Secure Passwords Through Enhanced Hashing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shell Scripting with Bash
Introduction to Shell Scripting with Bash Charles Jahnke Research Computing Services Information Services & Technology Topics for Today ● Introductions ● Basic Terminology ● How to get help ● Command-line vs. Scripting ● Variables ● Handling Arguments ● Standard I/O, Pipes, and Redirection ● Control Structures (loops and If statements) ● SCC Job Submission Example Research Computing Services Research Computing Services (RCS) A group within Information Services & Technology at Boston University provides computing, storage, and visualization resources and services to support research that has specialized or highly intensive computation, storage, bandwidth, or graphics requirements. Three Primary Services: ● Research Computation ● Research Visualization ● Research Consulting and Training Breadth of Research on the Shared Computing Cluster (SCC) Me ● Research Facilitator and Administrator ● Background in biomedical engineering, bioinformatics, and IT systems ● Offices on both CRC and BUMC ○ Most of our staff on the Charles River Campus, some dedicated to BUMC ● Contact: [email protected] You ● Who has experience programming? ● Using Linux? ● Using the Shared Computing Cluster (SCC)? Basic Terminology The Command-line The line on which commands are typed and passed to the shell. Username Hostname Current Directory [username@scc1 ~]$ Prompt Command Line (input) The Shell ● The interface between the user and the operating system ● Program that interprets and executes input ● Provides: ○ Built-in commands ○ Programming control structures ○ Environment -
Modern Password Security for System Designers What to Consider When Building a Password-Based Authentication System
Modern password security for system designers What to consider when building a password-based authentication system By Ian Maddox and Kyle Moschetto, Google Cloud Solutions Architects This whitepaper describes and models modern password guidance and recommendations for the designers and engineers who create secure online applications. A related whitepaper, Password security for users, offers guidance for end users. This whitepaper covers the wide range of options to consider when building a password-based authentication system. It also establishes a set of user-focused recommendations for password policies and storage, including the balance of password strength and usability. The technology world has been trying to improve on the password since the early days of computing. Shared-knowledge authentication is problematic because information can fall into the wrong hands or be forgotten. The problem is magnified by systems that don't support real-world secure use cases and by the frequent decision of users to take shortcuts. According to a 2019 Yubico/Ponemon study, 69 percent of respondents admit to sharing passwords with their colleagues to access accounts. More than half of respondents (51 percent) reuse an average of five passwords across their business and personal accounts. Furthermore, two-factor authentication is not widely used, even though it adds protection beyond a username and password. Of the respondents, 67 percent don’t use any form of two-factor authentication in their personal life, and 55 percent don’t use it at work. Password systems often allow, or even encourage, users to use insecure passwords. Systems that allow only single-factor credentials and that implement ineffective security policies add to the problem. -
Powerview Command Reference
PowerView Command Reference TRACE32 Online Help TRACE32 Directory TRACE32 Index TRACE32 Documents ...................................................................................................................... PowerView User Interface ............................................................................................................ PowerView Command Reference .............................................................................................1 History ...................................................................................................................................... 12 ABORT ...................................................................................................................................... 13 ABORT Abort driver program 13 AREA ........................................................................................................................................ 14 AREA Message windows 14 AREA.CLEAR Clear area 15 AREA.CLOSE Close output file 15 AREA.Create Create or modify message area 16 AREA.Delete Delete message area 17 AREA.List Display a detailed list off all message areas 18 AREA.OPEN Open output file 20 AREA.PIPE Redirect area to stdout 21 AREA.RESet Reset areas 21 AREA.SAVE Save AREA window contents to file 21 AREA.Select Select area 22 AREA.STDERR Redirect area to stderr 23 AREA.STDOUT Redirect area to stdout 23 AREA.view Display message area in AREA window 24 AutoSTOre .............................................................................................................................. -
Password Security Compliance
Password Security Compliance Reduce risk and ensure compliance by managing password strength and policy. WHITE PAPER 1 PASSWORD SECURITY COMPLIANCE Reduce risk and ensure compliance by managing password strength and policy. Overview Passwords are a critical component of security. Passwords serve to protect user accounts; however, weak passwords may violate compliance standards, be reversed engineered back to plaintext and sold on the dark web, or result in a costly data breach if compromised. A periodic review of password rules is a vital component of your compliance and security strategies. Purpose The purpose of this security brief is to inform organizations of key password requirements and initiate internal compliance conversations. Use this security brief as a tool to enforce or strengthen your existing password policy. Learn more at fusionauth.io 2 According to Verizon’s 2017 Data Breach Investigations Report, 81% of hacking-related breaches leveraged either stolen and/or weak passwords. Financial, healthcare and public sector organizations 81% of hacking-related accounted for over half breaches leveraged of those breaches. either stolen and/or weak Password strength is an important security passwords. concern. With over four billion credentials Verizon BDIR 2017 stolen last year and data breaches averaging $3.62M in direct costs per incident, companies must be prepared for the security risks they face. While all applications should apply password constraints to discourage easy to guess passwords, many organizations are required to do so by law. It is necessary to have stringent password constraints in place in order to comply with industry regulations. Compliance is about fostering a culture that values user data and integrity and that culture starts at the top. -
An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference?
