New Materials of a Cretaceous Coelacanth, Mawsonia Lavocati Tabaste from Morocco

Total Page:16

File Type:pdf, Size:1020Kb

New Materials of a Cretaceous Coelacanth, Mawsonia Lavocati Tabaste from Morocco Bull. Natn. Sci. Mus., Tokyo, Ser. C, 31, pp. 39–49, December 22, 2005 New Materials of a Cretaceous Coelacanth, Mawsonia lavocati Tabaste from Morocco Yoshitaka Yabumoto1 and Teruya Uyeno2 1 Kitakyushu Museum of Natural History and Human History, 2–4–1, Higashida, Yahatahigasiku, Kitakyushu, Fukuoka, 805–0071, Japan 2 Department of Geology and Paleontology, National Science Museum, 3–23–1, Hyakunin-cho, Shinjuku-ku, Tokyo, 169–0073, Japan Abstract New materials of coelacanth, Mawsonia lavocati and cf. Mawsonia lavocati from the Albian beds in Morocco are described here. They are a part of the cranium, palate, lower jaw, lachrymojugal, and operculum. The almost complete ethmosphenoid portion of the braincase, postparietal, and dentary of M. lavocati are described here for the first time. Key words : coelacanth, Mawsonia lavocati, Mawsoniidae, Morocco. Mawsonia lavocati Tabaste, 1963 Introduction Materials.—NSM (National Science Muse- Six species of the coelacanth genus Mawsonia um, Tokyo)-PV 20994, an almost complete eth- have been found from the Cretaceous beds of mosphenoid portion of braincase; NSM-PV South America and Africa (Forey, 1998; Yabu- 20995, a postparietal; NSM-PV 20996, a den- moto, 2002), of which, M. lavocati was de- tary; NSM-PV 20997, an angular. scribed on the basis of an angular from the Al- Locality.—Kem-Kem, Morocco. bian bed in Morocco (Tabaste, 1963). Further Age.—Albian, Cretaceous. Sereno et al. fragmentary cranial materials were described (1996) regarded the Kem Kem beds as Cenoman- from the Albian of Algeria (Wenz, 1981) and ian in age on the basis of a shark assemblage, but Morocco (Cavin and Forey, 2004). The National Cavin and Forey (2004) followed them with a Science Museum, Tokyo obtained some newly question mark. Forey (1998) and Wenz (1981) found specimens of M. lavocati and cf. M. lavo- considered the age of M. lavocati from Morocco cati from Morocco, including an almost com- and Algeria as Albian. The age of the present plete ethmosphenoid portion of the braincase, materials is probably Albian, because all con- postparietal, palate, lateral ethmoids, dentary and geners of Mawsonia have been found from Early operculum which have not been previously de- Cretaceous beds. scribed. In the present study these specimens are Emended diagnosis.—The ornamentation of described in detail, and the emended diagnosis the angular and the postparietal is vermiform for M. lavocati is presented. with heavy ridges. The large anterior apophysis for the intracranial joint of the postparietal heads Systematic description forward, and is located at the middle of the ante- rior margin. There are three pairs of nasals and at Order Coelacanthiformes Huxley, 1861 most three supraorbitals. Suborder Latimeroidei Schultze, 1993 Description of the specimens.—The estimat- Family Mawsoniidae, Schultze, 1993 ed length of the parietonasal shield (NSM-PV Genus Mawsonia Woodward, 1907 20994) is 292 mm. The posterior portion, maxi- mum width 96.6 mm is broader than the anterior 40 Yoshitaka Yabumoto and Teruya Uyeno portion, which abruptly narrows at the middle of portion behind the facet is thick with three small the most posterior tectals. pores on the ventral surface. The otic canal of the Both parietals are almost same in length, but postparietal is shown as a groove in the lateral the posterior one is wider and its width at the view, because the lateral part of the anterior por- posterior end about 2.4 times its anterior width. tion is missing. The