Organoid ( ENR )

Total Page:16

File Type:pdf, Size:1020Kb

Organoid ( ENR ) US 20190204299A1 ( 19) United States ( 12) Patent Application Publication ( 10 ) Pub . No. : US 2019 /0204299 A1 Mead et al. (43 ) Pub . Date : Jul. 4 , 2019 ( 54 ) SINGLE - CELL GENOMIC METHODS TO Publication Classification GENERATE EX VIVO CELL SYSTEMS THAT (51 ) Int . Ci. RECAPITULATE IN VIVO BIOLOGY WITH GOIN 33 /50 (2006 . 01 ) IMPROVED FIDELITY A61K 35 / 17 ( 2006 .01 ) C120 1 /6869 ( 2006 .01 ) ( 71) Applicants :Massachusetts Institute of C12N 5 /071 (2006 .01 ) Technology , Cambridge, MA (US ) ; The 2 ) U . S . CI. Brigham and Women ' s Hospital, Inc. , CPC . .. .. GOIN 33 /5023 ( 2013 .01 ) ; A6IK 35 / 17 Boston ,MA (US ) (2013 .01 ) ; C12Q 1 /6869 (2013 .01 ) ; GOIN 33 /5008 ( 2013 .01 ) ; CI2N 2501 / 999 ( 2013 .01 ) ; (72 ) Inventors : Benjamin E . Mead , Cambridge, MA C12N 5 / 068 (2013 . 01 ) ; C12N 2501 / 11 (US ) ; Jose Ordovas -Montanes , ( 2013 .01 ) ; C12N 2501/ 40 ( 2013 .01 ) ; C12N Cambridge , MA (US ); Alexander K . 2501 /998 ( 2013. 01 ) ; GOIN 33 /5011 (2013 . 01 ) Shalek , Cambridge , MA (US ) ; Jeffrey (57 ) ABSTRACT Karp , Boston , MA (US ) ; Robert Disclosed here is a generally applicable framework that Langer , Cambridge , MA (US ) utilizes massively - parallel single - cell RNA - seq to compare cell types/ states found in vivo to those of in vitro models . (21 ) Appl. No. : 16 /240 , 361 Furthermore , Applicants leverage identified discrepancies to improve model fidelity . Applicants uncover fundamental gene expression differences in lineage - defining genes ( 22 ) Filed : Jan . 4 , 2019 between in vivo systems and in vitro systems. Using this information , molecular interventions are identified for ratio nally improving the physiological fidelity of the in vitro Related U . S . Application Data system . Applicants demonstrated functional (antimicrobial (60 ) Provisional application No . 62 /613 ,710 , filed on Jan . activity , niche support ) improvements in Paneth cell physi 4 , 2018 , provisional application No . 62 /702 , 168 , filed ology using the methods. on Jul. 23 , 2018 . Specification includes a Sequence Listing . murine small conventional intestine organoid (ENR ) . UM isolate crypts & enrich for ISCs (ENR + CV ) SCRNA - seg * * *2002 * * to ID Paneth *. * * B* & populations in vivo compare in vitro Paneth expression Paneth cell Patent Application Publication Jul . 4 , 2019 Sheet 1 of 41 US 2019 /0204299 A1 * 122NAN 23 WS 2017 ** * * ** * cell ** * * ** * * * conventional ' VA invitro Paneth . forISCS(ENR+CV) SCRNA-seq isolatecrypts&enrich compare expression FIG.1A *.toIDPaneth populations BB Ben murinesmall cell intestine invivo Paneth Patent Application Publication Jul . 