Threat-Sensitive Anti-Predator Defence in Precocial Wader, the Northern Lapwing Vanellus Vanellus

Total Page:16

File Type:pdf, Size:1020Kb

Threat-Sensitive Anti-Predator Defence in Precocial Wader, the Northern Lapwing Vanellus Vanellus acta ethol DOI 10.1007/s10211-016-0236-1 ORIGINAL PAPER Threat-sensitive anti-predator defence in precocial wader, the northern lapwing Vanellus vanellus Natalia Królikowska1 & Jakub Szymkowiak1 & Rebecca Anne Laidlaw2,3 & Lechosław Kuczyński1 Received: 14 January 2016 /Revised: 26 April 2016 /Accepted: 6 May 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Birds exhibit various forms of anti-predator behav- rook throughout the breeding season, while defence against iours to avoid reproductive failure, with mobbing—observa- hooded crow, harriers and black-headed gull did not exhibit tion, approach and usually harassment of a predator—being clear temporal patterns. Mobbing behaviour of lapwings ap- one of the most commonly observed. Here, we investigate parently constitutes a flexible anti-predator strategy. The anti- patterns of temporal variation in the mobbing response exhib- predator response depends on predator species, which may ited by a precocial species, the northern lapwing (Vanellus suggest that lapwings distinguish between predator types vanellus). We test whether brood age and self-reliance, or and match mobbing response to the perceived hazard at dif- the perceived risk posed by various predators, affect mobbing ferent stages of the breeding cycle. We conclude that a single response of lapwings. We quantified aggressive interactions species may exhibit various patterns of temporal variation in between lapwings and their natural avian predators and used anti-predator defence, which may correspond with various generalized additive models to test how timing and predator hypotheses derived from parental investment theory. species identity are related to the mobbing response of lap- wings. Lapwings diversified mobbing response within the Keywords Harmtooffspringhypothesis .Parentalinvestment breeding season and depending on predator species. Raven theory . Predator recognition . Reproductive value of offspring Corvus corax, hooded crow Corvus cornix and harriers hypothesis evoked the strongest response, while common buzzard Buteo buteo, white stork Ciconia ciconia,black-headedgull Chroicocephalus ridibundus and rook Corvus frugilegus were Introduction less frequently attacked. Lapwings increased their mobbing response against raven, common buzzard, white stork and Predation constitutes the most important cause of reproductive failure in the majority of bird species (Ricklefs 1969; Montgomerie and Weatherhead 1988; Lima and Dill 1990; Electronic supplementary material The online version of this article (doi:10.1007/s10211-016-0236-1) contains supplementary material, Martin 1995). Birds engage in various forms of anti-predator which is available to authorized users. behaviour (Caro 2005) to enhance the chance of successful breeding. The most frequent are nest concealment and cryptic * Natalia Królikowska behaviours (Lima and Dill 1990), reducing the number of [email protected] eggs under increased risk of nest predation (Eggers et al. 2006), nesting near protector species (Lima and Dill 1990), 1 Department of Avian Biology and Ecology, Faculty of Biology, feigning injury behaviours (Caro 2005), changing their risk Adam Mickiewicz University, Umultowska 89, sensitivity depending on the risk and the option for re- 61-614 Poznań,Poland nesting (Schneider and Griesser 2015) and active nest de- 2 School of Biological Sciences, University of East Anglia, Norwich fence, like mobbing (Caro 2005; Lima and Dill 1990). Research Park, Norwich NR4 7TJ, UK Mobbing—observation, approach and usually harassment of 3 South Iceland Research Centre, University of Iceland, Bankavegi, a predator by prey birds with alarm calls and direct physical IS-800 Selfoss, Iceland attacks (Caro 2005)—may effectively deter predators from acta ethol nesting areas, thus ensuring higher offspring survival (Knight relatively scarce (Brunton 1990;Larsenetal.1996; Sordahl and Temple 1986;Caro2005; Kontiainen et al. 2009). 