Manipulating Frequency-Entangled Photons

Total Page:16

File Type:pdf, Size:1020Kb

Manipulating Frequency-Entangled Photons Université libre de Bruxelles Université de Franche-Comté École polytechnique de Bruxelles Institut FEMTO-ST Service OPÉRA Laboratoire d’Optique Manipulating frequency-entangled photons Advisors: Laurent OLISLAGER Philippe EMPLIT December 19, 2014 Serge MASSAR PhD thesis Jean-Marc MEROLLA Doctorat en Sciences de l’Ingénieur et Technologie (ULB) Kien PHAN HUY Doctorat en Optique et Photonique (UFC) À Simone et Michèle Acknowledgements I would like to express (in French) my gratitude to all the people who have made the six years of my PhD thesis both passionating and fun. Let’s go for all the “merci”. Serge, un immense merci pour m’avoir guidé tout au long de ces années, avec un équilibre parfait entre encadrement et liberté. Merci pour tes conseils avisés, ton éclectisme, ton enthou- siasme. Merci pour les agréables moments en ta compagnie. Je ne comprends toujours pas comment tu peux annoncer 90% du temps “poker” tout en en faisant une stratégie gagnante. Philippe, un tout grand merci de m’avoir “ouvert les portes du laboratoire” et pour la confiance que tu m’as témoignée. Merci de faire régner la bonne ambiance au sein d’OPÉRA et pour ta gestion des dossiers kilométriques que ma thèse en co-tutelle a notamment imposés. Jean-Marc, merci pour ton expertise dans la manipulation de photons en fréquence. Tes con- naissances au laboratoire, tes ressources et ta disponibilité ont grandement facilité les débuts de ma thèse. Rien n’aurait été possible sans toi. Kien, merci pour ton incroyable taux de génération de nouvelles idées (en particulier celle qui a initié ma thèse) et pour ton aide au jour le jour. Grâce à toi, je sais (presque correctement) faire des soudures électriques. Jean-Marc et Kien, je me souviendrai longtemps de notre première semaine de manipulations à Bruxelles. Merci aussi Johann pour cette chouette expérience d’insomnies scientifiques. Les mois passés à Besançon furent passionnants scientifiquement et agréables humainement. Qui a dit qu’il ne faisait jamais beau dans cette ville? Ismaël, merci pour tout le temps partagé autour d’une table d’optique, et pour les plats sénégalais. Merci aux personnes qui m’ont accueilli au laboratoire, en particulier Hervé, Valérie, Birgit, Thibaut, Batiste. Revenons en Belgique. Merci Erik pour l’excellent travail réalisé lors de ton mémoire et de la préparation des articles, tu as grandement contribué à cette thèse. Merci aux étudiants que j’ai eu la chance d’encadrer, Bruno, Sébastien et Igor dans le contexte de ces travaux, ainsi que Romain, Olivier et Jorge. Merci aussi à Anthony et Nam. Merci aux scientifiques plus expérimentés avec qui j’ai eu la chance de collaborer, en particulier Stefano, Manas et Branko. À OPÉRA, merci Anh Tuan d’avoir inauguré les travaux menant à cette thèse. Stéphane, un im- mense merci d’avoir partagé ton bureau et ta table de manipulation avec le petit nouveau que j’étais, et pour m’avoir patiemment expliqué comment ne pas brûler des connecteurs optiques. Eddy, ce fut très enrichissant de te côtoyer, toi le maître des explications physiques et questions judicieuses; tes “c’est pas mal” résonnent en moi avec la valeur d’un “formidable”. Jassem, merci beaucoup pour ta dextérité au laboratoire et ta bonne humeur au bureau (sauf quand Cricri perdait). François D., merci d’avoir installé 1023 fois Matlab, et de savoir reconnaître n’importe quel connecteur RF à un mètre de distance. François L., merci de m’avoir enseigné la science du PID, et bien entendu pour les soirées débat, “fieu”. Merci aussi à Adrien pour ces débats, et pour notre séjour bisontin. Merci Pascal et Simpi pour vos explications à tout sujet. iii iv Merci aux autres membres passés et présents d’OPÉRA pour la formidable ambiance de travail (ou parfois ambiance tout court). Merci François B. l’as