2015 Annual ADFSL Conference on Digital Forensics, Security and Law Proceedings May 19th, 11:45 AM An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference? Satyendra Gurjar Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS Department, University of New Haven, [email protected] Ibrahim Baggili Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS Department, University of New Haven Frank Breitinger CyberFollow F thisorensics and additional Research worksand Education at: https:/ Gr/commons.eroup (UNHcFREG),au.edu/adfsl Tagliatela College of Engineering, ECECS Depar Partment,t of the Univ Aviationersity ofSaf Newety and Hav Securityen Commons, Computer Law Commons, Defense and Security AliceStudies Fischer Commons , Forensic Science and Technology Commons, Information Security Commons, CyberNational For Securityensics Resear Law Commonsch and Education, OS and GrNetworksoup (UNHcFREG), Commons T, Otheragliatela Computer College Sciences of Engineering, Commons ECECS, and theDepar Socialtment, Contr Univol,ersity Law , ofCrime, New andHav enDe,viance AFischer@newha Commons ven.edu Scholarly Commons Citation Gurjar, Satyendra; Baggili, Ibrahim; Breitinger, Frank; and Fischer, Alice, "An Empirical Comparison of Widely Adopted Hash Functions in Digital Forensics: Does the Programming Language and Operating System Make a Difference?" (2015). Annual ADFSL Conference on Digital Forensics, Security and Law. 6. https://commons.erau.edu/adfsl/2015/tuesday/6 This Peer Reviewed Paper is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Annual ADFSL Conference on Digital Forensics, Security and Law by an (c)ADFSL authorized administrator of Scholarly Commons. -
Lecture 17 the Shell and Shell Scripting Simple Shell Scripts
Lecture 17 The Shell and Shell Scripting In this lecture • The UNIX shell • Simple Shell Scripts • Shell variables • File System commands, IO commands, IO redirection • Command Line Arguments • Evaluating Expr in Shell • Predicates, operators for testing strings, ints and files • If-then-else in Shell • The for, while and do loop in Shell • Writing Shell scripts • Exercises In this course, we need to be familiar with the "UNIX shell". We use it, whether bash, csh, tcsh, zsh, or other variants, to start and stop processes, control the terminal, and to otherwise interact with the system. Many of you have heard of, or made use of "shell scripting", that is the process of providing instructions to shell in a simple, interpreted programming language . To see what shell we are working on, first SSH into unix.andrew.cmu.edu and type echo $SHELL ---- to see the working shell in SSH We will be writing our shell scripts for this particular shell (csh). The shell scripting language does not fit the classic definition of a useful language. It does not have many of the features such as portability, facilities for resource intensive tasks such as recursion or hashing or sorting. It does not have data structures like arrays and hash tables. It does not have facilities for direct access to hardware or good security features. But in many other ways the language of the shell is very powerful -- it has functions, conditionals, loops. It does not support strong data typing -- it is completely untyped (everything is a string). But, the real power of shell program doesn't come from the language itself, but from the diverse library that it can call upon -- any program. -
Topic 3: One-Time Pad and Perfect Secrecy
Cryptography CS 555 Topic 3: One-time Pad and Perfect Secrecy CS555 Spring 2012/Topic 3 1 Outline and Readings • Outline • One-time pad • Perfect secrecy • Limitation of perfect secrecy • Usages of one-time pad • Readings: • Katz and Lindell: Chapter 2 CS555 Spring 2012/Topic 3 2 One-Time Pad • Fix the vulnerability of the Vigenere cipher by using very long keys • Key is a random string that is at least as long as the plaintext • Encryption is similar to shift cipher • Invented by Vernam in the 1920s CS555 Spring 2012/Topic 3 3 One-Time Pad Let Zm ={0,1,…,m-1} be the alphabet. Plaintext space = Ciphtertext space = Key space = n (Zm) The key is chosen uniformly randomly Plaintext X = (x1 x2 … xn) Key K = (k1 k2 … kn) Ciphertext Y = (y1 y2 … yn) ek(X) = (x1+k1 x2+k2 … xn+kn) mod m dk(Y) = (y1-k1 y2-k2 … yn-kn) mod m CS555 Spring 2012/Topic 3 4 The Binary Version of One-Time Pad Plaintext space = Ciphtertext space = Keyspace = {0,1}n Key is chosen randomly For example: • Plaintext is 11011011 • Key is 01101001 • Then ciphertext is 10110010 CS555 Spring 2012/Topic 3 5 Bit Operators • Bit AND 0 0 = 0 0 1 = 0 1 0 = 0 1 1 = 1 • Bit OR 0 0 = 0 0 1 = 1 1 0 = 1 1 1 = 1 • Addition mod 2 (also known as Bit XOR) 0 0 = 0 0 1 = 1 1 0 = 1 1 1 = 0 • Can we use operators other than Bit XOR for binary version of One-Time Pad? CS555 Spring 2012/Topic 3 6 How Good is One-Time Pad? • Intuitively, it is secure … – The key is random, so the ciphertext is completely random • How to formalize the confidentiality requirement? – Want to say “certain thing” is not learnable by the adversary (who sees the ciphertext). -
