Extension of the Set of Complex Hadamard Matrices of Size 8

Total Page:16

File Type:pdf, Size:1020Kb

Extension of the Set of Complex Hadamard Matrices of Size 8 Math.Comput.Sci. (2018) 12:459–464 https://doi.org/10.1007/s11786-018-0379-8 Mathematics in Computer Science Extension of the Set of Complex Hadamard Matrices of Size 8 Wojciech T. Bruzda Received: 10 January 2018 / Revised: 5 February 2018 / Accepted: 20 March 2018 / Published online: 19 September 2018 © The Author(s) 2018 Abstract A complex Hadamard matrix is defined as a matrix H which fulfills two conditions, |H j,k|=1 for all ∗ j and k and HH = NIN where IN is an identity matrix of size N. We explore the set of complex Hadamard matrices HN of size N = 8 and present two previously unknown structures: a one-parametric, non-affine family (1) (0) T8 of complex Hadamard matrices and a single symmetric and isolated matrix A8 . Keywords Complex Hadamard matrix · Non-affine family · Isolated matrix · Butson class Mathematics Subject Classification 15A03 · 65F25 · 15B34 · 05B20 1 Introduction The description of the set HN of complex Hadamard matrices (CHMs) is exhausted for N ∈{2, 3, 4, 5} [1,2], while beginning from N = 6, general knowledge of the structure of HN can be considered incomplete. CHMs and their subset containing only real ∓1-entry objects are a subject of great interest in many fields of contemporary mathematics and physics. Let us only mention applications in quantum optics, telecommunication and signal processing, assistance in error correcting codes, background for equiangular lines, and many others [2–6]. Two matrices H1 and H2 ∈ HN are said to be equivalent if one of them can be expressed in terms of the other by means of two permutation matrices P1 and P2 and two unitary diagonal matrices D1 and D2 as H1 = P1 D1 H2 P2 D2 [2,7]. In general, the recognition of equivalence is not trivial and requires additional tools such as Haagerup invariants [2] or matrix fingerprint [8]. Another signature assigned to a matrix is its defect [7,9]. The defect of a unitary matrix d(H) tells us what is the largest possible size of a smooth family of CHMs stemming from H. This one-way criterion is useful when searching for isolated matrices for which the defect vanishes. There are two possible types of CHM families: affine and non-affine. In the first case, the particular constant entries in given matrix H can be extended to complex variables so that their phases vary linearly as in the following example of the 4-dimensional Fourier matrix [1] W. T. Bruzda (B) Institute of Physics, Jagiellonian University, Kraków, Poland e-mail: [email protected] 460 W. T. Bruzda ⎡ ⎤ ⎡ ⎤ 1111 1111 ⎢ 1 i −1 −i ⎥ ⎢ 1 ieiα −1 −ieiα ⎥ F = ⎢ ⎥ → ⎢ ⎥ : α ∈[0, 2π). (1.1) 4 ⎣ 1 −11−1 ⎦ ⎣ 1 −11 −1 ⎦ 1 −i −1 i 1 −ieiα −1 ieiα The second case involves non-linear formulas for the phases of the variable entries [7,12]. Every CHM can be transformed by an equivalence preserving operation into the form in which its first row and its first column has only ones. The remaining (N − 1) × (N − 1) elements shall be called the core of the matrix. All matrices in this paper are worked out in the above dephased form. A special subclass of CHMs is called Butson type matrices [10,11], denoted by BH(N, q) ⊂ HN , with the q property that each entry of H ∈ BH(N, q) is the qth root of unity, H j,k = 1 for any j and k. For instance, the standard class of real Hadamard matrices of size N forms the class BH(N, 2), while the Fourier matrix FN of order N belongs to the set BH(N, N). The notation adopted in this work is entirely taken from the on-line CHM catalogue [12] based on [7] and, to save space, we use the symbol [β] as a shortcut for the exponent expression exp(iπβ). 