de la fléchette (et pas seulement). Merci Thomas pour ta culture générale, parfois très spécifique. Merci Anh Dung pour ton inlassable organisation de chouettes activités. Quarante-deux fois “grazie” Serena, au moins par écrit on ne perçoit pas la mauvaise position de l’accent tonique. Merci Akram de vivre à fond chaque match de PlayStation. Merci Antoine de ne pas insister sur le fait que je chante tout haut dans le bureau. Merci Maïté pour nos montagnes russes. Merci Lory, Mika, Olivier, Yvan, Han, Anteo, Quentin, Piotr, Ali, Evdokia... Ibtissame et Alexandra, merci à vous pour le travail immense que vous accomplissez avec efficacité et sourire. Merci aux personnes impliquées avec moi dans des activités d’enseignement, à commencer bien entendu par Marc, mais aussi, parmi ceux que je ne n’ai pas encore cités, Yves, Pierre, Stéphane, Jonathan, Bertrand... Merci aussi chers étudiants, en particulier les “grands” de la Saphybru, vous m’avez beaucoup apporté. De l’autre côté, merci à tous les professeurs ayant éveillé mon goût pour les sciences. En particulier, merci à Nicolas Cerf d’avoir encadré mon mémoire de fin d’études qui reste un excellent souvenir. Au QuIC, merci aussi à Evgueni pour sa gentillesse et Anaëlle pour être devenue plus qu’une lointaine collègue. Merci aux membres du jury d’avoir accepté d’examiner cette thèse. Merci à celles et ceux croisés au hasard d’un laboratoire ou d’une conférence, et qui m’ont inspiré. Merci à toutes les institu- tions ayant financé mes travaux et voyages, et aux personnes qui permettent à des gens comme moi de s’amuser à faire de la recherche. Enfin, je voudrais remercier les personnes extérieures qui ont néanmoins certainement eu un impact sur cette thèse: mes coéquipiers basketteurs, les anciens de l’école, en particulier Char- lotte et sa famille, les anciens de l’université, en particulier Simon, Cédric, François, et Amélie, Marie, Céline, ainsi que Florie, Laura, Nathalie. Merci à tous mes oncles et tantes, cousins et cousines. Merci aux marraines Simone et Michèle, vous êtes une source d’inspiration chaque jour. Merci Benoît et Sarah, et la merveilleuse Manon et celles ou ceux qui restent à venir. À mes parents Ingrid et Roland, que puis-je dire? Ils m’ont soutenu de la première et à la dernière sec- onde, littéralement. Puis-je, en bon spécialiste de l’optique, absorber l’amour qu’ils me portent à sa juste valeur, pour mieux le transmettre et le réfléchir. Publications The present thesis is based on the following publications. Publications in international peer-reviewed journals: – L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, & K. Phan Huy, Frequency-bin entangled photons, Physical Review A 82, 013804 (2010). – L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. Phan Huy, & J.-M. Merolla, Implementing two-photon interference in the frequency domain with electro-optic phase modulators, New Journal of Physics 14, 043015 (2012). – L. Olislager, J. Safioui, S. Clemmen, K. Phan Huy, W. Bogaerts, R. Baets, P. Emplit, & S. Massar, Silicon-on-insulator integrated source of polarization-entangled photons, Optics Letters 38, 1960 (2013). – M. K. Patra, L. Olislager, F. Duport, J. Safioui, S. Pironio, & S. Massar, Experimental refutation of a class of y-epistemic models, Physical Review A 88, 032112 (2013). – L. Olislager, E. Woodhead, K. Phan Huy, J.-M. Merolla, P. Emplit, & S. Massar, Creating and manipulating entangled optical qubits in the frequency domain, Physical Review A 89, 052323 (2014). Presentations in international conferences with proceedings: – L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, & K. Phan Huy, Manipulating frequency entanglement with phase modulators, Th16, International Conference on Quantum Information Processing and Communication (QIPC 2009). Poster presented by L. Olislager, Roma, Italy, September 2009. – L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, & K. Phan Huy, Manipulating frequency entangled photons, p. 58–65, Quantum Communication and Quantum Networking (QuantumComm 2009), Springer Berlin Heidelberg, 2010. Talk presented by L. Olislager, Vico Equense, Italy, October 2009. – L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, & K. Phan Huy, Ma- nipulating frequency entangled photons, 14th Annual Symposium of the IEEE Photonics Benelux Chapter. Talk presented by L. Olislager, Brussels, Belgium, November 2009. – L. Olislager, I. Mbodji, J. Cussey, A. T. Nguyen, P. Emplit, K. Phan Huy, J.