be evaluated and potentially mitigated. Carp Management Tools The Integrated Pest Management (IPM) approach will provide the overall framework for managing common carp in the RCWD. The IPM approach follows a stepwise approach, generally including identification of the problem, prevention and exclusion, monitoring, and multiple‐tactic control methods. In recent years, this approach has been adapted for common carp by Dr. Peter Sorensen and Dr. Prezemek Bajer at the University of Minnesota. The adapted approach focuses on employing an array of methods that target ecological or biological weakness in common carp, implemented in an economically and ecologically sustainable manner. The management tools identified in this plan fit within the IPM framework, and are evaluated for use based on, among other things, overall effectiveness and economic sustainability. As carp management tool are evaluated for individual systems, the Rice Creek Watershed District will consider effectiveness, efficiency, and reliability. Before identifying specific management tools, it is useful to consider the population dynamics
Recommended publications
  • Toxic Dinoflagellate Spores in Ships' Ballast Water
    Final Report FIRDC Grant 89 I 39 Toxic dinoflagellate spores in ships' ballast water : A danger to aquaculture G.M. Hallegraeff CSIRO Marine Laboratories, GPO Box 1538, Hobart, Tasmania 7 001 April 1992 Foreword The present investigations on "Toxic dinoflagellate spores in ships' ballast water" and "its implications for aquaculture" were funded by FIRDC grant 89 I 39 (Sept 1989 - Sept 1991 ) . This research involved a collaborative effort between CSIRO Division of Fisheries and the Australian Quarantine and Inspection Service (AQIS), and was instigated by the claim by CSIRO that the toxic dinoflagellate Gymnodinium catenatum in Tasmanian waters could have been introduced via cyst stages contained in ships' ballast water. In February 1986, contamination of Tasmanian shellfish with dinoflagellate toxins led to the closure of 15 shellfish farms for periods up to 6 months. Subsequently, similar toxic dinoflagellate outbreaks surfaced in the Australian ports of Adelaide (Aiexandrium minutum ) and Melbourne (Aiexandrium catenella ) . Genetic evidence (rRNA fingerprints) suggest that these latter species are also ballast water introductions. The present research received considerable national and international publicity ( front page news in the Hobart "Mercury" and "Sydney Morning Herald", national television coverage on the "7.30 report" and "Beyond.2000"). The Australian Quarantine and Inspection Service has responded to this evidence by introducing, as of 1 February 1990, voluntary ballast water guidelines for ships entering Australian ports from overseas. As of 1 November 1991, the International Maritime Organisation (IMO) ratified these guidelines for adoption on an international basis. The present FIRDC- funded research has functioned as a catalyst for further ballast water research funds (600 K) made available by AQIS and BRR.
    [Show full text]
  • Page 1 F Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 the Japanese
    魚病研究 Fish Pathology, 46 (3), 87–90, 2011. 9 © 2011 The Japanese Society of Fish Pathology Blood Fluke Infection of Cage 2 to 10 months (average of 6 months) fed with highly fat content fish, mainly chub mackerel Scomber japonicus, R eared Atlantic Bluefin Tuna A tla n tic mackerel S c o mber scombru s , European pil- Thunnus thynnus in chard C lupea pilchartus and round sardinella S a rd in e lla aurita. After this period, tunas are sacrificed in the Wes t Mediterranean floating cages a n d immediately commercialized fresh or frozen. R ocio Ruiz de Ybañez1, José Peñalver2, Among pathological problems reported in reared C arlos Martínez-Carrasco1, Laura del Río1, tuna, a blood fluke Cardicola forsteri (Digenea: 2 1 Aporocotylidae), has been pointed out as a significant Emilio María Dolores , Eduardo Berriatua risk of tuna health1). Initially identified in the Australian 1 and Pilar Muñoz * population of farmed southern BFT Thunnus maccoyii 2), this blood fluke was later reported in Atlantic BFT3–5), 1 Animal Health Department, University of Murcia, being the only one aporocotylid repo rte d s o fa r in th is Murcia 30100, Spain 2 species. Aporocotylids are parasites of marine and Livestock and Fishery Departmen t, Murcia 6) fre s h wate r fis h . Most species are located in the R egional Gov e rn men t, Murcia 30201, heart, bulbus arteriosus, ventral aorta or branchial ves- S p a in sels, although the cephalic or dorsal vessels are not uncommon habitats7). Once established, adult flukes (Recieved November 24, 2010) lay eggs whic h tra v e l to th e g ills where they lodge.