2 Looking for a New Matrix H ∈ H8 Searching for new CHMs supports the description of the set HN and provides better understanding of its elements. Moreover, additional profit from having new examples of CHMs is extension√ of the area for searching for new ∗ / ∈ H mutually unbiased pairs of Hadamard matrices H1 and H2 such that H1 H2 N N , which is directly related to mutually unbiased bases [13–15]. Looking for possibly new complex Hadamard matrices, the following procedure was used. Let us take any dephased matrix H with unimodular entries H j,k =[ϕ j,k] for ϕ j,k ∈[0, 2). Define a target function Z(H) ≡ ∗ − I 2 = ∗ HH N N F, where the Frobenius norm of matrix is applied, X F trXX . Using a random-walk procedure over the core phases we try to minimize Z(H) and for Z(H)<10−16 we can stop having a matrix H that belongs to HN with respect to a given precision. Such raw matrices are ready for further analytical processing. The most interesting outcomes show up when only a subset of core phases undergoes variation while the other elements are fixed to certain values. The algorithm is very fast and even using an average desktop PC for N < 9 one can obtain results within seconds. The case of N = 6, however without any formal proof of completeness, seems to be already understood and it (4) (3) is conjectured that the families G6 of Szöll˝osi [16] and K6 of Karlsson [17] along with the isolated Tao matrix (0) ∈ H H S6 [18,19] constitute the set in which any H 6 is included. The set 7 consists of several isolated matrices: (0) (0) (0) (1) F7 [7], C7 [2,20] and Q7 [21] together with one affine family P7 [22]. The investigation of this case is far from being closed but proved to be hard for any numerical attempts. Hence, in this short paper, we focus on the next promising case for N = 8 and, as a consequence, we present previously unknown: • (1) ( , ) a 1-parametric, non-affine family T8 of CHMs that contains Butson BH 8 20 matrices, • (0) an isolated matrix A8 of a non-Butson type. (1) = 3 Non-affine Family T8 of N 8 Complex Hadamard Matrices Let us start with the matrix T8 ∈ H8 that was found numerically (see Sect. 2) and then expressed in the analytic form using symmetric patterns in the elements and phases of the core and orthogonality constraints with respect to the rows and columns. Define a constant matrix: Extension of the Set of Complex Hadamard Matrices of Size 8 461 ⎛ ⎡ ⎤⎞ •••••••• ⎜ ⎢ ⎥⎟ ⎜ ⎢ ••• • • 31518⎥⎟ ⎜ ⎢ ⎥⎟ ⎜ ⎢ ••• • •13 15 8 ⎥⎟ ⎜ ⎢ ⎥⎟ ⎜ π ⎢ • 22 2 2175 2⎥⎟ T = EXP ⎜i ⎢ ⎥⎟ (3.1) ⎜ 10 ⎢ • 22227512⎥⎟ ⎜ ⎢ ⎥⎟ ⎜ ⎢ ••• • • •10 10 ⎥⎟ ⎝ ⎣ ⎦⎠ • 22121210 • 10 • 2212121010 • where T = EXP(A) denotes the entrywise exponent of a matrix, Tj,k = exp(A j,k) and • replaces zero. Furthermore, we shall use the matrix ⎡ ⎤ 1 1 1 1 1111 ⎢ − / ⎥ ⎢ 1 c3 c2 c1 i c1 111⎥ ⎢ ⎥ ⎢ 1 −c1 i/c1 −i/c2 −i/c3 111⎥ ⎢ ⎥ ⎢ 1 c2 c3 −i/c1 c1 111⎥ Tc = ⎢ ⎥ . (3.2) ⎢ 1 −i/c1 c1 i/c3 i/c2 111⎥ ⎢ α α − α − α ⎥ ⎢ 1 ei −ei −e i e i 111⎥ ⎣ α α − α − α ⎦ 1 ei −ei −e i e i 111 1 1 1 1 1111 with 1 √ 1 √ c1 = 8 − 50 − 6 5 + i 8 + 50 − 6 5, (3.3) 4 4 3 4 i − 1 − + − c1 + i/c1 c = 10 5 , (3.4) 2 − 2 1 ic1 =− 2, c3 ic2c1 (3.5) √ where α =−arccot 1 − 5 and [β] = exp(iπβ). This allows us to define the following complex Hadamard matrix T8 = Tc ◦ T where ◦ is the entrywise product of matrices. One can check that the defect d(T8) = 3 which is an indication that the matrix can be a part of a family of inequivalent