A Simple Model of Cascades in Networks∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Optimal Subgraph Structures in Scale-Free Configuration
Submitted to the Annals of Applied Probability OPTIMAL SUBGRAPH STRUCTURES IN SCALE-FREE CONFIGURATION MODELS , By Remco van der Hofstad∗ §, Johan S. H. van , , Leeuwaarden∗ ¶ and Clara Stegehuis∗ k Eindhoven University of Technology§, Tilburg University¶ and Twente Universityk Subgraphs reveal information about the geometry and function- alities of complex networks. For scale-free networks with unbounded degree fluctuations, we obtain the asymptotics of the number of times a small connected graph occurs as a subgraph or as an induced sub- graph. We obtain these results by analyzing the configuration model with degree exponent τ (2, 3) and introducing a novel class of op- ∈ timization problems. For any given subgraph, the unique optimizer describes the degrees of the vertices that together span the subgraph. We find that subgraphs typically occur between vertices with specific degree ranges. In this way, we can count and characterize all sub- graphs. We refrain from double counting in the case of multi-edges, essentially counting the subgraphs in the erased configuration model. 1. Introduction Scale-free networks often have degree distributions that follow power laws with exponent τ (2, 3) [1, 11, 22, 34]. Many net- ∈ works have been reported to satisfy these conditions, including metabolic networks, the internet and social networks. Scale-free networks come with the presence of hubs, i.e., vertices of extremely high degrees. Another property of real-world scale-free networks is that the clustering coefficient (the probability that two uniformly chosen neighbors of a vertex are neighbors themselves) decreases with the vertex degree [4, 10, 24, 32, 34], again following a power law. -
Detecting Statistically Significant Communities
1 Detecting Statistically Significant Communities Zengyou He, Hao Liang, Zheng Chen, Can Zhao, Yan Liu Abstract—Community detection is a key data analysis problem across different fields. During the past decades, numerous algorithms have been proposed to address this issue. However, most work on community detection does not address the issue of statistical significance. Although some research efforts have been made towards mining statistically significant communities, deriving an analytical solution of p-value for one community under the configuration model is still a challenging mission that remains unsolved. The configuration model is a widely used random graph model in community detection, in which the degree of each node is preserved in the generated random networks. To partially fulfill this void, we present a tight upper bound on the p-value of a single community under the configuration model, which can be used for quantifying the statistical significance of each community analytically. Meanwhile, we present a local search method to detect statistically significant communities in an iterative manner. Experimental results demonstrate that our method is comparable with the competing methods on detecting statistically significant communities. Index Terms—Community Detection, Random Graphs, Configuration Model, Statistical Significance. F 1 INTRODUCTION ETWORKS are widely used for modeling the structure function that is able to always achieve the best performance N of complex systems in many fields, such as biology, in all possible scenarios. engineering, and social science. Within the networks, some However, most of these objective functions (metrics) do vertices with similar properties will form communities that not address the issue of statistical significance of commu- have more internal connections and less external links. -
Processes on Complex Networks. Percolation
Chapter 5 Processes on complex networks. Percolation 77 Up till now we discussed the structure of the complex networks. The actual reason to study this structure is to understand how this structure influences the behavior of random processes on networks. I will talk about two such processes. The first one is the percolation process. The second one is the spread of epidemics. There are a lot of open problems in this area, the main of which can be innocently formulated as: How the network topology influences the dynamics of random processes on this network. We are still quite far from a definite answer to this question. 5.1 Percolation 5.1.1 Introduction to percolation Percolation is one of the simplest processes that exhibit the critical phenomena or phase transition. This means that there is a parameter in the system, whose small change yields a large change in the system behavior. To define the percolation process, consider a graph, that has a large connected component. In the classical settings, percolation was actually studied on infinite graphs, whose vertices constitute the set Zd, and edges connect each vertex with nearest neighbors, but we consider general random graphs. We have parameter ϕ, which is the probability that any edge present in the underlying graph is open or closed (an event with probability 1 − ϕ) independently of the other edges. Actually, if we talk about edges being open or closed, this means that we discuss bond percolation. It is also possible to talk about the vertices being open or closed, and this is called site percolation. -
Percolation Thresholds for Robust Network Connectivity
