Appendix C Graphics and Computing Gpus
C APPENDIX Graphics and Computing GPUs John Nickolls Imagination is more Director of Architecture important than NVIDIA knowledge. David Kirk Chief Scientist Albert Einstein On Science, 1930s NVIDIA C.1 Introduction C-3 C.2 GPU System Architectures C-7 C.3 Programming GPUs C-12 C.4 Multithreaded Multiprocessor Architecture C-24 C.5 Parallel Memory System C-36 C.6 Floating-point Arithmetic C-41 C.7 Real Stuff: The NVIDIA GeForce 8800 C-45 C.8 Real Stuff: Mapping Applications to GPUs C-54 C.9 Fallacies and Pitfalls C-70 C.10 Concluding Remarks C-74 C.11 Historical Perspective and Further Reading C-75 C.1 Introduction Th is appendix focuses on the GPU—the ubiquitous graphics processing unit graphics processing in every PC, laptop, desktop computer, and workstation. In its most basic form, unit (GPU) A processor the GPU generates 2D and 3D graphics, images, and video that enable window- optimized for 2D and 3D based operating systems, graphical user interfaces, video games, visual imaging graphics, video, visual computing, and display. applications, and video. Th e modern GPU that we describe here is a highly parallel, highly multithreaded multiprocessor optimized for visual computing. To provide visual computing real-time visual interaction with computed objects via graphics, images, and video, A mix of graphics the GPU has a unifi ed graphics and computing architecture that serves as both a processing and computing programmable graphics processor and a scalable parallel computing platform. PCs that lets you visually interact with computed and game consoles combine a GPU with a CPU to form heterogeneous systems.
[Show full text]