CHMs. Moreover, the structure of the three last columns resembles the form of a Butson type object which might suggest that a Butson matrix lies on a trajectory of the orbit stemming from a given matrix and some entries (T8) j,k for 2 j 7 and 2 k 5 could be functionally dependent. Indeed, when one assigns to two particular elements u(μ) = (T8)7,2 and −u(μ) = (T8)7,3 a value μ ∈[0, 1/2] for u =[μ], having the last three columns fixed, there always can be found a CHM with the second row of the form yz 3 18 1, x, y, z, − , , −i, . (3.6) x 10 10 462 W. T. Bruzda Again, using symmetries amongst phases and orthogonality constraints, one recovers a full matrix in the form of ⎛ ⎡ ⎤⎞ ⎡ ⎤ ••••• • • • 11111111 ⎜ ⎢ ⎥⎟ ⎢ 1 xy z− yz 111⎥ ⎜ ⎢ ••••• 31518⎥⎟ ⎢ x ⎥ ⎜ ⎢ ⎥⎟ ⎢ − u u − uz − uz ⎥ • 888813158 ⎢ 1 2 111⎥ ⎜ ⎢ ⎥⎟ ⎢ y x xy x ⎥ ⎜ π ⎢ • ⎥⎟ ⎢ 1 yx− yz z 111⎥ (1)( ) = ⎜ ⎢ 2222175 2⎥⎟ ◦ ⎢ x ⎥ T8 x EXP ⎜i ⎢ ••••• ⎥⎟ ⎢ 1 u − u − uz − uz 111⎥ ⎜ 10 ⎢ 7512⎥⎟ ⎢ x y x2 xy ⎥ ⎜ ⎢ ••••• • ⎥⎟ ⎢ − x x − z z ⎥ ⎜ ⎢ 10 10 ⎥⎟ ⎢ 1 i z i z i x i x 111⎥ ⎝ ⎣ ⎦⎠ 2 2 •••••10 • 10 ⎣ u −u − uz uz ⎦ 1 x2 x2 111 •••••10 10 • uz uz − uz − uz 1 i x i x i x i x 111 (3.7) where √ √ 1 χ1 = 5 − 3 5 + 4 5 − 2 5 + (1 + i) + ζ2, (3.8) x √ √ χ χ = 45 − 9i − (17 − 7i) 5 − 2 620 − 500i − (285 − 234i) 5 − (1 + i) 1 , (3.9) 2 x √ √ χ2 χ3 = 10i − 10 + (6 − 2i) 5 + 4 10 − 10i − (5 − 4i) 5 + (1 + i) , (3.10) x √ √ √ χ3 χ4 = 5 − 1 + i 2 5 + 5 + (1 + i) , (3.11) x √ √ √ 2 ∗ χ5 = (1 + i) 1 − 5 + ζ4 − (1 − i) 2x + ( χ4) − x(1 − 4i + 5 + ζ1), (3.12) √ √ χ6 = 5 − 1 − i − 5 − 2 5 + (1 − i)x, (3.13) 1 χ y = 5 , χ (3.14) 4 6 x 4 z = (1 + i) − x − y − 1 + i , (3.15) x − y 5 √ √ 4 with ζ1 =−i 10 − 2 5, ζ2 =−ζ1 and ζ4 = i 10 + 2 5 being the roots of the polynomial equation ζ + 20ζ 2 + 80 = 0 and eventually i x2 − zx + xy + yz u = .
Recommended publications
  • Solving the Multi-Way Matching Problem by Permutation Synchronization
    Solving the multi-way matching problem by permutation synchronization Deepti Pachauriy Risi Kondorx Vikas Singhy yUniversity of Wisconsin Madison xThe University of Chicago [email protected] [email protected] [email protected] http://pages.cs.wisc.edu/∼pachauri/perm-sync Abstract The problem of matching not just two, but m different sets of objects to each other arises in many contexts, including finding the correspondence between feature points across multiple images in computer vision. At present it is usually solved by matching the sets pairwise, in series. In contrast, we propose a new method, Permutation Synchronization, which finds all the matchings jointly, in one shot, via a relaxation to eigenvector decomposition. The resulting algorithm is both computationally efficient, and, as we demonstrate with theoretical arguments as well as experimental results, much more stable to noise than previous methods. 1 Introduction 0 Finding the correct bijection between two sets of objects X = fx1; x2; : : : ; xng and X = 0 0 0 fx1; x2; : : : ; xng is a fundametal problem in computer science, arising in a wide range of con- texts [1]. In this paper, we consider its generalization to matching not just two, but m different sets X1;X2;:::;Xm. Our primary motivation and running example is the classic problem of matching landmarks (feature points) across many images of the same object in computer vision, which is a key ingredient of image registration [2], recognition [3, 4], stereo [5], shape matching [6, 7], and structure from motion (SFM) [8, 9]. However, our approach is fully general and equally applicable to problems such as matching multiple graphs [10, 11].