    [Show full text]
  • Fishing Methods and Gears in Panay Island, Philippines
    Fishing Methods and Gears in Panay Island, Philippines 著者 KAWAMURA Gunzo, BAGARINAO Teodora journal or 鹿児島大学水産学部紀要=Memoirs of Faculty of publication title Fisheries Kagoshima University volume 29 page range 81-121 別言語のタイトル フィリピン, パナイ島の漁具漁法 URL http://hdl.handle.net/10232/13182 Mem. Fac. Fish., Kagoshima Univ. Vol.29 pp. 81-121 (1980) Fishing Methods and Gears in Panay Island, Philippines*1 Gunzo Kawamura*2 and Teodora Bagarinao*3 Abstract The authors surveyed the fishing methods and gears in Panay and smaller neighboring islands in the Philippines in September-December 1979 and in March-May 1980. This paper is a report on the fishing methods and gears used in these islands, with special focus on the traditional and primitive ones. The term "fishing" is commonly used to mean the capture of many aquatic animals — fishes, crustaceans, mollusks, coelenterates, echinoderms, sponges, and even birds and mammals. Moreover, the harvesting of algae underwater or from the intertidal zone is often an important job for the fishermen. Fishing method is the manner by which the aquatic organisms are captured or collected; fishing gear is the implement developed for the purpose. Oftentimes, the gear alone is not sufficient and auxiliary instruments have to be used to realize a method. A fishing method can be applied by means of various gears, just as a fishing gear can sometimes be used in the appli cation of several methods. Commonly, only commercial fishing is covered in fisheries reports. Although traditional and primitive fishing is done on a small scale, it is still very important from the viewpoint of supply of animal protein.
    [Show full text]
  • Biological Control of Invasive Fish and Aquatic Invertebrates: a Brief Review with Case Studies
    Management of Biological Invasions (2019) Volume 10, Issue 2: 227–254 CORRECTED PROOF Review Biological control of invasive fish and aquatic invertebrates: a brief review with case studies Przemyslaw G. Bajer1,*, Ratna Ghosal1,+, Maciej Maselko2, Michael J. Smanski2, Joseph D. Lechelt1, Gretchen Hansen3 and Matthew S. Kornis4 1University of Minnesota, Minnesota Aquatic Invasive Species Research Center, Dept. of Fisheries, Wildlife, and Conservation Biology, 135 Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA 2University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Ave., Room 344, St. Paul MN 55108, USA 3Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN 55155, USA 4U.S. Fish and Wildlife Service, Great Lakes Fish Tag and Recovery Laboratory, Green Bay Fish and Wildlife Conservation Office, 2661 Scott Tower Drive, New Franken, WI 54229, USA +Current Address: Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Gujarat 380009, India Author e-mails: [email protected] (PGB), [email protected] (RG), [email protected] (MM), [email protected] (MJS), [email protected] (JDL), [email protected] (GH), [email protected] (MSK) *Corresponding author Citation: Bajer PG, Ghosal R, Maselko M, Smanski MJ, Lechelt JD, Hansen G, Abstract Kornis MS (2019) Biological control of invasive fish and aquatic invertebrates: a We review various applications of biocontrol for invasive fish and aquatic brief review with case studies. invertebrates. We adopt a broader definition of biocontrol that includes traditional Management of Biological Invasions 10(2): methods like predation and physical removal (biocontrol by humans), and modern 227–254, https://doi.org/10.3391/mbi.2019.
    [Show full text]
  • Native Fish Conservation
    Yellowstone SScience Native Fish Conservation @ JOSH UDESEN Native Trout on the Rise he waters of Yellowstone National Park are among the most pristine on Earth. Here at the headwaters of the Missouri and Snake rivers, the park’s incredibly productive streams and lakes support an abundance of fish. Following the last Tglacial period 8,000-10,000 years ago, 12 species/subspecies of fish recolonized the park. These fish, including the iconic cutthroat trout, adapted and evolved to become specialists in the Yellowstone environment, underpinning a natural food web that includes magnificent animals: ospreys, bald eagles, river otters, black bears, and grizzly bears all feed upon cutthroat trout. When the park was established in 1872, early naturalists noted that about half of the waters were fishless, mostly because of waterfalls which precluded upstream movement of recolonizing fishes. Later, during a period of increasing popularity of the Yellowstone sport fishery, the newly established U.S. Fish Commission began to extensively stock the park’s waters with non-natives, including brown, brook, rainbow, and lake trout. Done more than a century ago as an attempt to increase an- gling opportunities, these actions had unintended consequences. Non-native fish caused serious negative impacts on native fish populations in some watersheds, and altered the parks natural ecology, particularly at Yellowstone Lake. It took a great deal of effort over many decades to alter our native fisheries. It will take a great deal more work to restore them. As Aldo Leopold once said, “A thing is right when it tends to preserve the integrity, stability, and beauty of the biotic com- munity.