anterior opening of the Both posterior parietals are almost same in shape branch of the otic canal is located at the anterior and size. There are three pairs of nasals. The pos- part of the otic canal (Fig. 4c and d). The orna- terior ones are larger than the anterior ones, but mentation of the dorsal surface is vermiform the second ones are slightly broader. (Fig. 1a and with radial heavy ridges being similar to that of b). the angular (Fig. 4a). There are three tectals on the right side and The dentary (NSM-PV 20996) is hook-like in two on the left, of which the posterior one is long shape with a lateral swelling, curving medially at (probably the second and third are fused). Three the anterior part. In lateral view, there is a con- right supraorbitals contact with both parietals. cavity behind the lateral swelling which has a The first supraorbital is largest and the second small pore at the ventral portion. The dorsal limb one is smallest. The first and second supraor- is shorter than the ventral limb (Fig. 6). There are bitals are fused on the left side. The left third several ridges on the medial surface of the dorsal supraorbital is almost same in shape and size as limb for the suture with the prearticular. The the right one (Fig. 1a and b). The ornamentation ridges on the medial surface of the ventral limb of the parietonasal shield is vermiform except for and the anterior portion are for the suture with the posterior portion of the anterior parietal and the angular (Fig. 6c ). most of the posterior parietals, which have ridged The anterior and posterior tips and the ventral ornamentation (Fig. 1a). margin of the angular (NSM-PV 20997) are In the ventral view, each lateral ethmoid has a missing (Fig. 6). The ornamentation on the later- hook-like shape with an almost flat, but slightly al surface is almost the same as that of the holo- convex ventral surface. In the lateral view, the type of M. lavocati. Several strong ridges run al- bone has the long dorsal limb contacting with most parallel with the dorsal margin of the poste- tectals, and the short ventral limb contacting with rior portion of the angular, and the strong radial the parasphenoid (Figs. 1c and d, and 2). The ridges run forward from the middle of the poste- parasphenoid is relatively wide with the anterior rior portion. The deepest point is about the mid- deep wing. The toothed area of the parasphenoid dle of the angular (Fig. 6). The medial surface of is longer than a half of the parasphenoid (Fig. 1c the angular is concave at the anterodorsal por- and d). tion. The contact surface with the prearticular The basisphenoid is deep and narrow with the has a triangular shape located below the facet for well-developed sphenotic condyles, which are articular which forms a large concavity facing slightly expanded laterally (Fig. 3). The antotic dorsally. The groove for the external mandibular process is located under the end of the posterior ramus runs just under the contact surface with most supraorbital and bear strong ridges (Figs. 1c the prearticular (Fig. 6c). and d, and 3). The processus connectens forms a protuberance from the sphenotic condyle. There cf. M. lavocati Tabaste, 1963 is a long cranial cavity in front of the oval con- cavity before the sphenoid condyles (Fig. 3). Materials.