    [Show full text]
  • Arxiv:1912.06217V3 [Math.NA] 27 Feb 2021
    ROUNDING ERROR ANALYSIS OF MIXED PRECISION BLOCK HOUSEHOLDER QR ALGORITHMS∗ L. MINAH YANG† , ALYSON FOX‡, AND GEOFFREY SANDERS‡ Abstract. Although mixed precision arithmetic has recently garnered interest for training dense neural networks, many other applications could benefit from the speed-ups and lower storage cost if applied appropriately. The growing interest in employing mixed precision computations motivates the need for rounding error analysis that properly handles behavior from mixed precision arithmetic. We develop mixed precision variants of existing Householder QR algorithms and show error analyses supported by numerical experiments. 1. Introduction. The accuracy of a numerical algorithm depends on several factors, including numerical stability and well-conditionedness of the problem, both of which may be sensitive to rounding errors, the difference between exact and finite precision arithmetic. Low precision floats use fewer bits than high precision floats to represent the real numbers and naturally incur larger rounding errors. Therefore, error attributed to round-off may have a larger influence over the total error and some standard algorithms may yield insufficient accuracy when using low precision storage and arithmetic. However, many applications exist that would benefit from the use of low precision arithmetic and storage that are less sensitive to floating-point round-off error, such as training dense neural networks [20] or clustering or ranking graph algorithms [25]. As a step towards that goal, we investigate the use of mixed precision arithmetic for the QR factorization, a widely used linear algebra routine. Many computing applications today require solutions quickly and often under low size, weight, and power constraints, such as in sensor formation, where low precision computation offers the ability to solve many problems with improvement in all four parameters.
    [Show full text]
  • Arxiv:1709.00765V4 [Cond-Mat.Stat-Mech] 14 Oct 2019
    Number of hidden states needed to physically implement a given conditional distribution Jeremy A. Owen,1 Artemy Kolchinsky,2 and David H. Wolpert2, 3, 4, ∗ 1Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Tech Square, Cambridge, MA 02139. 2Santa Fe Institute 3Arizona State University 4http://davidwolpert.weebly.com† (Dated: October 15, 2019) We consider the problem of how to construct a physical process over a finite state space X that applies some desired conditional distribution P to initial states to produce final states. This problem arises often in the thermodynamics of computation and nonequilibrium statistical physics more generally (e.g., when designing processes to implement some desired computation, feedback controller, or Maxwell demon). It was previously known that some conditional distributions cannot be implemented using any master equation that involves just the states in X. However, here we show that any conditional distribution P can in fact be implemented—if additional “hidden” states not in X are available. Moreover, we show that is always possible to implement P in a thermodynamically reversible manner. We then investigate a novel cost of the physical resources needed to implement a given distribution P : the minimal number of hidden states needed to do so. We calculate this cost exactly for the special case where P represents a single-valued function, and provide an upper bound for the general case, in terms of the nonnegative rank of P . These results show that having access to one extra binary degree of freedom, thus doubling the total number of states, is sufficient to implement any P with a master equation in a thermodynamically reversible way, if there are no constraints on the allowed form of the master equation.