    [Show full text]
  • A Brief Diet Analysis of Common Carp and Channel Catfish by Brent Campos
    A Brief Diet Analysis of Common Carp and Channel Catfish By Brent Campos Four mainstem nonnative fish, two channel catfish (Ictalurus punctatus) and two common carp (Cyprinus carpio), were captured using hook-and-line during our research expedition down the Grand Canyon in March, 2005. The stomachs of the fish were removed and their contents analyzed. The two species of fish appeared to exhibit divergent methods of feeding, despite having very similar organisms in their stomachs. Catfish displayed a selective, possibly mid-water picking strategy, while carp appeared to be consuming benthic substrates with their prey. Figure 1. The 405 mm common carp with its abdominal cavity cut open. Note the large ovaries, which are yellow and grainy in appearance (photo: Chris Hammersmark). One common carp was caught near sunset in a small eddy near Bass Camp at river mile 108 on March 21. It was male, measured 370 mm standard length (SL) and exhibited spawning colors. Identifiable stomach contents included aquatic Coeloptra (beetles), one oligochete, many pebbles, and detritus, among other benthic inverts. The presence of numerous pebbles indicates this fish was probing substrates for food, as would be expected for this species. The second common carp was caught near the mouth of the backwater at river mile 137, which was at the separation point of the eddy that created the site’s sandbar. The carp was female, 405 mm in length (standard length), and displayed spawning colors. Her ovaries made up approximately 50% of her abdominal cavity by volume. Gut contents were comprised of 95% algae and 5% a mix of detritus and aquatic invertebrates.
    [Show full text]
  • Fishing in Twelve Michigan Lakes Under Experimental Regulations
    Fishing in Twelve Michigan Lakes Under Experimental Regulations by KENNETH E. CHRISTENSEN FRANKLIN DE KLEINE COMPANY. STATE PRINTERS. LANSING. MICHIGAN 1953 1 -9ntrocluction In recent years (from 1945 to 1951) the Michigan Legislature made several important liberalizations in laws related to fishing for warm-water species, particularly the pan fishes. The size limit on pan fish was eliminated, the closed season on bluegills and sunfish was shortened, and all lakes (except a few "trout lakes") were opened to year-round fishing for perch, crappies, rock bass and certain other species not protected by a closed season. These liberalizations reflected the findings of general creel census on "pike lakes" which had been open to year-round fishing, the results of research parties working on many Michigan lakes over the past twenty years, and especially the findings from intensive studies since 1946 on a group of "test" lakes. The results from studies on the "test" lakes are presented in the present report. In view of the special interest in fishing regulations in connection with these studies, an historical review of Michigan fishing laws is first presented in the following. 3 HISTORY OF REGULATIONS The earliest legislation pertaining to fishing in inland waters of Michigan was concerned with the use of seines and other types of "continuous" nets. One of the first of such laws was Act No. 198, Laws of Michigan 1859 (Public Acts), which listed twelve counties of the extreme southern part of the Lower Peninsula where the use of seines and continuous nets was prohibited. Many of these earlier laws pertained to individual waters.