Percolation Thresholds for Robust Network Connectivity Arman Mohseni-Kabir1, Mihir Pant2, Don Towsley3, Saikat Guha4, Ananthram Swami5 1. Physics Department, University of Massachusetts Amherst, [email protected] 2. Massachusetts Institute of Technology 3. College of Information and Computer Sciences, University of Massachusetts Amherst 4. College of Optical Sciences, University of Arizona 5. Army Research Laboratory Abstract Communication networks, power grids, and transportation networks are all examples of networks whose performance depends on reliable connectivity of their underlying network components even in the presence of usual network dynamics due to mobility, node or edge failures, and varying traffic loads. Percolation theory quantifies the threshold value of a local control parameter such as a node occupation (resp., deletion) probability or an edge activation (resp., removal) probability above (resp., below) which there exists a giant connected component (GCC), a connected component comprising of a number of occupied nodes and active edges whose size is proportional to the size of the network itself. Any pair of occupied nodes in the GCC is connected via at least one path comprised of active edges and occupied nodes. The mere existence of the GCC itself does not guarantee that the long-range connectivity would be robust, e.g., to random link or node failures due to network dynamics. In this paper, we explore new percolation thresholds that guarantee not only spanning network connectivity, but also robustness. We define and analyze four measures of robust network connectivity, explore their interrelationships, and numerically evaluate the respective robust percolation thresholds arXiv:2006.14496v1 [physics.soc-ph] 25 Jun 2020 for the 2D square lattice. -
Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs
LETTER Communicated by Mika Rubinov Comparison of Different Generalizations of Clustering Coefficient and Local Efficiency for Weighted Undirected Graphs Yu Wang Eshwar Ghumare [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium Rik Vandenberghe [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium, and Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium Patrick Dupont [email protected] Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium; Alzheimer Research Centre, KU Leuven, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium; and Medical Imaging Research Center, KU Leuven and University Hospitals Leuven, Leuven 3000, Belgium Binary undirected graphs are well established, but when these graphs are constructed, often a threshold is applied to a parameter describing the connection between two nodes. Therefore, the use of weighted graphs is more appropriate. In this work, we focus on weighted undirected graphs. This implies that we have to incorporate edge weights in the graph mea- sures, which require generalizations of common graph metrics. After re- viewing existing generalizations of the clustering coefficient and the local efficiency, we proposed new generalizations for these graph measures. To be able to compare different generalizations, a number of essential and useful properties were defined that ideally should be satisfied. We ap- plied the generalizations to two real-world networks of different sizes. As a result, we found that not all existing generalizations satisfy all es- sential properties. Furthermore, we determined the best generalization for the clustering coefficient and local efficiency based on their properties and the performance when applied to two networks. -
Scale- Free Networks in Cell Biology
Scale- free networks in cell biology Réka Albert, Department of Physics and Huck Institutes of the Life Sciences, Pennsylvania State University Summary A cell’s behavior is a consequence of the complex interactions between its numerous constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling pathways and regulatory mechanisms to coordinate multiple processes, allowing them to respond to and adapt to an ever-changing environment. The large number of components, the degree of interconnectivity and the complex control of cellular networks are becoming evident in the integrated genomic and proteomic analyses that are emerging. It is increasingly recognized that the understanding of properties that arise from whole-cell function require integrated, theoretical descriptions of the relationships between different cellular components. Recent theoretical advances allow us to describe cellular network structure with graph concepts, and have revealed organizational features shared with numerous non-biological networks. How do we quantitatively describe a network of hundreds or thousands of interacting components? Does the observed topology of cellular networks give us clues about their evolution? How does cellular networks’ organization influence their function and dynamical responses? This article will review the recent advances in addressing these questions. Introduction Genes and gene products interact on several level. At the genomic level, transcription factors can activate or inhibit the transcription of genes to give mRNAs. Since these transcription factors are themselves products of genes, the ultimate effect is that genes regulate each other's expression as part of gene regulatory networks. Similarly, proteins can participate in diverse post-translational interactions that lead to modified protein functions or to formation of protein complexes that have new roles; the totality of these processes is called a protein-protein interaction network. -