4 , 2019 Sheet 2 of 41 US 2019 /0204299 A1 . Seosecco* WWW w R41 eeeeeee, , , , , , . ooos FIG.10 TOYS* www VVV : : : . : . : . : WM LLOW InVivoIdentificationofPanethCells ) ) 1 + UM scaled ( log( Expression Lyz1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** ISNE1 FIG.1B Patent Application Publication Jul. 4 , 2019 Sheet 3 of 41 US 2019 / 0204299 A1 COMOO .' 772 mm .' . MIMITI. tottamaan r . 16 * ** ** * FIG.1D * .. * .. 20 * ** ISNE1 . tottatott 19. ... ** ** * : insi : : * * ** * wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 2 _ SNE Patent Application Publication Jul . 4 , 2019 Sheet 4 of 41 US 2019 /0204299 A1 . *p<22x10-16vsrest 09 Assistiwa FIG.1F ie IdentificationofPaneth-likeCellsInVitro 60,Paneth )Transcriptome of Percent( Signature Gene .. & UMI1)+logscaled(LevelExpression ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? FIG.1E 2 ISNE Patent Application Publication Jul. 4 , 2019 Sheet 5 of 41 US 2019 / 0204299 A1 Score- Z Row *$29- . ce See 8920 :3283 29893 3930 in 83 2Simon EX UIOAIA XIXW I'OH 33 B . 32:3 833 v-UN3 BEI8:32 XEBA www WALIOS XXX 333 Patent Application Publication Jul. 4 , 2019 Sheet 6 of 41 US 2019 / 0204299 A1 all p « 2 . 92x10 -07 Ang4 Deta3 . (logscaledUMI+1) . GeneExpression . 3 . 4 . ENR - 4 . In . Vivo ENR - 4 In Vivo ENR - 4 in Vivo FIG . 1H < 22x10 - 16 p < 2 . 035x10 * p < 5 . 25x107 Paneth Notch obcoconut GeneSignature(PercentofTranscriptome) .. ENA - 4 In Vivo ENR - 4 In Vivo ENR - 4 In Vivo FIG . 11 Patent Application Publication Jul. 4 , 2019 Sheet 7 of 41 US 2019 / 0204299 A1 . notch(D) . -wnt(C) 9 *** * * * * W VW . - E . ** XXX . (ENR+CD) SES WWW 220V . 24 : : V conventionalchemically-induced (ENR+CV) ISCprecursor FIG.2A ROS organoid(ENR) Patent Application Publication Jul . 4 , 2019 Sheet 8 of 41 US 2019 /0204299 A1 * * * * * Lgr5 19: ** )change fold( Log Mmp7 ) change fold( Logz FIG.2B Defa1 . ) change fold( Logz Lyz1 *T UNEAO+HN3 ) change fold( Logz Patent Application Publication Jul. 4 , 2019 Sheet 9 of 41 US 2019 / 0204299 A1 whole cell cluster (6D ) ENR +CV ENR ENR + CD ?????????????????????????????????????????????????????????????????????????????????????????????????????????? ET DEFA | AC Loop 1000 LYZ LYZ&DEFA AC3 . DAPI & actin FIG . 20 Patent Application Publication Jul . 4 , 2019 Sheet 10 of 41 US 2019 /0204299 A1 single. Paneth cell in vivo in vitro ???????????????????????????????????????SI crypt ???????????????????????????????????????????????????????????????????????????? ENR +CD (6D ) . DEFA . " .. .. ! . LYZ . : : : : : : : : :: . Ciri . ' . ' . : :: : : : : : : : : : : : : : : : : : : : : :: : :: . : :: : : : : : :: : : : :: : : : : : : : : : : : : : : :: :: : . X . : . LYZ : . W . &DEFA . WW . DAPI & actin FIG , 2D Patent Application Publication Jul . 4 , 2019 Sheet 11 of 41 US 2019 /0204299 A1 ? ENR | ENR + CD CD24 + & LYZ . CD24 + & LYZ + 400 204 ENR + CV 4 6 8 10 12 ENR + CV 4 6 8 1012 %ofviablecells CD24 - & LYZ . | LYZ + & CD24 . 