Applications of SKREM-Like Symmetric Key Ciphers
Applications of SKREM-like symmetric key ciphers Mircea-Adrian Digulescu1;2 February 2021 1Individual Researcher, Worldwide 2Formerly: Department of Computer Science, Faculty of Mathematics and Computer Science, University of Bucharest, Romania [email protected], [email protected], [email protected] Abstract In a prior paper we introduced a new symmetric key encryption scheme called Short Key Random Encryption Machine (SKREM), for which we claimed excellent security guarantees. In this paper we present and briey discuss some of its applications outside conventional data encryption. These are Secure Coin Flipping, Cryptographic Hashing, Zero-Leaked-Knowledge Authentication and Autho- rization and a Digital Signature scheme which can be employed on a block-chain. We also briey recap SKREM-like ciphers and the assumptions on which their security are based. The above appli- cations are novel because they do not involve public key cryptography. Furthermore, the security of SKREM-like ciphers is not based on hardness of some algebraic operations, thus not opening them up to specic quantum computing attacks. Keywords: Symmetric Key Encryption, Provable Security, One Time Pad, Zero Knowledge, Cryptographic Commit Protocol, Secure Coin Flipping, Authentication, Authorization, Cryptographic Hash, Digital Signature, Chaos Machine 1 Introduction So far, most encryption schemes able to serve Secure Coin Flipping, Zero-Knowledge Authentication and Digital Signatures, have relied on public key cryptography, which in turn relies on the hardness of prime factorization or some algebraic operation in general. Prime Factorization, in turn, has been shown to be vulnerable to attacks by a quantum computer (see [1]). In [2] we introduced a novel symmetric key encryption scheme, which does not rely on hardness of algebraic operations for its security guarantees. -
CMSC 426/626 - Computer Security Fall 2014
Authentication and Passwords CMSC 426/626 - Computer Security Fall 2014 Outline • Types of authentication • Vulnerabilities of password authentication • Linux password authentication • Windows Password authentication • Cracking techniques Goals of Authentication • Identification - provide a claimed identity to the system. • Verification - establish validity of the provided identity. We’re not talking about message authentication, e.g. the use of digital signatures. Means of Authentication • Something you know, e.g. password • Something you have, e.g. USB dongle or Common Access Card (CAC) • Something you are, e.g. fingerprint • Something you do, e.g. hand writing Password-Based Authentication • User provides identity and password; system verifies that the password is correct for the given identity. • Identity determines access and privileges. • Identity can be used for Discretionary Access Control, e.g. to give another user access to a file. Password Hashing Password • System stores hash of the user password, not the plain text password. Hash Algorithm • Commonly used technique, e.g. UNIX password hashing. Password Hash Password Vulnerabilities Assume the authentication system stores hashed passwords. There are eight attack strategies. • Off-line Dictionary Attack - get hold of the password file, test a collection (dictionary) of possible passwords. ‣ Most systems protect the password file, but attackers sometimes get hold of one. • Specific Account Attack - given a specific user account, try popular passwords. ‣ Most systems use lockout mechanisms to make these attacks difficult. • Popular Password Attack - given a popular password, try it on multiple accounts. ‣ Harder to defend against - have to look for patterns in failed access attempts. • Targeted Password Guessing - use what you know about a user to intelligently guess their password. -
NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (Superseded)
