High Performance Synchronization Algorithms for Multiprogrammed Multiprocessors Robert W. Wisniewski, Leonidas I. Kontothanassis, and Michael L. Scott Department of Computer Science University of Rochester Rochester, NY 14627-0226 fbob,kthanasi,
[email protected] Abstract Most busy-wait synchronization algorithms assume a dedicated machine with one process per processor. The Scalable busy-wait synchronization algorithms are es- introduction of multiprogramming can cause severe per- sential for achieving good parallel program performance formance degradation for these algorithms, especially on large scale multiprocessors. Such algorithms include for the variants designed to scale well on dedicated ma- mutual exclusion locks, reader-writer locks, and bar- chines. Performance degrades in the presence of multi- rier synchronization. Unfortunately, scalable synchro- programming under the following circumstances: nization algorithms are particularly sensitive to the ef- fects of multiprogramming: their performance degrades • A process is preempted while holding a lock. sharply when processors are shared among different ap- This situation arises in both mutual exclusion and plications, or even among processes of the same applica- reader-writer locks when a process is preempted in tion. In this paper we describe the design and evaluation its critical section. It has been addressed by several of scalable scheduler-conscious mutual exclusion locks, researchers [2, 4, 7, 15]. reader-writer locks, and barriers, and show that by shar- ing information across the kernel/application interface • A process is preempted while waiting for a lock and we can improve the performance of scheduler-oblivious then is handed the lock while still preempted. This implementations by more than an order of magnitude. situation can arise in locks that enforce a predeter- mined ordering, either for the sake of fairness or to minimize contention on large-scale machines [21].