2 | 100 - ENR + CV 4 6 8 1012 ENR + CV 4 6 8 1012 time in culture (days ) FIG . 2E Patent Application Publication Jul . 4 , 2019 Sheet 12 of 41 US 2019 /0204299 A1 . M1-2 M2-1 M2-2 . ' . * *?? ?LLLmmmmmmm .. 200 . ** * ** * * * . WWW . X2 ENR+CVCD FIG.3A biological donor"M1 biological donor"M2 Patent Application Publication Jul . 4 , 2019 Sheet 13 of 41 US 2019 /0204299 A1 4 ChgaWif1Pla2g1b 3 Scg3Defa29Cri Mmp7 -Wnt3Ange . Refaz2 2 # # . ENR+CD/(6D) . ' ' KA FIG.3B . Log(foldchange) nr. -10 . 7 : . 3 y A . : 1 22. ** 8 -2 05.FDR<0 -3 * * * * ????????????????????????????????????????????????????????????????????????? -4 ) FDR. .( Log10- . Patent Application Publication Jul . 4 , 2019 Sheet 14 of 41 US 2019 /0204299 A1 ENR + CD / ENR (D6 ) ENR + CD / ENR (06 ) Other . Lectins GobletcellWNTOthersecreted . 4000 . .7 . " ' . eu . 2 w Gm15293 mano Enteroendocrineceli -Detensins . birinin ???????????????????????????????????????????????????????????????????????????????????? Log ( fold change) Log ; ( fold change ) FIG . 30 Patent Application Publication Jul . 4 , 2019 Sheet 15 of 41 US 2019 /0204299 A1 ENR + CD (6D ) ENR (6D ) F . enriched0 . proteins. enriched proteins . 24 M1- 1 24. M1 - 1 .. * of 75ST . % 284, 50 % 75 % * 24. M1- 2 24 M1- 2 . 22 . - . * . .. ? . het opbou 50% 75% . Log(foldchange) . 012348 50% Logz(foldchange) M2- 1 24 M2- 1 * GA 0 25* %. * * . 50 % 75 % 2 50% 75% 24I M2. -. 2 24: M2- 2 . CoV COV FIG . 3D Patent Application Publication Jul . 4 , 2019 Sheet 16 of 41 US 2019 /0204299 A1 I . Leadingedge: 58%tags 10%list63 %signal ???????????? FDRq<0.0001 Panethcellgenesetmatches 1000200030004000500060007000 Rankorder FIG.3E NES=3.11 000000 w .: : : M1-1 M1-2M2-1 M2-2 score Enrichment ) change Fold( Logz Patent Application Publication Jul . 4 , 2019 Sheet 17 of 41 US 2019 /0204299 A1 -3 . .. 0 : . 20010015 Size:gene# . 3 . Color:GSEANES . Legend . +3 . TAL1 NRSF . RP58 .... .. .. PR . **** ** * ** * * ** ** * TCF4 FIG.3F Unknown GRAR . E2F Patent Application Publication Jul . 4 , 2019 Sheet 18 of 41 US 2019 /0204299 A1 ENR+CV . .. .18 . !SY C # :: R .. .: # # WAN ** 20 - ISNE1 . P . : FIG.4A . A * ILE * # * # ti * . C 2 sta .. OPY 2 _ SNE wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww Patent Application Publication Jul . 4 , 2019 Sheet 19 of 41 US 2019 /0204299 A1 . mi . .. .. wacananianging mwingi nisingai inicial SARAN . , ISNE1 FIG.48 vingasinanananinginnanmaningmananana NSI Patent Application Publication Jul . 4 , 2019 Sheet 20 of 41 US 2019 /0204299 A1 30 . Yes 20 Paneth Proteome . 112.: GeneSignature .10 . ' W FIG.4D A . - . 9 ENR-1 EEC-2 ENR+CD-1 . ENR+CVm . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 94 . ; 8.0 * 1 ISNE1 FIG.4C * * * KUALAarbeiten in 2 ISNE Patent Application Publication Jul . 