    [Show full text]
  • Capture-Induced Physiological Stress and Post-Release Survival of Recreationally Caught Southern Bluefin Tuna
    CCSBT-ESC/1609/Info 01 Capture-induced physiological stress and post-release survival of recreatonally caught Southern Bluefn Tuna Tuna Southern Bluefn caught of recreatonally survival and post-release stress physiological Capture-induced Capture-inducedCapture-induced physiological physiological stress stress and and post-release post-release Capture-induced physiological stress and post-release survivalsurvival of recreationally of recreationally caught caught Southern Southern Bluefin Bluefin Tuna Tuna Capture-inducedCapture-inducedsurvivalCapture-induced of recreatonally physiological physiological physiological caught stress stress stress and Southernand and post-release post-release post-release Bluefn Tuna survival of recreationally caught Southern Bluefin Tuna FRDCsurvival FRDCsurvivalProject Project No.of 2013-15 recreationally No.of 2013-15recreationally caught caught Southern Southern Bluefin Bluefin Tuna Tuna 2016FRDC2016 Project No. 2013-15 FRDCFRDCFRDC Project Project Project No. 2013-15 No. No. 2013-15 2013-25 2016 201620162016 Sean SeanTracey, Tracey, Klaas Klaas Hartmann, Hartmann, Jaime Jaime McAllister, McAllister, Simon Simon Conron Conron and Melanie and Melanie Leef Leef Sean Tracey, Klaas Hartmann, Jaime McAllister, Simon Conron and Melanie Leef Sean Tracey, Klaas Hartmann, Jaime McAllister, Simon Conron and Melanie Leef SeanSean Tracey, Tracey, Klaas Klaas Hartmann, Hartmann, Jaime Jaime McAllister, McAllister, Simon Simon Conron Conron and Melanie and Melanie Leef Leef The InsttuteThe Insttute for Marine for Marineand
    [Show full text]
  • Site Fidelity, Habitat Use, and Movement Patterns of the Common Carp During Its Breeding Season in the Pearl River As Determined by Acoustic Telemetry
    water Article Site Fidelity, Habitat Use, and Movement Patterns of the Common Carp during Its Breeding Season in the Pearl River as Determined by Acoustic Telemetry Yingqiu Zhang 1, Yuefei Li 1, Lili Zhang 2, Zhi Wu 1, Shuli Zhu 1, Jie Li 1 and Xinhui Li 1,* 1 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Rd., Liwan District, Guangzhou 510380, China; [email protected] (Y.Z.); [email protected] (Y.L.); [email protected] (Z.W.); [email protected] (S.Z.); [email protected] (J.L.) 2 Institute of Geochemical Exploration and Marine Geological Survey, East China Mineral Exploration and Development Bureau for Non-ferrous Metals, Nanjing 210000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-20-81611961 Received: 17 June 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: Understanding fish migration patterns and habitat use is essential for fisheries management. We conducted an acoustic fine-scale tracking experiment from March to June 2017 to determine the common carp movement pattern and habitat use in the downstream area of the Pearl River. The eight tagged common carp were detected for 39.38 29.57 d, on average, with a total average detection ± period of 42.12 28.02 d. A general linear mixed model suggested they were detected more during ± the night than during the day. Common carp preferred habitats near the sandbar and riparian shallow habitats, as revealed by their movement tracks and habitat selection indexes. The general additive mixed model (GAMM) analysis of their shortest distances to riverbanks and depth indicated that they migrated to shallower riparian habitat more frequently during the night than during the day.
    [Show full text]
  • Aquaculture Research and Its Relation to Development in China
    AQUACULTURE RESEARCH AND ITS RELATION TO DEVELOPMENT IN CHINA S.F. Li Shanghai Fisheries University, Shanghai, China E-mail: [email protected] ABSTRACT China has a long history in aquaculture that goes back 2500 years. However, key advances followed the artificial breeding of carp in the 1950s. This chapter focuses on the development from the 1980s to the present, discussing the major issues in the developments, current and future trends and challenges, and the roles of Shanghai Fisheries University and the WorldFish Center in addressing these concerns. STATUS Pond culture is the most important practice contributing to total aquaculture production from Dramatic development since 1980s freshwaters. Pond culture has an estimated share of 60 to 70 per cent of total freshwater aquaculture The history of fish farming in China goes back at least production, in which Taihu Lake area in the Yangtze 2500 years, and it has long held prominence in the River Delta and Zhong-Nan-Shuan area in the Pearl rich Chinese civilization. But it was only after the 1950s River Delta are the traditional centers of fish culture. that aquaculture has been rapidly developed. The Culture in open-waters (lakes, reservoirs, channels) and breakthrough in the artificial breeding of the silver carp, in paddies contributes most of the remaining output. bighead carp and grass carp achieved from 1958 to 1960 The most commonly farmed species are silver carp changed the traditional practice of collecting wild fry (Hypophthalmichthys molitrix), bighead carp (Aristichthys from the rivers. Meanwhile, in the 1960s Chinese nobilis), grass carp (Ctenopharyngodon idellus), black scientists summarized the experience of Chinese carp (Mylopharyngodon piceus), common carp (Cyprinus freshwater fish culture into eight words; water, seed, carpio), crucian carp (Carassius auratus), blunt snout feeds, density, polyculture, rotation, disease, and bream (Megalobrama amblycephala), mud carp (Cirrhina management.