15 Netsci Configuration Model.Key
Configuring random graph models with fixed degree sequences Daniel B. Larremore Santa Fe Institute June 21, 2017 NetSci [email protected] @danlarremore Brief note on references: This talk does not include references to literature, which are numerous and important. Most (but not all) references are included in the arXiv paper: arxiv.org/abs/1608.00607 Stochastic models, sets, and distributions • a generative model is just a recipe: choose parameters→make the network • a stochastic generative model is also just a recipe: choose parameters→draw a network • since a single stochastic generative model can generate many networks, the model itself corresponds to a set of networks. • and since the generative model itself is some combination or composition of random variables, a random graph model is a set of possible networks, each with an associated probability, i.e., a distribution. this talk: configuration models: uniform distributions over networks w/ fixed deg. seq. Why care about random graphs w/ fixed degree sequence? Since many networks have broad or peculiar degree sequences, these random graph distributions are commonly used for: Hypothesis testing: Can a particular network’s properties be explained by the degree sequence alone? Modeling: How does the degree distribution affect the epidemic threshold for disease transmission? Null model for Modularity, Stochastic Block Model: Compare an empirical graph with (possibly) community structure to the ensemble of random graphs with the same vertex degrees. e a loopy multigraphs c d simple simple loopy graphs multigraphs graphs Stub Matching tono multiedgesdraw from theno config. self-loops model ~k = 1, 2, 2, 1 b { } 3 3 4 3 4 3 4 4 multigraphs 2 5 2 5 2 5 2 5 1 1 6 6 1 6 1 6 3 3 the 4standard algorithm:4 3 4 4 loopy and/or 5 5 draw2 from5 the distribution2 5 by sequential2 “Stub Matching”2 1 1 6 6 1 6 1 6 1. -
NODEXL for Beginners Nasri Messarra, 2013‐2014
NODEXL for Beginners Nasri Messarra, 2013‐2014 http://nasri.messarra.com Why do we study social networks? Definition from: http://en.wikipedia.org/wiki/Social_network: A social network is a social structure made up of a set of social actors (such as individuals or organizations) and a set of the dyadic ties between these actors. Social networks and the analysis of them is an inherently interdisciplinary academic field which emerged from social psychology, sociology, statistics, and graph theory. From http://en.wikipedia.org/wiki/Sociometry: "Sociometric explorations reveal the hidden structures that give a group its form: the alliances, the subgroups, the hidden beliefs, the forbidden agendas, the ideological agreements, the ‘stars’ of the show". In social networks (like Facebook and Twitter), sociometry can help us understand the diffusion of information and how word‐of‐mouth works (virality). Installing NODEXL (Microsoft Excel required) NodeXL Template 2014 ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Double‐click, follow the instructions The SocialNetImporter extends the capabilities of NodeXL mainly with extracting data from the Facebook network. To install: ‐ Download the latest version of the social importer plugins from http://socialnetimporter.codeplex.com ‐ Open the Zip file and save the files into a directory you choose, e.g. c:\social ‐ Open the NodeXL template (you can click on the Windows Start button and type its name to search for it) ‐ Open the NodeXL tab, Import, Import Options (see screenshot below) 1 | Page ‐ In the import dialog, type or browse for the directory where you saved your social importer files (screenshot below): ‐ Close and open NodeXL again For older Versions: ‐ Visit http://nodexl.codeplex.com ‐ Download the latest version of NodeXL ‐ Unzip the files to a temporary folder ‐ Close Excel if it’s open ‐ Run setup.exe ‐ Visit http://socialnetimporter.codeplex.com ‐ Download the latest version of the socialnetimporter plug in 2 | Page ‐ Extract the files and copy them to the NodeXL plugin direction. -
The Role of Homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8
www.nature.com/scientificreports OPEN Structural transition in social networks: The role of homophily Yohsuke Murase 1, Hang-Hyun Jo 2,3,4, János Török5,6,7, János Kertész6,5,4 & Kimmo Kaski4,8 We introduce a model for the formation of social networks, which takes into account the homophily or Received: 17 August 2018 the tendency of individuals to associate and bond with similar others, and the mechanisms of global and Accepted: 27 February 2019 local attachment as well as tie reinforcement due to social interactions between people. We generalize Published: xx xx xxxx the weighted social network model such that the nodes or individuals have F features and each feature can have q diferent values. Here the tendency for the tie formation between two individuals due to the overlap in their features represents homophily. We fnd a phase transition as a function of F or q, resulting in a phase diagram. For fxed q and as a function of F the system shows two phases separated at Fc. For F < Fc large, homogeneous, and well separated communities can be identifed within which the features match almost perfectly (segregated phase). When F becomes larger than Fc, the nodes start to belong to several communities and within a community the features match only partially (overlapping phase). Several quantities refect this transition, including the average degree, clustering coefcient, feature overlap, and the number of communities per node. We also make an attempt to interpret these results in terms of observations on social behavior of humans. In human societies homophily, the tendency of similar individuals getting associated and bonded with each other, is known to be a prime tie formation factor between a pair of individuals1. -