4 , 2019 Sheet 21 of 41 US 2019 /0204299 A1 ENR + CV - 1 ENR + CV - 2 ENR2009 + CV - 3 ENRICK + CV - 4 ENR - 1 ENR - 2 ENR - 3 ENR - 4 ENR + CD - 1 ENR + CD - 2 Www ENR + CD - 3 ENR + CD - 4 ENR EEC - 1 - ENR + CV EEC - 2 D ENR + CD 0 .0 0 . 1 0 . 2 0 . 3 0 . 4 0 .5 Fraction of total sample FIG . 4E Patent Application Publication Jul . 4 , 2019 Sheet 22 of 41 US 2019 /0204299 A1 . Minimi ., inirinin ,. WW ,. ,. * ** w wwwwwww 10 . * W : * . : . * * * * * * * * * * * * * * * * * * * * * * * * * * * * * DU wiiiiiiiiiiiiiiiwiiiiiiiiiiiiiii W Critiimiiiiiiiiiii W w wwwwwwwwwwww w w w VSO 8991 Patent Application Publication Jul . 4 , 2019 Sheet 23 of 41 US 2019 /0204299 A1 an50 sposo2 . SEX ? PAN . 1998 W oox VO KUWA * * vou X . w . 33333 FIG.50 * 23* 3 3 www32 BB -PAR - -- * -22. - w UJJJJJJJJJJJJV UUUUUUUUUUUUUU Patent Application Publication Jul . 4 , 2019 Sheet 24 of 41 US 2019 /0204299
Recommended publications
  • Silencing of Phosphoinositide-Specific
    ANTICANCER RESEARCH 34: 4069-4076 (2014) Silencing of Phosphoinositide-specific Phospholipase C ε Remodulates the Expression of the Phosphoinositide Signal Transduction Pathway in Human Osteosarcoma Cell Lines VINCENZA RITA LO VASCO1, MARTINA LEOPIZZI2, DANIELA STOPPOLONI3 and CARLO DELLA ROCCA2 Departments of 1Sense Organs , 2Medicine and Surgery Sciences and Biotechnologies and 3Biochemistry Sciences “A. Rossi Fanelli”, Sapienza University, Rome, Italy Abstract. Background: Ezrin, a member of the signal transduction pathway (5). The reduction of PIP2 ezrin–radixin–moesin family, is involved in the metastatic induces ezrin dissociation from the plasma membrane (6). spread of osteosarcoma. Ezrin binds phosphatydil inositol-4,5- The levels of PIP2 are regulated by the PI-specific bisphosphate (PIP2), a crucial molecule of the phospholipase C (PI-PLC) family (7), constituting thirteen phosphoinositide signal transduction pathway. PIP2 levels are enzymes divided into six sub-families on the basis of amino regulated by phosphoinositide-specific phospholipase C (PI- acid sequence, domain structure, mechanism of recruitment PLC) enzymes. PI-PLCε isoform, a well-characterized direct and tissue distribution (7-15). PI-PLCε, a direct effector of effector of rat sarcoma (RAS), is at a unique convergence RAS (14-15), might be the point of convergence for the point for the broad range of signaling pathways that promote broad range of signalling pathways that promote the RAS GTPase-mediated signalling. Materials and Methods. By RASGTPase-mediated signalling (16). using molecular biology methods and microscopic analyses, In previous studies, we suggested a relationship between we analyzed the expression of ezrin and PLC genes after PI-PLC expression and ezrin (17-18).