—NSM-PV 20998, a right princi- The left postparietal (NSM-PV 20995) has the pal coronoid; NSM-PV 20999, a left principal large anterior apophysis and the facet for the in- coronoid; NSM-PV 21000, a palate; NSM-PV tracranial joint on the ventral face at the middle 21001, a lachrymojugal; and NSM-PV 21002, an of the anterior margin (Figs. 4a and b and 5). The operculum. Mawsonia lavocati from Morocco 41 Fig. 1. The ethmosphenoid portion of braincase of Mawsonia lavocati, NSM-PV 20994, a and b, dorsal view, c and d, ventral view. Abbreviations: ant. prϭantotic process; Bsphϭbasisphenoid; LeϭLateral ethmoid; Naϭnasal; Paϭparietal; Parϭparasphenoid; Soϭsupraorbital; Teϭtectal; t. parϭtoothed area of parasphe- noid. 42 Yoshitaka Yabumoto and Teruya Uyeno Fig. 2. The ethmosphenoid portion of braincase of Mawsonia lavocati, NSM-PV 20994, a and b, left lateral view, c and d, right lateral view. Abbreviation: pr. conϭprocessus connectens; for other abbreviations see Fig. 1. Mawsonia lavocati from Morocco 43 Fig. 3. The dorsal view of the basisphenoid (Bsph) of Mawsonia lavocati, NSM-PV 20994. Abbreviations: ccϭcranial cavity; sph.c.ϭsphenotic condyle; for other abbreviations see Figs. 1 and 2. Fig. 4. The postparietal of Mawsonia lavocati, NSM-PV 20995, a and b, dorsal view, c and d lateral view. Ab- breviations: apaϭanterior apophysis; bocϭbranch of the otic canal; ocϭotic canal; fa. i. jϭfacet for the in- tracranial joint. 44 Yoshitaka Yabumoto and Teruya Uyeno narrow part forms a facet with many ridges for the prearticular. There are minute teeth on the medial surface of the principal coronoid (Fig. 7a). The left palate (NSM-PV 21000) is preserved without the autopalatine, missing the anterior portion of the pterygoid. In lateral view, the metapterygoid has an almost triangular shape with the wide dorsal margin, which has a wide flat surface for the cranial articulation at the mid- dle. The process points antero-dorsally, and later- ally becomes thin toward the posterior edge. The most part of the medial surface of the pterygoid except for the dorsal portion is covered with minute teeth (the part bordered by the bro- ken line in Fig. 8b). The anterior portion of the pterygoid is thin and slightly twisted. The ventral margin of the pterygoid is swollen immediately in front of the quadrate. The quadrate is a robust bone ending as a large double condyle. The larger medial condyle lies anterior to the lateral condyle. The dorsal part Fig. 5. The postparietal of Mawsonia lavocati, from the lateral condyle forms the stout ridge. NSM-PV 20995, a and b, ventral view. Abbre- viation see Fig. 3. The anterior margin of the quadrate from the me- dial condyle forms a ridge (Fig. 8c and d). Whereas the medial surface of the lachrymoju- Locality.—Kem-Kem, Morocco. gal (NSM-PV 21001) is flat, the ventral part of Age.—Albian, Early Cretaceous.
Recommended publications
  • From the Crato Formation (Lower Cretaceous)
    ORYCTOS.Vol. 3 : 3 - 8. Décembre2000 FIRSTRECORD OT CALAMOPLEU RUS (ACTINOPTERYGII:HALECOMORPHI: AMIIDAE) FROMTHE CRATO FORMATION (LOWER CRETACEOUS) OF NORTH-EAST BRAZTL David M. MARTILL' and Paulo M. BRITO'z 'School of Earth, Environmentaland PhysicalSciences, University of Portsmouth,Portsmouth, POl 3QL UK. 2Departmentode Biologia Animal e Vegetal,Universidade do Estadode Rio de Janeiro, rua SâoFrancisco Xavier 524. Rio de Janeiro.Brazll. Abstract : A partial skeleton representsthe first occurrenceof the amiid (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus from the Nova Olinda Member of the Crato Formation (Aptian) of north east Brazil. The new spe- cimen is further evidencethat the Crato Formation ichthyofauna is similar to that of the slightly younger Romualdo Member of the Santana Formation of the same sedimentary basin. The extended temporal range, ?Aptian to ?Cenomanian,for this genus rules out its usefulnessas a biostratigraphic indicator for the Araripe Basin. Key words: Amiidae, Calamopleurus,Early Cretaceous,Brazil Première mention de Calamopleurus (Actinopterygii: Halecomorphi: Amiidae) dans la Formation Crato (Crétacé inférieur), nord est du