    [Show full text]
  • On the Asymptotic Existence of Partial Complex Hadamard Matrices And
    Discrete Applied Mathematics 102 (2000) 37–45 View metadata, citation and similar papers at core.ac.uk brought to you by CORE On the asymptotic existence of partial complex Hadamard provided by Elsevier - Publisher Connector matrices and related combinatorial objects Warwick de Launey Center for Communications Research, 4320 Westerra Court, San Diego, California, CA 92121, USA Received 1 September 1998; accepted 30 April 1999 Abstract A proof of an asymptotic form of the original Goldbach conjecture for odd integers was published in 1937. In 1990, a theorem reÿning that result was published. In this paper, we describe some implications of that theorem in combinatorial design theory. In particular, we show that the existence of Paley’s conference matrices implies that for any suciently large integer k there is (at least) about one third of a complex Hadamard matrix of order 2k. This implies that, for any ¿0, the well known bounds for (a) the number of codewords in moderately high distance binary block codes, (b) the number of constraints of two-level orthogonal arrays of strengths 2 and 3 and (c) the number of mutually orthogonal F-squares with certain parameters are asymptotically correct to within a factor of 1 (1 − ) for cases (a) and (b) and to within a 3 factor of 1 (1 − ) for case (c). The methods yield constructive algorithms which are polynomial 9 in the size of the object constructed. An ecient heuristic is described for constructing (for any speciÿed order) about one half of a Hadamard matrix. ? 2000 Elsevier Science B.V. All rights reserved.
    [Show full text]
  • Triangular Factorization
    Chapter 1 Triangular Factorization This chapter deals with the factorization of arbitrary matrices into products of triangular matrices. Since the solution of a linear n n system can be easily obtained once the matrix is factored into the product× of triangular matrices, we will concentrate on the factorization of square matrices. Specifically, we will show that an arbitrary n n matrix A has the factorization P A = LU where P is an n n permutation matrix,× L is an n n unit lower triangular matrix, and U is an n ×n upper triangular matrix. In connection× with this factorization we will discuss pivoting,× i.e., row interchange, strategies. We will also explore circumstances for which A may be factored in the forms A = LU or A = LLT . Our results for a square system will be given for a matrix with real elements but can easily be generalized for complex matrices. The corresponding results for a general m n matrix will be accumulated in Section 1.4. In the general case an arbitrary m× n matrix A has the factorization P A = LU where P is an m m permutation× matrix, L is an m m unit lower triangular matrix, and U is an×m n matrix having row echelon structure.× × 1.1 Permutation matrices and Gauss transformations We begin by defining permutation matrices and examining the effect of premulti- plying or postmultiplying a given matrix by such matrices. We then define Gauss transformations and show how they can be used to introduce zeros into a vector. Definition 1.1 An m m permutation matrix is a matrix whose columns con- sist of a rearrangement of× the m unit vectors e(j), j = 1,...,m, in RI m, i.e., a rearrangement of the columns (or rows) of the m m identity matrix.
    [Show full text]
  • Think Global, Act Local When Estimating a Sparse Precision
    Think Global, Act Local When Estimating a Sparse Precision Matrix by Peter Alexander Lee A.B., Harvard University (2007) Submitted to the Sloan School of Management in partial fulfillment of the requirements for the degree of Master of Science in Operations Research at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2016 ○c Peter Alexander Lee, MMXVI. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author................................................................ Sloan School of Management May 12, 2016 Certified by. Cynthia Rudin Associate Professor Thesis Supervisor Accepted by . Patrick Jaillet Dugald C. Jackson Professor, Department of Electrical Engineering and Computer Science and Co-Director, Operations Research Center 2 Think Global, Act Local When Estimating a Sparse Precision Matrix by Peter Alexander Lee Submitted to the Sloan School of Management on May 12, 2016, in partial fulfillment of the requirements for the degree of Master of Science in Operations Research Abstract Substantial progress has been made in the estimation of sparse high dimensional pre- cision matrices from scant datasets. This is important because precision matrices underpin common tasks such as regression, discriminant analysis, and portfolio opti- mization. However, few good algorithms for this task exist outside the space of L1 penalized optimization approaches like GLASSO. This thesis introduces LGM, a new algorithm for the estimation of sparse high dimensional precision matrices. Using the framework of probabilistic graphical models, the algorithm performs robust covari- ance estimation to generate potentials for small cliques and fuses the local structures to form a sparse yet globally robust model of the entire distribution.