    [Show full text]
  • Supplementary Information Integrative Analyses of Splicing in the Aging Brain: Role in Susceptibility to Alzheimer’S Disease
    Supplementary Information Integrative analyses of splicing in the aging brain: role in susceptibility to Alzheimer’s Disease Contents 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project 1.2. Mount Sinai Brain Bank Alzheimer’s Disease 1.3. CommonMind Consortium 1.4. Data Availability 2. Supplementary Tables 3. Supplementary Figures Note: Supplementary Tables are provided as separate Excel files. 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project Gene expression data1. Gene expression data were generated using RNA- sequencing from Dorsolateral Prefrontal Cortex (DLPFC) of 540 individuals, at an average sequence depth of 90M reads. Detailed description of data generation and processing was previously described2 (Mostafavi, Gaiteri et al., under review). Samples were submitted to the Broad Institute’s Genomics Platform for transcriptome analysis following the dUTP protocol with Poly(A) selection developed by Levin and colleagues3. All samples were chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 ug (and were selected from a larger set of 724 samples). Sequencing was performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of the first 12 samples. These 12 samples will serve as a deep coverage reference and included 2 males and 2 females of nonimpaired, mild cognitive impaired, and Alzheimer's cases. The remaining samples were sequenced with target coverage of 50M reads; the mean coverage for the samples passing QC is 95 million reads (median 90 million reads). The libraries were constructed and pooled according to the RIN scores such that similar RIN scores would be pooled together.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Identification of a Gene Coding for a Protein Possessing Shared Tumor Epitopes Capable of Inducing HLA-A24-Restricted Cytotoxic T Lymphocytes in Cancer Patients1
    [CANCER RESEARCH 59, 4056–4063, August 15, 1999] Identification of a Gene Coding for a Protein Possessing Shared Tumor Epitopes Capable of Inducing HLA-A24-restricted Cytotoxic T Lymphocytes in Cancer Patients1 Damu Yang, Masanobu Nakao, Shigeki Shichijo, Teruo Sasatomi, Hideo Takasu, Hajime Matsumoto, Kazunori Mori, Akihiro Hayashi, Hideaki Yamana, Kazuo Shirouzu, and Kyogo Itoh2 Cancer Vaccine Development Division, Kurume University Research Center for Innovative Cancer Therapy [D. Y., M. N., K. I.], and Departments of Surgery [A. H., H. Y., K. S.], Immunology [S. S., T. S., H. T., H. M., K. I.], and Otolaryngology [K. M.], Kurume University School of Medicine, Kurume, 830-0011, Japan ABSTRACT we report a gene encoding epitopes that are capable of inducing CTLs in PBMCs of patients with SCCs and adenocarcinomas. Genes encoding tumor epitopes that are capable of inducing CTLs against adenocarcinomas and squamous cell carcinomas, two major hu- man cancers histologically observed in various organs, have rarely been MATERIALS AND METHODS identified. Here, we report a new gene from cDNA of esophageal cancer cells that encodes a shared tumor antigen recognized by HLA-A2402- Generation of HLA-A2402-restricted CTLs. HLA-A2402-restricted and restricted and tumor-specific CTLs. The sequence of this gene is almost tumor-specific CTLs were established from the PBMCs of an esophageal identical to that of the KIAA0156 gene, which has been registered in cancer patient (HLA-A2402/A2601) by the standard method of mixed lym- phocyte tumor cell culture,
    [Show full text]
  • Supp Material.Pdf
    Supplementary Information Estrogen-mediated Epigenetic Repression of Large Chromosomal Regions through DNA Looping Pei-Yin Hsu, Hang-Kai Hsu, Gregory A. C. Singer, Pearlly S. Yan, Benjamin A. T. Rodriguez, Joseph C. Liu, Yu-I Weng, Daniel E. Deatherage, Zhong Chen, Julia S. Pereira, Ricardo Lopez, Jose Russo, Qianben Wang, Coral A. Lamartiniere, Kenneth P. Nephew, and Tim H.-M. Huang S1 Method Immunofluorescence staining Approximately 2,000 mammosphere-derived epithelial cells (MDECs) cells seeded collagen I-coated coverslips were fixed with methanol/acetone for 10 min. After blocking with 2.5% bovine serum albumin (Sigma) for 1 hr, these cells were incubated with anti-ESR1 antibody (Santa Cruz) overnight at 4˚C. The corresponding secondary FITC-conjugated antibody was applied followed by DAPI staining (Molecular Probes) for the nuclei. Photographs were captured by Zeiss fluorescence microscopy (Zeiss). The percentages of ESR1 subcellular localization were calculated in ten different optical fields (~10 cells per field) by two independent researchers. References Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., et al. 2006. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38: 1289-1297. Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515-527. S2 Hsu et al. Supplementary Information A Figure S1. Integrative mapping of large genomic regions subjected to ERα-mediated epigenetic repression.