    [Show full text]
  • Integrated Freshwater Prawn Farming: State-Of- The-Art and Future Potential
    Reviews in Fisheries Science & Aquaculture ISSN: 2330-8249 (Print) 2330-8257 (Online) Journal homepage: http://www.tandfonline.com/loi/brfs21 Integrated Freshwater Prawn Farming: State-of- the-Art and Future Potential Helcio L. A. Marques, Michael B. New, Marcello Villar Boock, Helenice Pereira Barros, Margarete Mallasen & Wagner C. Valenti To cite this article: Helcio L. A. Marques, Michael B. New, Marcello Villar Boock, Helenice Pereira Barros, Margarete Mallasen & Wagner C. Valenti (2016) Integrated Freshwater Prawn Farming: State-of-the-Art and Future Potential, Reviews in Fisheries Science & Aquaculture, 24:3, 264-293, DOI: 10.1080/23308249.2016.1169245 To link to this article: http://dx.doi.org/10.1080/23308249.2016.1169245 Published online: 20 Apr 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=brfs21 Download by: [Dr Wagner Valenti] Date: 21 April 2016, At: 11:00 REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2016, VOL. 24, NO. 3, 264–293 http://dx.doi.org/10.1080/23308249.2016.1169245 Integrated Freshwater Prawn Farming: State-of-the-Art and Future Potential Helcio L. A. Marquesa, Michael B. Newb, Marcello Villar Boocka, Helenice Pereira Barrosc, Margarete Mallasenc,y, and Wagner C. Valentid aAquaculture Center, Fisheries Institute, Sao Paulo State Secretariat of Agriculture and Food Supply, S~ao Paulo, Brazil; bFreshwater Prawn Farming Research Group, CNPq, Brazil, Marlow, Bucks, UK; cCenter for Continental Fish, Fisheries Institute, Sao Paulo State Secretariat of Agriculture and Food Supply, S~ao Paulo, Brazil; dBiosciences Institute and CAUNESP, CNPq., S~ao Paulo State University UNESP, S~ao Paulo, Brazil ABSTRACT KEYWORDS Integrated aquaculture can be defined as aquaculture systems sharing resources with other freshwater prawns; activities, commonly agricultural, agroindustrial, and infrastructural.
    [Show full text]
  • Aquaculture Alternatives in Arkansas
    Aquaculture/Fisheries FSA9055 Aquaculture Alternatives in Arkansas Nathan Stone Aquaculture, the farming of season. Prior to entering commercial Extension Fisheries aquatic animals and plants, is a form farming, consider if you have the of agriculture. Many people are temperament, skills, management Specialist looking at various aquaculture enter­ ability, financial resources and time prises as a way to start a new busi­ required to run a fish farm. If you George Selden ness or provide food for their families. are not interested or suited to the Extension Aquaculture Arkansas is a prime location for the task and still wish to pursue fish Specialist development of aquaculture farms. farming, you will have to pay to hire Industry infrastructure, such as a manager. SRAC 0441 is a fact sheet feed mills, aquaculture supply houses, on the realities of aquaculture and is Anita M. Kelly financial institutions and equipment an excellent resource for people think­ Extension Fish Health manufacturers, is available in ing of beginning an aquaculture busi­ Specialist Arkansas or adjacent states and ness. It points out the potential for supports existing producers. In con­ catastrophic disasters such as oxygen sidering an aquaculture business depletions and disease, emphasizes venture, there are a number of impor­ the importance of marketing and tant decisions to be made. This fact discusses the risks and benefits of sheet is intended to assist potential fish farming. producers by outlining critical ques­ tions and briefly describing the vari­ Financing and Marketing ous alternative species and culture systems. The Southern Regional It is critical to develop a business Aquaculture Center (SRAC) provides plan before beginning an aquaculture online access to over 150 fact sheets operation.
    [Show full text]