Brésil Résumé : la première mention dans le Membre Nova Olinda de la Formation Crato (Aptien ; nord-est du Brésil) de I'amiidé (Actinopterygii: Halecomorphi: Amiidae) Calamopleurus est basée sur la découverted'un squelettepar- tiel. Le nouveau spécimen est un élément supplémentaireindiquant que I'ichtyofaune de la Formation Crato est similaire à celle du Membre Romualdo de la Formation Santana, située dans le même bassin sédimentaire. L'extension temporelle de ce genre (?Aptien à ?Cénomanien)ne permet pas de le considérer comme un indicateur biostratigraphiquepour le bassin de l'Araripe. Mots clés : Amiidae, Calamopleurus, Crétacé inférieu4 Brésil INTRODUCTION Araripina and at Mina Pedra Branca, near Nova Olinda where cf.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • A New Species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the Mid- Cretaceous of North Africa
    Accepted Manuscript A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid- Cretaceous of North Africa Megan L. Jacobs, David M. Martill, Nizar Ibrahim, Nick Longrich PII: S0195-6671(18)30354-9 DOI: https://doi.org/10.1016/j.cretres.2018.10.018 Reference: YCRES 3995 To appear in: Cretaceous Research Received Date: 28 August 2018 Revised Date: 18 October 2018 Accepted Date: 21 October 2018 Please cite this article as: Jacobs, M.L., Martill, D.M., Ibrahim, N., Longrich, N., A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa, Cretaceous Research (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.018. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 ACCEPTED MANUSCRIPT 1 A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) 2 from the mid-Cretaceous of North Africa 3 Megan L. Jacobs a* , David M. Martill a, Nizar Ibrahim a** , Nick Longrich b 4 a School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK 5 b Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath 6 BA2 7AY, UK 7 *Corresponding author. Email address : [email protected] (M.L.
    [Show full text]
  • Giant Fossil Coelacanths from the Late Cretaceous of the Eastern
    ^rfij^i^v^^™, - » v ' - - 4 j/ N ^P"" ,- V ^™ V- -*^ >•;:-* ' ^ * -r;' David R. Schwimmer, Geologist, Columbus State University Introduction In Autumn, 1987, a sizeable mass of fossil bone was discovered by amateur collectors in the bed of a small creek in eastern Alabama. The bone-bearing rock, some 300 kg in weight, was collected by a party led by G. Dent Williams and transferred to the paleontology laboratory at Columbus State University. Williams prepared most of the material using air percussion tools, and I further cleared some bones with acetic acid. A mandible (lower jaw bone) of 502 mm length was the first bone prepared from the material. It strangely lacked evidence of both teeth and tooth sockets, and it was covered medially with coarse denticulation resembling #40 grit sandpaper. The jawbone conformed with no recognizable North American Late Cretaceous fish or four-legged animal, and, given the large size of the mandible, my initial search for an identification ranged from ankylosaurid dinosaurs, to mosasaurs, to the larger contemporary fish, such as Xiphactinus. Nothing known in the Late Cretaceous of North America matched the mandible nor any other bone which was subsequently prepared from this matrix. J.D. Stewart of the L.A. County Museum was prior fossil record of a North American coelacanth is concurrently studying fossils of small marine Diplurus newarki, from freshwater deposits of earliest coelacanths from the Late Cretaceous of western Kansas, Jurassic age (ca. 205 Myr.: Schaeffer, 1941, 1952). USA (which were also a new discovery at the time: see Forey (1981) and Maisey (1991) recognized two sub- Stewart et al., 1991).