Comm 645 Handout – Nodexl Basics
COMM 645 HANDOUT – NODEXL BASICS NodeXL: Network Overview, Discovery and Exploration for Excel. Download from nodexl.codeplex.com Plugin for social media/Facebook import: socialnetimporter.codeplex.com Plugin for Microsoft Exchange import: exchangespigot.codeplex.com Plugin for Voson hyperlink network import: voson.anu.edu.au/node/13#VOSON-NodeXL Note that NodeXL requires MS Office 2007 or 2010. If your system does not support those (or you do not have them installed), try using one of the computers in the PhD office. Major sections within NodeXL: • Edges Tab: Edge list (Vertex 1 = source, Vertex 2 = destination) and attributes (Fig.1→1a) • Vertices Tab: Nodes and attribute (nodes can be imported from the edge list) (Fig.1→1b) • Groups Tab: Groups of nodes defined by attribute, clusters, or components (Fig.1→1c) • Groups Vertices Tab: Nodes belonging to each group (Fig.1→1d) • Overall Metrics Tab: Network and node measures & graphs (Fig.1→1e) Figure 1: The NodeXL Interface 3 6 8 2 7 9 13 14 5 12 4 10 11 1 1a 1b 1c 1d 1e Download more network handouts at www.kateto.net / www.ognyanova.net 1 After you install the NodeXL template, a new NodeXL tab will appear in your Excel interface. The following features will be available in it: Fig.1 → 1: Switch between different data tabs. The most important two tabs are "Edges" and "Vertices". Fig.1 → 2: Import data into NodeXL. The formats you can use include GraphML, UCINET DL files, and Pajek .net files, among others. You can also import data from social media: Flickr, YouTube, Twitter, Facebook (requires a plugin), or a hyperlink networks (requires a plugin). -
A Multigraph Approach to Social Network Analysis
1 Introduction Network data involving relational structure representing interactions between actors are commonly represented by graphs where the actors are referred to as vertices or nodes, and the relations are referred to as edges or ties connecting pairs of actors. Research on social networks is a well established branch of study and many issues concerning social network analysis can be found in Wasserman and Faust (1994), Carrington et al. (2005), Butts (2008), Frank (2009), Kolaczyk (2009), Scott and Carrington (2011), Snijders (2011), and Robins (2013). A common approach to social network analysis is to only consider binary relations, i.e. edges between pairs of vertices are either present or not. These simple graphs only consider one type of relation and exclude the possibility for self relations where a vertex is both the sender and receiver of an edge (also called edge loops or just shortly loops). In contrast, a complex graph is defined according to Wasserman and Faust (1994): If a graph contains loops and/or any pairs of nodes is adjacent via more than one line the graph is complex. [p. 146] In practice, simple graphs can be derived from complex graphs by collapsing the multiple edges into single ones and removing the loops. However, this approach discards information inherent in the original network. In order to use all available network information, we must allow for multiple relations and the possibility for loops. This leads us to the study of multigraphs which has not been treated as extensively as simple graphs in the literature. As an example, consider a network with vertices representing different branches of an organ- isation. -
Graph and Network Analysis
Graph and Network Analysis Dr. Derek Greene Clique Research Cluster, University College Dublin Web Science Doctoral Summer School 2011 Tutorial Overview • Practical Network Analysis • Basic concepts • Network types and structural properties • Identifying central nodes in a network • Communities in Networks • Clustering and graph partitioning • Finding communities in static networks • Finding communities in dynamic networks • Applications of Network Analysis Web Science Summer School 2011 2 Tutorial Resources • NetworkX: Python software for network analysis (v1.5) http://networkx.lanl.gov • Python 2.6.x / 2.7.x http://www.python.org • Gephi: Java interactive visualisation platform and toolkit. http://gephi.org • Slides, full resource list, sample networks, sample code snippets online here: http://mlg.ucd.ie/summer Web Science Summer School 2011 3 Introduction • Social network analysis - an old field, rediscovered... [Moreno,1934] Web Science Summer School 2011 4 Introduction • We now have the computational resources to perform network analysis on large-scale data... http://www.facebook.com/note.php?note_id=469716398919 Web Science Summer School 2011 5 Basic Concepts • Graph: a way of representing the relationships among a collection of objects. • Consists of a set of objects, called nodes, with certain pairs of these objects connected by links called edges. A B A B C D C D Undirected Graph Directed Graph • Two nodes are neighbours if they are connected by an edge. • Degree of a node is the number of edges ending at that node. • For a directed graph, the in-degree and out-degree of a node refer to numbers of edges incoming to or outgoing from the node.