2004; Mathot et al. 2009). Precocial species allocate their However, mobbing also involves some costs, as it potentially parental investments differently and face different trade-offs increases predation risk to defending parents or even attracts than altricial ones due to differences in the parental care sys- other predators into an area due to its conspicuousness (Krama tem. Such differences may shape patterns of anti-predator re- and Krams 2005; Krams et al. 2007). Furthermore, mobbing is sponse. Moreover, the hypotheses derived from the parental costly in terms of time and energy expenditure, as it reduces investment theory were mostly considered separately (Brown the time available for other activities (Lima and Dill 1990; et al. 2006; Rhoades and Blumstein 2007;Mathotetal.2009; Caro 2005). Consequently, parents should trade off the invest- Crawford et al. 2012), and these studies explored patterns of ment in current reproduction (anti-predator behaviour) and the temporal variation in defence concerning a narrow range of ability to invest in the future (Clutton-Brock 1991; Stearns predator taxa. Evaluating brood defence behaviour throughout 1992). the breeding season in precocial species, having mobile and The relationship between investment in current and future dispersed chicks, is critical to gaining a wider understanding reproduction constitutes a life-history trade-off (Coleman and of anti-predator behaviour. Gross 1991; Stearns 1992; Ghalambor and Martin 2001). The majority of waders (including the northern lapwing Parental investment theory has yielded three hypotheses to Vanellus vanellus) consistently lay four eggs (Maclean 1972; explain patterns of temporal variation in eggs or chicks de- Walters 1984). Thus, in this group, there is no relationship fence during the breeding season. The ‘reproductive value of between defence intensity and clutch size or clutch volume offspring’ hypothesis assumes that the intensity of anti- (Rytkönen et al. 1995; Ruusila and Pöysa 1998; Kis et al. predator defence matches the reproductive value of offspring. 2000), contrary to altricial species, in which anti-predator re- Thus, parents should take greater risks and increase mobbing sponse often constitutes a function of brood size (Jónsson and intensity with increasing clutch and chick age (Andersson Gunnarsson 2010) or parents adjust the number of eggs ac- et al. 1980; Montgomerie and Weatherhead 1988). cording to the risk of predation (Eggers et al. 2006;Zanetteet According to the predictions of the ‘harm to offspring’ hy- al. 2011). In waders, the reproductive value of offspring in- pothesis, defence intensity should peak when offspring are creases with its age, but the offspring vulnerability likely more vulnerable to the temporary suspension of parental care peaks around hatching (Galbraith 1988; Montgomerie and (Dale et al. 1996; Listøen et al. 2000; Fernández and Llambías Weatherhead 1988; Brunton 1990; Johansson and Blomqvist 2013). The third hypothesis takes into account that for birds 1996; Weggler 2009). Chicks of waders (solely precocial spe- nesting in a multi-predator environment, different predators cies) are relatively self-reliant and demand markedly less pa- constitute different threats (Montgomerie and Weatherhead rental attention than altricial young (Walters 1982, 1984; 1988; Lima and Dill 1990; Palestis 2005;Lima2009). Some Schekkerman et al. 2009). The self-feeding activity of chicks predators threaten the broods only temporarily (i.e., they feed may expose them to predation (Schekkerman et al. 2009), and mainly either on eggs or chicks), while others may potentially parents likely defend them more vigorously than eggs, also depredate them at all stages of the breeding cycle (e.g. due to the nests of many species being relatively well Teunissen et al. 2008). The ‘threat-sensitive predator avoid- concealed (Šálek and Cepáková 2006). Older offspring that ance’ hypothesis suggests that individuals distinguish be- thermoregulate independently are more mobile and able to tween different types of risk (some predators are hazardous disperse (Weggler 2009), and thus have better survival and only for the offspring while other pose risk only for adults or reproductive prospects than younger ones. for both) and adjust anti-predator response to the perceived The northern lapwing (hereafter referred to as lapwing) hazard posed by a given predator (Helfman 1989;Schneider is a ground-nesting wader that primarily inhabits extensive- and Griesser 2013). Such a flexible anti-predator behaviour ly managed farmland dominated by pastures and marshes allows individuals to reduce the costs associated with brood or wet meadows with short vegetation. Populations of lap- defence and is exhibited by several bird species (e.g. wing have been declining in most European countries in Montgomerie and Weatherhead 1988; Mathot et al. 2009; recent decades (Krebs et al. 1999; Donald et al. 2001; Strnad et al. 2012). Newton 2004). These declines have resulted primarily from The majority of avian studies on offspring defence have low reproductive performance due to the interactive effects focused on altricial (Krama et al. 2012;reviewedin of habitat alterations and predation (Vickery et al. 2001; Montgomerie and Weatherhead 1988;Caro2005) or semi- Evans 2004;Wilsonetal.2004; MacDonald and Bolton precocial species (Clode et al. 2000;WhittamandLeonard 2008;Teunissenetal.2008). Red fox Vulpes vulpes and 2000; Palestis 2005). While it has been suggested that the corvids likely cause the majority