-M. Merolla, & S. Massar, Enchevêtrement de paires de photons dans le domaine fréquentiel, Journées Nationales d’Optique Guidée (JNOG 2010). Talk presented by S. Massar, Besançon, France, October 2010. – L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, & K. Phan Huy, Two-photon interference using frequency-bin entanglement, 15th Annual Symposium of the IEEE Photonics Benelux Chapter. Talk presented by L. Olislager, Delft, The Netherlands, November 2010. – J.-M. Merolla, I. Mbodji, L. Olislager, E. Woodhead, K. Phan Huy, L. Furfaro, & S. Massar, Bell inequality violation in frequency domain using 25 GHz frequency sideband modulation architecture, ED.P.3, European Quantum Electronics Conference, Optical Society of America, 2011. Poster presented by K. Phan Huy, Munich, Deutschland, May 2011. v vi – J.-M. Merolla, L. Fufaro, K. Phan Huy, I. Mbodji, S. Massar, E. Woodhead, L. Olislager, & R. Giust, Reliable and efficient control of spectral qubits using optoelectronic devices: progress and perspectives, 8272-26, SPIE Photonics West. Talk presented by J.-M. Merolla, San Francisco, United States of America, January 2012. – I. Mbodji, L. Olislager, E. Woodhead, B. Galmes, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. Phan Huy, & J.-M. Merolla, Two-photon experiments in the frequency domain, 84400J, SPIE Photonics Europe, International Society for Optics and Photonics, 2012. Talk presented by L. Olislager, Brussels, Belgium, April 2012. – L. Olislager, F. Duport, J.
Recommended publications
  • Quantum Computing a New Paradigm in Science and Technology
    Quantum computing a new paradigm in science and technology Part Ib: Quantum computing. General documentary. A stroll in an incompletely explored and known world.1 Dumitru Dragoş Cioclov 3. Quantum Computer and its Architecture It is fair to assert that the exact mechanism of quantum entanglement is, nowadays explained on the base of elusive A quantum computer is a machine conceived to use quantum conjectures, already evoked in the previous sections, but mechanics effects to perform computation and simulation this state-of- art it has not impeded to illuminate ideas and of behavior of matter, in the context of natural or man-made imaginative experiments in quantum information theory. On this interactions. The drive of the quantum computers are the line, is worth to mention the teleportation concept/effect, deeply implemented quantum algorithms. Although large scale general- purpose quantum computers do not exist in a sense of classical involved in modern cryptography, prone to transmit quantum digital electronic computers, the theory of quantum computers information, accurately, in principle, over very large distances. and associated algorithms has been studied intensely in the last Summarizing, quantum effects, like interference and three decades. entanglement, obviously involve three states, assessable by The basic logic unit in contemporary computers is a bit. It is zero, one and both indices, similarly like a numerical base the fundamental unit of information, quantified, digitally, by the two (see, e.g. West Jacob (2003). These features, at quantum, numbers 0 or 1. In this format bits are implemented in computers level prompted the basic idea underlying the hole quantum (hardware), by a physic effect generated by a macroscopic computation paradigm.
