applied sciences Article Deep Learning Based Human Activity Recognition Using Spatio-Temporal Image Formation of Skeleton Joints Nusrat Tasnim 1, Mohammad Khairul Islam 2 and Joong-Hwan Baek 1,* 1 School of Electronics and Information Engineering, Korea Aerospace University, Goyang 10540, Korea;
[email protected] 2 Department of Computer Science and Engineering, University of Chittagong, Chittagong 4331, Bangladesh;
[email protected] * Correspondence:
[email protected]; Tel.: +82-2-300-0125 Abstract: Human activity recognition has become a significant research trend in the fields of computer vision, image processing, and human–machine or human–object interaction due to cost-effectiveness, time management, rehabilitation, and the pandemic of diseases. Over the past years, several methods published for human action recognition using RGB (red, green, and blue), depth, and skeleton datasets. Most of the methods introduced for action classification using skeleton datasets are con- strained in some perspectives including features representation, complexity, and performance. How- ever, there is still a challenging problem of providing an effective and efficient method for human action discrimination using a 3D skeleton dataset. There is a lot of room to map the 3D skeleton joint coordinates into spatio-temporal formats to reduce the complexity of the system, to provide a more accurate system to recognize human behaviors, and to improve the overall performance. In this paper, we suggest a spatio-temporal image formation (STIF) technique of 3D skeleton joints by capturing spatial information and temporal changes for action discrimination. We conduct transfer learning (pretrained models- MobileNetV2, DenseNet121, and ResNet18 trained with ImageNet Citation: Tasnim, N.; Islam, M.K.; dataset) to extract discriminative features and evaluate the proposed method with several fusion Baek, J.-H.