Recommended publications
  • Spur-Winged Lapwing Vanellus Spinosus
    Spur-winged Lapwing Vanellus spinosus Class: Aves Order: Charadriiformes Family: Charadriidae Characteristics: Also known as the spur-winged plover (not to be confused with the recently renamed masked lapwing of Australasia), this lapwing is a wading bird identified by their striking white cheek feathers, black head cap, brown wings against a black body and long black legs. Behavior: In Africa, lapwings don’t travel far outside their home area but merely make short movements to find wetter areas of their habitats. They spend Range & Habitat: their time searching the marshy ground for small invertebrates. Marshes and wetland habitats of central Africa Reproduction: Because of their large range, these birds have variable breeding seasons. Spur-winged lapwings nest in solitary monogamous pairs, often with other mixed species bird nesting colonies. The large nesting groups help protect the birds in the colonies against predation. The lapwing pair will build a nest in a scrape on the ground sometimes lined with vegetation. The female lays 2 eggs that are yellow with brownish black mottling. They hatch after a 28-day incubation period and both sexes help feed the young. If they double-clutch, the male tends the older chicks while the female incubates the second brood (Sacramento Zoo). Lifespan: over 15 years in Diet: captivity, up to 15 years in the Wild: Invertebrates wild. Zoo: softbill, feline diet, capelin, mealworms and insectivore diet Special Adaptations: Spur- Conservation: winged lapwings have a unique Spur-winged lapwings are abundant in their range in Africa and as such call that acts as an alert when are listed as Least Concern by IUCN.
    [Show full text]
  • Developing Methods for the Field Survey and Monitoring of Breeding Short-Eared Owls (Asio Flammeus) in the UK: Final Report from Pilot Fieldwork in 2006 and 2007
    BTO Research Report No. 496 Developing methods for the field survey and monitoring of breeding Short-eared owls (Asio flammeus) in the UK: Final report from pilot fieldwork in 2006 and 2007 A report to Scottish Natural Heritage Ref: 14652 Authors John Calladine, Graeme Garner and Chris Wernham February 2008 BTO Scotland School of Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA Registered Charity No. SC039193 ii CONTENTS LIST OF TABLES................................................................................................................... iii LIST OF FIGURES ...................................................................................................................v LIST OF FIGURES ...................................................................................................................v LIST OF APPENDICES...........................................................................................................vi SUMMARY.............................................................................................................................vii EXECUTIVE SUMMARY ................................................................................................... viii CRYNODEB............................................................................................................................xii ACKNOWLEDGEMENTS....................................................................................................xvi 1. BACKGROUND AND AIMS...........................................................................................2
    [Show full text]
  • Best of the Baltic - Bird List - July 2019 Note: *Species Are Listed in Order of First Seeing Them ** H = Heard Only