    [Show full text]
  • Mata Glossary of Common Terms
    Title stata.com Glossary Description Commonly used terms are defined here. Mata glossary arguments The values a function receives are called the function’s arguments. For instance, in lud(A, L, U), A, L, and U are the arguments. array An array is any indexed object that holds other objects as elements. Vectors are examples of 1- dimensional arrays. Vector v is an array, and v[1] is its first element. Matrices are 2-dimensional arrays. Matrix X is an array, and X[1; 1] is its first element. In theory, one can have 3-dimensional, 4-dimensional, and higher arrays, although Mata does not directly provide them. See[ M-2] Subscripts for more information on arrays in Mata. Arrays are usually indexed by sequential integers, but in associative arrays, the indices are strings that have no natural ordering. Associative arrays can be 1-dimensional, 2-dimensional, or higher. If A were an associative array, then A[\first"] might be one of its elements. See[ M-5] asarray( ) for associative arrays in Mata. binary operator A binary operator is an operator applied to two arguments. In 2-3, the minus sign is a binary operator, as opposed to the minus sign in -9, which is a unary operator. broad type Two matrices are said to be of the same broad type if the elements in each are numeric, are string, or are pointers. Mata provides two numeric types, real and complex. The term broad type is used to mask the distinction within numeric and is often used when discussing operators or functions.
    [Show full text]
  • The Use of the Vec-Permutation Matrix in Spatial Matrix Population Models Christine M
    Ecological Modelling 188 (2005) 15–21 The use of the vec-permutation matrix in spatial matrix population models Christine M. Hunter∗, Hal Caswell Biology Department MS-34, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Abstract Matrix models for a metapopulation can be formulated in two ways: in terms of the stage distribution within each spatial patch, or in terms of the spatial distribution within each stage. In either case, the entries of the projection matrix combine demographic and dispersal information in potentially complicated ways. We show how to construct such models from a simple block-diagonal formulation of the demographic and dispersal processes, using a special permutation matrix called the vec-permutation matrix. This formulation makes it easy to calculate and interpret the sensitivity and elasticity of λ to changes in stage- and patch-specific demographic and dispersal parameters. © 2005 Christine M. Hunter and Hal Caswell. Published by Elsevier B.V. All rights reserved. Keywords: Matrix population model; Spatial model; Metapopulation; Multiregional model; Dispersal; Movement; Sensitivity; Elasticity 1. Introduction If each local population is described by a stage- classified matrix population model (see Caswell, A spatial population model describes a finite set of 2001), a spatial matrix model describing the metapop- discrete local populations coupled by the movement ulation can be written as or dispersal of individuals. Human demographers call these multiregional populations (Rogers, 1968, 1995), n(t + 1) = An(t) (1) ecologists call them multisite populations (Lebreton, 1996) or metapopulations (Hanski, 1999). The dynam- The population vector, n, includes the densities of ics of metapopulations are determined by the patterns each stage in each local population (which we will of dispersal among the local populations and the de- refer to here as a patch).
    [Show full text]
  • Sparse Precision Matrix Estimation Via Lasso Penalized D-Trace Loss
    Biometrika (2014), 101,1,pp. 103–120 doi: 10.1093/biomet/ast059 Printed in Great Britain Advance Access publication 12 February 2014 Sparse precision matrix estimation via lasso penalized D-trace loss BY TENG ZHANG Department of Mathematics, Princeton University, Fine Hall, Washington Rd, Princeton, Downloaded from New Jersey 08544, U.S.A. [email protected] AND HUI ZOU http://biomet.oxfordjournals.org/ School of Statistics, University of Minnesota, 224 Church St SE, Minneapolis, Minnesota 55455, U.S.A. [email protected] SUMMARY We introduce a constrained empirical loss minimization framework for estimating high- dimensional sparse precision matrices and propose a new loss function, called the D-trace loss, for that purpose. A novel sparse precision matrix estimator is defined as the minimizer of the lasso at University of Minnesota,Walter Library Serial Processing on March 5, 2014 penalized D-trace loss under a positive-definiteness constraint. Under a new irrepresentability condition, the lasso penalized D-trace estimator is shown to have the sparse recovery property. Examples demonstrate that the new condition can hold in situations where the irrepresentability condition for the lasso penalized Gaussian likelihood estimator fails. We establish rates of con- vergence for the new estimator in the elementwise maximum, Frobenius and operator norms. We develop a very efficient algorithm based on alternating direction methods for computing the pro- posed estimator. Simulated and real data are used to demonstrate the computational efficiency of our algorithm and the finite-sample performance of the new estimator. The lasso penalized D-trace estimator is found to compare favourably with the lasso penalized Gaussian likelihood estimator.