    [Show full text]
  • I Ecomorphological Change in Lobe-Finned Fishes (Sarcopterygii
    Ecomorphological change in lobe-finned fishes (Sarcopterygii): disparity and rates by Bryan H. Juarez A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Ecology and Evolutionary Biology) in the University of Michigan 2015 Master’s Thesis Committee: Assistant Professor Lauren C. Sallan, University of Pennsylvania, Co-Chair Assistant Professor Daniel L. Rabosky, Co-Chair Associate Research Scientist Miriam L. Zelditch i © Bryan H. Juarez 2015 ii ACKNOWLEDGEMENTS I would like to thank the Rabosky Lab, David W. Bapst, Graeme T. Lloyd and Zerina Johanson for helpful discussions on methodology, Lauren C. Sallan, Miriam L. Zelditch and Daniel L. Rabosky for their dedicated guidance on this study and the London Natural History Museum for courteously providing me with access to specimens. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii LIST OF FIGURES iv LIST OF APPENDICES v ABSTRACT vi SECTION I. Introduction 1 II. Methods 4 III. Results 9 IV. Discussion 16 V. Conclusion 20 VI. Future Directions 21 APPENDICES 23 REFERENCES 62 iv LIST OF TABLES AND FIGURES TABLE/FIGURE II. Cranial PC-reduced data 6 II. Post-cranial PC-reduced data 6 III. PC1 and PC2 Cranial and Post-cranial Morphospaces 11-12 III. Cranial Disparity Through Time 13 III. Post-cranial Disparity Through Time 14 III. Cranial/Post-cranial Disparity Through Time 15 v LIST OF APPENDICES APPENDIX A. Aquatic and Semi-aquatic Lobe-fins 24 B. Species Used In Analysis 34 C. Cranial and Post-Cranial Landmarks 37 D. PC3 and PC4 Cranial and Post-cranial Morphospaces 38 E. PC1 PC2 Cranial Morphospaces 39 1-2.
    [Show full text]
  • Giant Mesozoic Coelacanths (Osteichthyes, Actinistia) Reveal High Body Size Disparity Decoupled from Taxic Diversity
    Giant Mesozoic Coelacanths (Osteichthyes, Actinistia) Reveal High Body Size Disparity Decoupled From Taxic Diversity Lionel Cavin ( [email protected] ) Natural History Museum of Geneva André Piuz Natural History Museum of Geneva Christophe Ferrante Natural History Museum of Geneva Guillaume Guinot Institut des Sciences de l'Evolution de Montpellier Research Article Keywords: morphological evolution, taxic diversication, Genomic and physiological characteristics Posted Date: March 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-245480/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 2 Giant Mesozoic coelacanths (Osteichthyes, Actinistia) reveal high 3 body size disparity decoupled from taxic diversity 4 5 Lionel Cavin1*, André Piuz1, Christophe Ferrante1,2 & Guillaume Guinot3 6 7 8 1 Department of Geology and Palaeontology, Natural History Museum of Geneva, Geneva, 9 Switzerland 10 2 Department of Earth Sciences, University of Geneva, Rue des Maraîchais 13, 1205 Genève, 11 Switzerland 12 3 Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier, CNRS, IRD, 13 EPHE), Montpellier, France 14 15 * Corresponding author 16 Email: [email protected] 17 1 18 Abstract 19 20 The positive correlation between speciation rates and morphological evolution expressed by 21 body size is a macroevolutionary trait of vertebrates. Although taxic diversification and 22 morphological evolution are slow in coelacanths, their fossil record indicates that large and 23 small species coexisted, which calls into question the link between morphological and body 24 size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera 25 reached up to 5 meters long, placing them among the ten largest bony fish that ever lived.
    [Show full text]
  • New Coelacanth Material from the Middle Triassic of Eastern Switzerland, and Comments on the Taxic Diversity of Actinistans
    Swiss J Geosci (2013) 106:161–177 DOI 10.1007/s00015-013-0143-7 New coelacanth material from the Middle Triassic of eastern Switzerland, and comments on the taxic diversity of actinistans Lionel Cavin • Heinz Furrer • Christian Obrist Received: 1 February 2013 / Accepted: 9 August 2013 / Published online: 16 November 2013 Ó Swiss Geological Society 2013 Abstract New coelacanth material from the Middle Tri- preserved on the holotype and allows the addition of new assic Prosanto Formation of the Ducan and Landwasser characters to a previously published data matrix of acti- area near Davos in eastern Switzerland, Canton Graubu¨n- nistians. A phylogenetic analysis is performed, which den, is described. A sub-complete individual is visible in supports that Ticinepomis is nested among the Latimeri- ventral view, and shows details of its branchial apparatus. idae. The diversity of post-Palaeozoic coelacanths is In particular, it possesses relatively large teeth on the assessed. The taxic diversity of observed occurrences ceratobranchials, and possible ossified hypobranchials. shows a peak in the Early Triassic and a peak in the Late Few diagnostic characters are observable, and most of them Jurassic, as detected in previous studies. When ghost lin- are visible on the mandibles preserved in lateral view. This eages are included in the computation, the Late Jurassic specimen shares characters with Ticinepomis peyeri,a peak is smoothened. By comparing the taxic diversity smaller form from the Middle Triassic of Monte San curves with the curve of average ghost lineage duration, we Giorgio, whose holotype is re-described in part here. A conclude that the Early Triassic peak of diversity was second specimen, a fragmentary caudal skeleton shows the probably caused by a biological radiation, whereas the Late typical supplementary lobe of coelacanths, and meristic Jurassic peak of observed diversity is probably the result of characters indicating probable close affinities with T.