    [Show full text]
  • Effective Angiogenesis Requires Regulation of Phosphoinositide Signaling
    Effective angiogenesis requires regulation of phosphoinositide signaling Elizabeth Michele Davies, Rajendra Gurung, Kai Qin Le, Christina Anne Mitchell* Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia *Corresponding author [email protected] Abstract Phosphoinositide signaling regulates numerous downstream effectors that mediate cellular processes which influence cell cycle progression, migration, proliferation, growth, survival, metabolism and vesicular trafficking. A prominent role for phosphoinositide 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, a phospholipid that activates a plethora of effectors including AKT and FOXO during embryonic and postnatal angiogenesis, has been described. In addition, phosphatidylinositol 3-phosphate signaling is required for endosomal trafficking, which contributes to vascular remodeling. This review will examine the role phosphoinositide signaling plays in the endothelium and its contribution to sprouting angiogenesis. Keywords Angiogenesis, Phosphoinositide, PI3K, PTEN 1. Introduction Establishment of a functional vasculature is essential for embryonic development, and also for the maintenance of tissue regeneration, inflammatory responses and wound healing in the adult. Vascular development is characterized by two distinct physiological processes, vasculogenesis and angiogenesis. Vasculogenesis is predominantly limited to embryonic development, whereby differentiation
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis Et Al
    US 201500 72349A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis et al. (43) Pub. Date: Mar. 12, 2015 (54) CANCER BOMARKERS AND METHODS OF (52) U.S. Cl. USE CPC. G0IN33/57484 (2013.01); G0IN 2333/705 (2013.01) (71) Applicant: University Health Network, Toronto USPC ......................................... 435/6.12: 435/7.94 (CA) (57) ABSTRACT A method of evaluating a probability a Subject has a cancer, (72) Inventors: Eleftherios P. Diamandis, Toronto diagnosing a cancer and/or monitoring cancer progression (CA); Ioannis Prassas, Toronto (CA); comprising: a. measuring an amount of a biomarker selected Shalini Makawita, Toronto (CA); from the group consisting of CUZD1 and/or LAMC2 and/or Caitlin Chrystoja, Toronto (CA); Hari the group CUZD1, LAMC2, AQP8, CELA2B, CELA3B, M. Kosanam, Maple (CA) CTRB1, CTRB2, GCG, IAPP, INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, KLK3, NPY, (21) Appl. No.: 14/385,449 PSCA, RLN1, SLC45A3, DSP GP73, DSG2, CEACAM7, CLCA1, GPA33, LEFTY1, ZG16, IRX5, LAMP3, MFAP4, (22) PCT Fled: Mar. 15, 2013 SCGB1A1, SFTPC, TMEM100, NPY, PSCA RLN1 and/or SLC45A3 in a test sample from a subject with cancer; (86) PCT NO.: PCT/CA2O13/OOO248 wherein the cancer is pancreas cancer if CUZD1, LAMC2, S371 (c)(1), AQP8, CELA2B, CELA3B, CTRB1, CTRB2, GCG, LAPP (2) Date: Sep. 23, 2014 INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, DSP GP73 and/or DSG2 is selected; the cancer is colon cancer if CEACAM7, CLCA1, GPA33, LEFTY 1 and/ Related U.S. Application Data or ZG16 is selected, the cancer is lung cancer if IRX5, (60) Provisional application No.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
    Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation.
    [Show full text]