    [Show full text]
  • A Non-Technical Explanation of the Bell Inequality Eliminated by EPR Analysis Eliminated by Bell A
    Ghostly action at a distance: a non-technical explanation of the Bell inequality Mark G. Alford Physics Department, Washington University, Saint Louis, MO 63130, USA (Dated: 16 Jan 2016) We give a simple non-mathematical explanation of Bell's inequality. Using the inequality, we show how the results of Einstein-Podolsky-Rosen (EPR) experiments violate the principle of strong locality, also known as local causality. This indicates, given some reasonable-sounding assumptions, that some sort of faster-than-light influence is present in nature. We discuss the implications, emphasizing the relationship between EPR and the Principle of Relativity, the distinction between causal influences and signals, and the tension between EPR and determinism. I. INTRODUCTION II. OVERVIEW To make it clear how EPR experiments falsify the prin- The recent announcement of a \loophole-free" observa- ciple of strong locality, we now give an overview of the tion of violation of the Bell inequality [1] has brought re- logical context (Fig. 1). For pedagogical purposes it is newed attention to the Einstein-Podolsky-Rosen (EPR) natural to present the analysis of the experimental re- family of experiments in which such violation is observed. sults in two stages, which we will call the \EPR analy- The violation of the Bell inequality is often described as sis", and the \Bell analysis" although historically they falsifying the combination of \locality" and \realism". were not presented in exactly this form [4, 5]; indeed, However, we will follow the approach of other authors both stages are combined in Bell's 1976 paper [2]. including Bell [2{4] who emphasize that the EPR results We will concentrate on Bohm's variant of EPR, the violate a single principle, strong locality.
    [Show full text]
  • Theoretical Resolution of EPR Paradox
    SSRG International Journal of Applied Physics ( SSRG – IJAP ) – Volume 4 Issue 3 Sep to Dec 2017 Theoretical Resolution of EPR Paradox Tapan Kumar Ghosh Assistant Research Officer (Hydraulics), River Research Institute, Irrigation and Waterways Department West Bengal, PIN 741 246 India Abstract: such a limit that a comprehensive conclusion can be Bell’s inequality together with widely used drawn over the matter of dispute. CHSH inequality on joint expectation of spin states However two simple hypotheses can theoretically between Alice and Bob ends are taken as a decisive settle the matter in line with the experimental theorem to challenge EPR Paradox. All experiments evidences against EPR paradox – on the polarisation states of entangled particles Hypotheses 1: ‘Properties’ do not exist prior to n i.e. violate Bell’s inequality as well as CHSH inequality ‘counterfactual definiteness’ is meaningless in and Einstein’s version of reality now is considered quantum world. wrong somehow. Bell’s argument clearly shows that Hypotheses 2:‘Conservation Laws’ operate only on quantum mechanics simultaneously can not justify measured values and therefore have no difficulties both ‘locality’ and ‘counterfactual definiteness’. being non-local. ‘Locality’ means that no causal connection can be With these two hypotheses one can easily made faster than light. ‘Counterfactual definiteness’, calculate the joint expectation for the outcome at Alice sometimes called ‘realism’ refers to the assumption on and Bob ends. However this article is intended to the existence of properties of objects prior to proceed without these hypotheses and the resulting measurement. This paper shows on the contrary that contradiction with the prediction of quantum Quantum Mechanics is neither.