    [Show full text]
  • Dobrogeria Aegyssensis, a New Early Spathian (Early Triassic) Coelacanth from North Dobrogea (Romania)
    DE DE GRUYTER Acta Geologica Polonica, Vol. 64 (2014), No. 2, pp. 161–187 OPEN DOI: 10.2478/agp-2014-0010 G Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania) LIONEL CAVIN1 AND EUGEN GRĂDINARU2 1Department of Geology and Palaeontology, Natural History Museum, CP 6434, 1211 Geneva 6, Switzerland. E-mail: [email protected] 2Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, Blvd. Bălcescu Nicolae 1, RO-010041 Bucharest, Romania. E-mail: [email protected] ABSTRACT: Cavin, L. and Grădinaru, E. 2014. Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania). Acta Geologica Polonica, 64 (2), 161–187. Warszawa. The Early Triassic witnessed the highest taxic diversity of coelacanths (or Actinistia), a clade with a single liv- ing genus today. This peak of diversity is accentuated here with the description of a new coelacanth discovered in the lower Spathian (Upper Olenekian, Lower Triassic) cropping out in the Tulcea Veche (Old Tulcea) promon- tory, in the city of Tulcea, in North Dobrogea, Romania. The bone remains were preserved in a block of limestone, which was chemically dissolved. The resulting 3D and matrix-free ossifications correspond mostly to elements of the skull and branchial apparatus. Posterior parietals, postparietal with associated prootic and basisphenoid allow a precise description of the neurocranium. Ossifications of the lower jaw, together with branchial and pec- toral elements, complete the description of this coelacanth and support the coining of a new generic and specific name, Dobrogeria aegyssensis. A phylogenetic analysis of actinistians with the new species recovers clades which were found in most recent analyses, i.e.
    [Show full text]
  • Vertebrate Assemblages from the Early Late Cretaceous of Southeastern Morocco: an Overview
    Journal of African Earth Sciences 57 (2010) 391–412 Contents lists available at ScienceDirect Journal of African Earth Sciences journal homepage: www.elsevier.com/locate/jafrearsci Geological Society of Africa Presidential Review No. 16 Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview L. Cavin a,*, H. Tong b, L. Boudad c, C. Meister a, A. Piuz a, J. Tabouelle d, M. Aarab c, R. Amiot e, E. Buffetaut b, G. Dyke f, S. Hua g, J. Le Loeuff f a Dpt. de Géologie et Paléontologie, Muséum de Genève, CP 6434, 1211 Genève 6, Switzerland b CNRS, UMR 8538, Laboratoire de Géologie de l’Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France c Faculté des Sciences et Techniques, BP, 509, Boutalamine, Errachidia, Morocco d Musée Municipal, 76500 Elbeuf-sur-Seine, France e IVPP, Chinese Academy of Sciences, 142 XiZhiMenWai DaJie, Beijing 100044, China f School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland g Musée des Dinosaures, 11260 Espéraza, France article info abstract Article history: Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cre- Received 16 June 2009 taceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far Received in revised form 9 December 2009 been recorded from this region, many of which were recognised and diagnosed for the first time based on Accepted 11 December 2009 specimens recovered from these sediments. In this paper, we use published data together with new field Available online 23 December 2009 data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages.