    Best of the Baltic - Bird List - July 2019 Note: *Species are listed in order of first seeing them ** H = Heard Only July 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th Mute Swan Cygnus olor X X X X X X X X Whopper Swan Cygnus cygnus X X X X Greylag Goose Anser anser X X X X X Barnacle Goose Branta leucopsis X X X Tufted Duck Aythya fuligula X X X X Common Eider Somateria mollissima X X X X X X X X Common Goldeneye Bucephala clangula X X X X X X Red-breasted Merganser Mergus serrator X X X X X Great Cormorant Phalacrocorax carbo X X X X X X X X X X Grey Heron Ardea cinerea X X X X X X X X X Western Marsh Harrier Circus aeruginosus X X X X White-tailed Eagle Haliaeetus albicilla X X X X Eurasian Coot Fulica atra X X X X X X X X Eurasian Oystercatcher Haematopus ostralegus X X X X X X X Black-headed Gull Chroicocephalus ridibundus X X X X X X X X X X X X European Herring Gull Larus argentatus X X X X X X X X X X X X Lesser Black-backed Gull Larus fuscus X X X X X X X X X X X X Great Black-backed Gull Larus marinus X X X X X X X X X X X X Common/Mew Gull Larus canus X X X X X X X X X X X X Common Tern Sterna hirundo X X X X X X X X X X X X Arctic Tern Sterna paradisaea X X X X X X X Feral Pigeon ( Rock) Columba livia X X X X X X X X X X X X Common Wood Pigeon Columba palumbus X X X X X X X X X X X Eurasian Collared Dove Streptopelia decaocto X X X Common Swift Apus apus X X X X X X X X X X X X Barn Swallow Hirundo rustica X X X X X X X X X X X Common House Martin Delichon urbicum X X X X X X X X White Wagtail Motacilla alba X X
    [Show full text]
  • Supplementary Information
    Supporting Information Balk et al. 10.1073/pnas.0902903106 Movie S1. A paralyzed herring gull (Larus argentatus). This movie shows a specimen from the County of So¨ dermanland (region G in Fig. 1). Both wings are equally paralyzed and the beak has no strength, whereas mobility and control of the head still remain. In this work we demonstrate that the probability to remedy an individual in this condition by thiamine treatment is very high. The movie is taken in the field, but the specimen is placed on a black tablecloth in order to remove disturbing background and enhance contrast. Movie S1 (AVI) Other Supporting Information Files SI Appendix Balk et al. www.pnas.org/cgi/content/short/0902903106 1of1 Supporting Information Wild birds of declining European species are dying from a thiamine deficiency syndrome L. Balk*, P.-Å. Hägerroth, G. Åkerman, M. Hanson, U. Tjärnlund, T. Hansson, G. T. Hallgrimsson, Y. Zebühr, D. Broman, T. Mörner, H. Sundberg *Corresponding author: [email protected] Contents Pages M & M Materials and Methods. 2–10 Text S1 Additional bird species affected by the paralytic disease. 11 Text S2 Additional results for eggs. 12–13 Text S3 Results for liver body index (LBI) in pulli. 14–15 Text S4 Breeding output and population estimates. 16–18 Text S5 Elaborated discussion of important aspects. 19–27 Acknowl. Further acknowledgements. 28 Fig. S1 a–j The 83 locations where samples were collected. 29–30 Fig. S2 a–d Pigmentation changes in the iris of the herring gull (Larus argentatus). 31 Fig. S3 Liver α-ketoglutarate dehydrogenase (KGDH) in common black-headed gull (Chroicocephalus ridibundus).
    [Show full text]
  • Birdwatching in Portugal
    birdwatchingIN PORTUGAL In this guide, you will find 36 places of interest 03 - for birdwatchers and seven suggestions of itineraries you may wish to follow. 02 Accept the challenge and venture forth around Portugal in search of our birdlife. birdwatching IN PORTUGAL Published by Turismo de Portugal, with technical support from Sociedade Portuguesa para o Estudo das Aves (SPEA) PHOTOGRAPHY Ana Isabel Fagundes © Andy Hay, rspb-images.com Carlos Cabral Faisca Helder Costa Joaquim Teodósio Pedro Monteiro PLGeraldes SPEA/DLeitão Vitor Maia Gerbrand AM Michielsen TEXT Domingos Leitão Alexandra Lopes Ana Isabel Fagundes Cátia Gouveia Carlos Pereira GRP A HIC DESIGN Terradesign Jangada | PLGeraldes 05 - birdwatching 04 Orphean Warbler, Spanish Sparrow). The coastal strip is the preferred place of migration for thousands of birds from dozens of different species. Hundreds of thousands of sea and coastal birds (gannets, shear- waters, sandpipers, plovers and terns), birds of prey (eagles and harriers), small birds (swallows, pipits, warblers, thrushes and shrikes) cross over our territory twice a year, flying between their breeding grounds in Europe and their winter stays in Africa. ortugal is situated in the Mediterranean region, which is one of the world’s most im- In the archipelagos of the Azores and Madeira, there p portant areas in terms of biodiversity. Its are important colonies of seabirds, such as the Cory’s landscape is very varied, with mountains and plains, Shearwater, Bulwer’s Petrel and Roseate Tern. There are hidden valleys and meadowland, extensive forests also some endemic species on the islands, such as the and groves, rocky coasts and never-ending beaches Madeiran Storm Petrel, Madeiran Laurel Pigeon, Ma- that stretch into the distance, estuaries, river deltas deiran Firecrest or the Azores Bullfinch.