ARCHIVED PUBLICATION The attached publication, NIST Special Publication 800-56 (dated July 2005), has been superseded and is provided here only for historical purposes. For the most current revision of this publication, see: http://csrc.nist.gov/publications/PubsSPs.html#800-56A. NIST Special Publication 800-56 Recommendation for Pair-Wise July 2005 Key Establishment Schemes Using Discrete Logarithm Cryptography Elaine Barker, Don Johnson, and Miles Smid C O M P U T E R S E C U R I T Y NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography DRAFT July 2005 DRAFT Abstract This Recommendation specifies key establishment schemes using discrete logarithm cryptography, based on standards developed by the Accredited Standards Committee (ASC) X9, Inc.: ANS X9.42 (Agreement of Symmetric Keys Using Discrete Logarithm Cryptography) and ANS X9.63 (Key Agreement and Key Transport Using Elliptic Curve Cryptography). Worked examples are provided in Appendix D. KEY WORDS: assurances; Diffie-Hellman; elliptic curve cryptography; finite field cryptography; key agreement; key confirmation; key derivation; key establishment; key management; MQV. 2 NIST SP 800-56: Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography DRAFT July 2005 DRAFT Acknowledgements The National Institute of Standards and Technology (NIST) gratefully acknowledges and appreciates contributions by Rich Davis, Mike Hopper and Laurie Law from the National Security Agency concerning the many security -
Jellyfish Count -M 21 -S 100M -T 10 -C Reads.Fasta
Jellysh 2 User Guide December 13, 2013 Contents 1 Getting started 2 1.1 Counting all k-mers . .2 1.1.1 Counting k-mers in sequencing reads . .3 1.1.2 Counting k-mers in a genome . .3 1.2 Counting high-frequency k-mers . .3 1.2.1 One pass method . .3 1.2.2 Two pass method . .4 2 FAQ 5 2.1 How to read compressed les (or other format)?newmacroname . .5 2.2 How to read multiple les at once? . .5 2.3 How to reduce the output size? . .6 3 Subcommands 7 3.1 histo .............................................7 3.2 dump .............................................7 3.3 query .............................................7 3.4 info ..............................................8 3.5 merge ............................................8 3.6 cite . .8 1 Chapter 1 Getting started 1.1 Counting all k-mers The basic command to count all k-mers is as follows: jellyfish count -m 21 -s 100M -t 10 -C reads.fasta This will count canonical (-C) 21-mers (-m 21), using a hash with 100 million elements (-s 100 M) and 10 threads (-t 10) in the sequences in the le reads.fasta. The output is written in the le 'mer_counts.jf' by default (change with -o switch). To compute the histogram of the k-mer occurrences, use the histo subcommand (see section 3.1): jellyfish histo mer_counts.jf To query the counts of a particular k-mer, use the query subcommand (see section 3.3): jellyfish query mer_counts.jf AACGTTG To output all the counts for all the k-mers in the le, use the dump subcommand (see section 3.2): jellyfish dump mer_counts.jf > mer_counts_dumps.fa To get some information on how, when and where this jellysh le was generated, use the info subcommand (see section 3.4): jellyfish info mer_counts.jf For more detail information, see the relevant sections in this document. -
Analyzing Password Strength
Analyzing Password Strength Martin M.A. Devillers Juli 2010 Password authentication requires no ABSTRACT specialized hardware, such as with finger- print authentication, can be easily imple- Password authentication is still the most mented by developers and just as easily used used authentication mechanism in today’s by users. In short: It’s usable. computer systems. In most systems, the But is it safe? The topic of “Security ver- password is set by the user and must adhere sus Usability” has always been of much de- to certain password requirements. Addition- bate in the computer security world (3). Us- ally, password checkers rank the strength of ers must be protected from harm by security a password to give the user an indication of controls, but these controls may not interfere how secure their password is. In this paper, (much) with the tasks the users want to per- we take a look at a large database of user form. For instance, a firewall that simply chosen passwords to determine the current blocks all traffic can be considered secure, state of affairs. In the end, we extract a mod- but heavily impedes the overall usability of el from the database and provide our own the system. password checker which ranks passwords in various ways. We ran this checker against Security experts or system developers are our dataset which shows that over 90% of usually the ones who have to make this tra- the passwords is highly insecure. deoff, but with password authentication, this task is essentially passed on to the user (3): INTRODUCTION One can either choose a short and simple password, which is easy to remember but As we perform increasingly important also easy to crack, or a very long and com- tasks from our living room computer, the plicated password, which is hard to remem- topic of computer security also becomes in- ber but also hard to crack.