    [Show full text]
  • Family-Group Names of Fossil Fishes
    European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata.
    [Show full text]
  • The Cretaceous (Cenomanian) Continental Record of the Laje Do Coringa flagstone (Alcântara Formation), Northeastern South America
    Journal of South American Earth Sciences 53 (2014) 50e58 Contents lists available at ScienceDirect Journal of South American Earth Sciences journal homepage: www.elsevier.com/locate/jsames The Cretaceous (Cenomanian) continental record of the Laje do Coringa flagstone (Alcântara Formation), northeastern South America Manuel Alfredo Medeiros a,*, Rafael Matos Lindoso b, Ighor Dienes Mendes a, Ismar de Souza Carvalho b a Universidade Federal do Maranhão, Campus do Bacanga, Avenida dos Portugueses, s/n, CEP: 65.085-580 São Luís, MA, Brazil b Universidade Federal do Rio de Janeiro, Departamento de Geologia, CCMN/IGEO, CEP 21.949-900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil article info abstract Article history: The fossil taxa of the Cenomanian continental flora and fauna of São Luís Basin are observed primarily in Received 25 August 2013 the bone bed of the Laje do Coringa, Alcântara Formation. Many of the disarticulated fish and tetrapod Accepted 8 April 2014 skeletal and dental elements are remarkably similar to the chronocorrelate fauna of Northern Africa. In this study, we present a summary of the continental flora and fauna of the Laje do Coringa bone-bed. The Keywords: record emphasizes the existence of a trans-oceanic typical fauna, at least until the early Cenomanian, Alcântara Formation which may be interpreted as minor evolutionary changes after a major vicariant event or as a result of a São Luís Basin land bridge across the equatorial Atlantic Ocean, thereby allowing interchanges between South America Cretaceous Cenomanian and Africa. The paleoenvironmental conditions in the northern Maranhão State coast during that time were inferred as forested humid areas surrounded by an arid to semi-arid landscape.
    [Show full text]
  • Guelb El Ahmar (Bathonian, Anoual Syncline, Eastern Morocco): First Continental flora and Fauna Including Mammals from the Middle Jurassic of Africa
    Published in *RQGZDQD5HVHDUFK ± which should be cited to refer to this work. Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): First continental flora and fauna including mammals from the Middle Jurassic of Africa Hamid Haddoumi a,RonanAllainb, Said Meslouh c, Grégoire Metais b, Michel Monbaron d,DenisePonsb, Jean-Claude Rage b, Romain Vullo e, Samir Zouhri f, Emmanuel Gheerbrant b,⁎ a Département de Géologie, Faculté des Sciences, Université Mohammed 1er, BP. 524, 60 000 Oujda, Morocco b CR2P — Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements, UMR 7207, Muséum National d'Histoire Naturelle, CNRS, UPMC, Sorbonne Universités, MNHN, CP38, 8 rue Buffon, 75005 Paris, France c Ministère de l'Energie, des Mines, de l'Eau et de l'Environnement, Rabat, Morocco d Département de Géosciences, Université de Fribourg, Switzerland e UMR-CNRS 6118, Géosciences Rennes, Université de Rennes 1, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes, France f Laboratoire de Géosciences, Faculté des Sciences Aïn Chock, Université Hassan II de Casablanca, Km 8, route de l'Université, 20100 Casablanca, Morocco We report the discovery in Mesozoic continental “red beds” of Anoual Syncline, Morocco, of the new Guelb el Ahmar (GEA) fossiliferous sites in the Bathonian Anoual Formation. They produced one of the richest continental biotic assemblages from the Jurassic of Gondwana, including plants, invertebrates and vertebrates. Both the sedimentolog- ical facies and the biotic assemblage indicate a lacustrine depositional environment. The flora is represented by tree trunks (three families), pollen (13 species, five major clades) and charophytes. It suggests local forests and humid (non-arid) conditions.
    [Show full text]