    [Show full text]
  • Bird Sightings January/February 1997 Summary
    BIRD OBSERVER © Barry Van Dusen VOL. 25 NO. 3 JUNE 1997 BIRD OBSERVER • bimonthly journal • To enhance understanding, observation, and enjoyment of birds. Ma S S ^ VOL. 25, NO. 3 JUNE 1997 Editor in Chief Board of Directors Corporate Officers Matthew L. Pelikan Dorothy R. Atvidson President Associate Editor Marjorie W. Rines Alden G. Clayton Janet L. Heywood Treasurer & Clerk Department Heads William E. Davis, Jr. Glenn d’Entremont Assistant Clerk Cover Art H. Christian Floyd John A. Shetterly William E. Davis, Jr. Janet L. Heywood Where to Go Birding Subscription Manager Harriet E. Hoffman Jim Berry Carolyn Marsh Feature Articles Matthew L. Pelikan Advertisements Guy Washburn Marta Hersek Wayne R. Petersen Book Reviews Associate Staff John A. Shetterly Alden G. Clayton Theodore Atkinson Bird Sightings Robert H. Stymeist David E. Lange Robert H. Stymeist Patricia A. O’Neill Simon Perkins At a Glance Pamela A. Perry Wayne R. Petersen BIRD OBSERVER (USPS 369-850) is published bimonthly, COPYRIGHT © 1997 by Bird Observer of Eastern Massachusetts, Inc., 462 Trapelo Road, Belmont, MA 02178, a nonprofit, tax-exempt corporation under section 501 (c)(3) of the Internal Revenue Code. Gifts to Bird Observer will be greatly appreciated and are tax deductible. POSTMASTER: Send address changes to BIRD OBSERVER, 462 Trapelo Road, Belmont, MA 02178. PERIODICALS CLASS POSTAGE PAID AT BOSTON, MA. SUBSCRIPTIONS: $21 for 6 issues, $40 for two years in the U.S. Add $2.50 per year for Canada and foreign. Single copies $4.00. An Index to Volumes 1-11 is $3. Back issues: inquire as to price and availability.
    [Show full text]
  • The Origin Oflapwings Vanellus Vanellus and Golden Plovers
    Ornis Fennica 81 :49-64. 2004 The origin of Lapwings Vanellus vanellus and Golden Plovers Pluvialis apricaria wintering in Portugal Domingos Leitão & Salvador Peris Leitão, D., Centro deBiología Ambiental, Departamento de BiologíaAnimal, Faculdade de Ciéncias da Universidade de Lisboa, Edificio C2, Campo Grande, 1700 Lisboa, Por- tugal. Present address: Sociedade Portuguesa para o Estudo das Aves, Rua da Vitória, 53, 3~Esq, 1100-618 Lisboa, Portugal, e-mail: [email protected] Peris, S., Departamento de Biología Animal, Facultad de Biología, Universidad de Salamanca, E-37071, Salamanca, Spain Received 2 December 2003, accepted 22 March 2004 Lapwing (Vanellus vanellus) and Golden Plover (Pluvialis apricaria) ring recoveries in Portugal were compared in order to search for trends in their origin, to analyse the rela- tionship between cold weather and the wintering population, and to discuss the age pat- tern of the birds. Most Lapwings wintering in Portugal come from the British Isles, the Netherlands, Southern ScandinavianPeninsula and Denmark, and Germany. Golden Plo- vers come from all breeding range, a vast region extending from Iceland to Siberia. Colder temperatures in mid-Winter in Northwest Europe bring more birds ofboth species to Por- tugal. After the late 1960s and during 1970s, a systematic decrease occurred inthe Recov- ery Index ofLapwing andGolden Plover coming from several countries in North-western Europe . In the 1980s this trend persisted for birds coming from Scandinavian countries and was inverted for more southern countries. Changes in winter weather could be the most important factor determining these patterns. When winters are mild thebirds may be able to remain longer in northern and eastern areas that have previously been unsuitable.
    [Show full text]
  • Grey-Headed Lapwing Keri (Jpn) Vanellus Cinereus Morphology and Classification Breeding System: Grey-Headed Lapwings Are Monogamous
    Bird Research News Vol.5 No.11 2008.11.16. Grey-Headed Lapwing Keri (Jpn) Vanellus cinereus Morphology and classification Breeding system: Grey-headed Lapwings are monogamous. They breed from March Classification: Charadriiformes Charadriidae to August. A pair hold a 2.1ha territory on average and defend it together. It is unknown whether the male and female build a nest Total length: ♂ 341.7 ± 12.1mm (n=14) ♀ 336.3 ± 12.1mm (12) together, but both sexes incubate the eggs alternately. The hatch- Wing length: ♂ 236.9 ± 7.5mm (14) ♀ 235.5 ± 4.6mm (12) lings soon leave the nest and start to forage for food by themselves Tail length: ♂ 109.4 ± 3.7mm (14) ♀ 109.8 ± 2.8mm (11) following their parent birds in the territory. Parent birds incubate Culmen length: ♂ 42.02 ± 2.91mm (14) ♀ 41.37 ± 3.00mm (12) and defend their hatchlings if necessary. When the young learn to Tarsus length: ♂ 76.90 ± 2.70mm (14) ♀ 76.26 ± 3.45mm (12) Wing claw: ♂ 5.08 ± 1.35mm (14) ♀ 3.69 ± 0.54mm (12) fly, the family flock leaves the territory. They usually breed once Weight: ♂ 280.1 ± 15.9g (13) ♀ 266.6 ± 19.7g (10) in a breeding season, and the second breeding is rare. When they failed in the first breeding attempt, however, they try to re-nest up Measurements after Wakisaka et al. (2006). to two times (Takahashi 2007). Appearance: Nest: Males and females are similar in They build a nest in wet habitats, plumage coloration. Adult birds are such as paddy fields and low grass bluish gray from the head to the and bare areas around them, such upper chest with a black band on the as ridges, cropland, fallow fields chest.