    [Show full text]
  • An Efficient ADMM Algorithm for High Dimensional Precision Matrix
    An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss Cheng Wang ∗a and Binyan Jiang yb aSchool of Mathematical Sciences, MOE-LSC,Shanghai Jiao Tong University, Shanghai 200240, China. bDepartment of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. July 10, 2019 Abstract The estimation of high dimensional precision matrices has been a central topic in statistical learning. However, as the number of parameters scales quadratically with the dimension p, many state-of-the-art methods do not scale well to solve problems with a very large p. In this paper, we propose a very efficient algorithm for precision matrix estimation via penalized quadratic loss functions. Under the high dimension low sample size setting, the computation complexity of our al- gorithm is linear in both the sample size and the number of parameters. Such a computation complexity is in some sense optimal, as it is the same as the complex- ity needed for computing the sample covariance matrix. Numerical studies show that our algorithm is much more efficient than other state-of-the-art methods when the dimension p is very large. Key words and phrases: ADMM, High dimension, Penalized quadratic loss, Precision matrix. arXiv:1811.04545v2 [stat.CO] 9 Jul 2019 1 Introduction Precision matrices play an important role in statistical learning and data analysis. On the one hand, estimation of the precision matrix is oftentimes required in various sta- tistical analysis. On the other hand, under Gaussian assumptions, the precision matrix has been widely used to study the conditional independence among the random vari- ables.
    [Show full text]
  • Estimation of the Multivariate Normal Precision and Covariance Matrices in a Star-Shape Model*
    Ann. Inst. Statist. Math. Vol. 57, No. 3, 455-484 (2005) Q2005 The Institute of Statistical Mathematics ESTIMATION OF THE MULTIVARIATE NORMAL PRECISION AND COVARIANCE MATRICES IN A STAR-SHAPE MODEL* DONGCHU SUN AND XlAOQIAN SUN Department of Statistics, University of Missouri, Columbia, MO 65211, U.S.A. (Received March 31, 2004; revised September 27, 2004) Abstract. In this paper, we introduce the star-shape models, where the precision matrix ~t (the inverse of the covariance matrix) is structured by the special condi- tional independence. We want to estimate the precision matrix under entropy loss and symmetric loss. We show that the maximal likelihood estimator (MLE) of the precision matrix is biased. Based on the MLE, an unbiased estimate is obtained. We consider a type of Cholesky decomposition of Ft, in the sense that Ft = @~@, where is a lower triangular matrix with positive diagonal elements. A special group G, which is a subgroup of the group consisting all lower triangular matrices, is intro- duced. General forms of equivariant estimates of the covariance matrix and precision matrix are obtained. The invariant Haar measures on G, the reference prior, and the Jeffreys prior of @ are also discussed. We also introduce a class of priors of @, which includes all the priors described above. The posterior properties are discussed and the closed forms of Bayesian estimators are derived under either the entropy loss or the symmetric loss. We also show that the best equivariant estimators with respect to G is the special case of Bayesian estimators. Consequently, the MLE of the preci- sion matrix is inadmissible under either entropy or symmetric loss.
    [Show full text]
  • Iterative Algorithms for Large Stochastic Matrices
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Iterative Algorithms for Large Stochastic Matrices Pierre Semal Philips Research Laboratory Au. Albert Einstein 4 B-1348 Louvain-la-Neuve, Belgium Dedicated to Gene Golub, Richard Varga, and David Young Submitted by Robert J. Plemmons ABSTRACT Markov chains have always constituted an efficient tool to model discrete systems. Many performance criteria for discrete systems can be derived from the steady-state probability vector of the associated Markov chain. However, the large size of the state space of the Markov chain often allows this vector to be determined by iterative methods only. Various iterative methods exist, but none can be proved a priori to be the best. In this paper, we propose a practical measure which allows the convergence rate of the various existing methods to be compared. This measure is an approxima- tion of the modulus of the second largest eigenvalue of the iteration matrix and can be determined a priori. The model of a queueing network is used as an example to compare the convergence of several iterative methods and to show the accuracy of the measure. 1. INTRODUCTION Markov chains have always constituted an efficient tool to model discrete systems. If the system can be completely characterized by a state variable, then its behavior is completely described by the matrix Q of transition probabilities between the possible values (states) of that state variable. Most of the performance measures of the system could then be derived from the steady-state vector x of that matrix Q.
    [Show full text]