    [Show full text]
  • Masked Lapwings)
    ATSB Bird Information Sheet No.3 MMaasskkeedd LLaappwwiinnggss Managing bird strike risk at Australian airports MASKED LAPWING Vanellus miles Strike Risk ATSB rank 14* Between 1991 and 2001 there were 143 bird strikes reported to ATSB which involved “plovers” (Masked Lapwings). Of these: 7% resulted in damage to aircraft 2.8% had an effect on planned flight 35% involved more than 1 bird *Ranking and figures were obtained from The Hazard Posed to Aircraft by Birds (ATSB 2002). http://www.atsb.gov.au/aviation/research/birdstrike.cfm Prior to breeding season, Masked Lapwings form flocks. During breeding season Masked Lapwings pair off, become highly territorial and are reluctant to move from their territory even for large aircraft. This makes them particularly prone to being struck. Ian Montgomery About Masked Lapwings \ Masked Lapwing Masked Lapwings at Airports Vanellus miles Masked Lapwings are attracted to the airport environment to either Other Names feed or nest. Plover, Masked Plover or Spur-winged They prefer barren, rocky ground or short grass to build nests. These Plover surfaces are also ideal for feeding on insects and other invertebrates in Size the soil. Length 30-37cm; wingspan 75-85cm; They tend to be a seasonal problem for airports, particularly weight 230-400g. immediately before, during and just after the breeding season. Identification When undertaking bird counts or reporting strikes, it is important to Adults have a black crown head, light differentiate between Masked Lapwings and the migrating plovers brown upperparts, white underneath, (such as Pacific Golden, Grey, Red-capped, Sand, or Oriental Plover) reddish legs and a yellow fleshy ‘mask’ at and dotterels (such as Red-kneed and Black-fronted Dotterel).
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]
  • BIRDS of OHIO FIELD CHECKLIST TABLE of CONTENTS PAGE FOUR
    BIRDS OHIOof FIELD CHECKLIST OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE wildohio.gov OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE This checklist represents a comprehensive list of all birds seen in Ohio as of October 2015. Only species that have indis- putable documentation supporting an unequivocal record are included. At present, the Ohio state list stands at 427 species. Species are arranged taxonomically, and separated by family. Taxonomic order follows the American Ornithologists’ Union. Approximately 180 species breed in Ohio every year, and including historical nesters, 212 species have been documented as breeding in the state. Species which have been validated as nesting are boldfaced. Six species are non-native, but estab- lished; they are printed in italics. Each species is denoted by a number, 1 through 5, or as extirpated or extinct. Some species tagged with a 4 exceed the threshold of a 3 based largely on historical records, and are very difficult to find now. Following are the definitions of these categories, and how many species fall into each: 1 = ONE RECORD (39 species) 2 = TWO TO TEN RECORDS (50 species) 3 = ELEVEN TO TWENTY RECORDS (12 species) 4 = RARE TO UNCOMMON; MAY NOT OCCUR ANNUALLY (94 species) 5 = OCCURS ANNUALLY; EASILY FOUND (225 species) EXTINCT = NO LONGER EXISTS ANYWHERE (4 species) EXTIRPATED = NO LONGER PRESENT IN OHIO, ALTHOUGH FOUND ELSEWHERE (3 species) The Ohio Division of Wildlife owns and/or manages 139 wildlife areas totaling approximately 195,000 acres. Some of these wildlife areas are among the most iconic birding sites in the state, such as Magee Marsh, Killbuck Marsh, Big Island, Killdeer Plains, Pickerel Creek, and Crown City.
    [Show full text]