    [Show full text]
  • Simulation of the Bell Inequality Violation Based on Quantum Steering Concept Mohsen Ruzbehani
    www.nature.com/scientificreports OPEN Simulation of the Bell inequality violation based on quantum steering concept Mohsen Ruzbehani Violation of Bell’s inequality in experiments shows that predictions of local realistic models disagree with those of quantum mechanics. However, despite the quantum mechanics formalism, there are debates on how does it happen in nature. In this paper by use of a model of polarizers that obeys the Malus’ law and quantum steering concept, i.e. superluminal infuence of the states of entangled pairs to each other, simulation of phenomena is presented. The given model, as it is intended to be, is extremely simple without using mathematical formalism of quantum mechanics. However, the result completely agrees with prediction of quantum mechanics. Although it may seem trivial, this model can be applied to simulate the behavior of other not easy to analytically evaluate efects, such as defciency of detectors and polarizers, diferent value of photons in each run and so on. For example, it is demonstrated, when detector efciency is 83% the S factor of CHSH inequality will be 2, which completely agrees with famous detector efciency limit calculated analytically. Also, it is shown in one-channel polarizers the polarization of absorbed photons, should change to the perpendicular of polarizer angle, at very end, to have perfect violation of the Bell inequality (2 √2 ) otherwise maximum violation will be limited to (1.5 √2). More than a half-century afer celebrated Bell inequality 1, nonlocality is almost totally accepted concept which has been proved by numerous experiments. Although there is no doubt about validity of the mathematical model proposed by Bell to examine the principle of the locality, it is comprehended that Bell’s inequality in its original form is not testable.
    [Show full text]
  • Violation of Bell Inequalities: Mapping the Conceptual Implications
    International Journal of Quantum Foundations 7 (2021) 47-78 Original Paper Violation of Bell Inequalities: Mapping the Conceptual Implications Brian Drummond Edinburgh, Scotland. E-mail: [email protected] Received: 10 April 2021 / Accepted: 14 June 2021 / Published: 30 June 2021 Abstract: This short article concentrates on the conceptual aspects of the violation of Bell inequalities, and acts as a map to the 265 cited references. The article outlines (a) relevant characteristics of quantum mechanics, such as statistical balance and entanglement, (b) the thinking that led to the derivation of the original Bell inequality, and (c) the range of claimed implications, including realism, locality and others which attract less attention. The main conclusion is that violation of Bell inequalities appears to have some implications for the nature of physical reality, but that none of these are definite. The violations constrain possible prequantum (underlying) theories, but do not rule out the possibility that such theories might reconcile at least one understanding of locality and realism to quantum mechanical predictions. Violation might reflect, at least partly, failure to acknowledge the contextuality of quantum mechanics, or that data from different probability spaces have been inappropriately combined. Many claims that there are definite implications reflect one or more of (i) imprecise non-mathematical language, (ii) assumptions inappropriate in quantum mechanics, (iii) inadequate treatment of measurement statistics and (iv) underlying philosophical assumptions. Keywords: Bell inequalities; statistical balance; entanglement; realism; locality; prequantum theories; contextuality; probability space; conceptual; philosophical International Journal of Quantum Foundations 7 (2021) 48 1. Introduction and Overview (Area Mapped and Mapping Methods) Concepts are an important part of physics [1, § 2][2][3, § 1.2][4, § 1][5, p.
    [Show full text]
  • Requirements for a Loophole-Free Photonic Bell Test Using Imperfect Setting Generators
    Requirements for a loophole-free photonic Bell test using imperfect setting generators Johannes Kofler,1 Marissa Giustina,2, 3 Jan-Åke Larsson,4 and Morgan W. Mitchell5, 6 1Max Planck Institute of Quantum Optics (MPQ), Hans-Kopfermann-Straße 1, 85748 Garching/Munich, Germany 2Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria 3Quantum Optics, Quantum Nanophysics, and Quantum Information, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria 4Institutionen for Systemteknik, Link¨opingsUniversitet, SE-58183 Link¨oping, Sweden 5ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain 6ICREA – Instituci´oCatalana de Recerca i Estudis Avan¸cats,08015 Barcelona, Spain (Dated: October 8, 2018) Experimental violations of Bell inequalities are in general vulnerable to so-called “loopholes.” In this work, we analyse the characteristics of a loophole-free Bell test with photons, closing simultaneously the locality, freedom-of-choice, fair-sampling (i.e. detection), coincidence-time, and memory loopholes. We pay special attention to the effect of excess predictability in the setting choices due to non-ideal random number generators. We discuss necessary adaptations of the CH/Eberhard inequality when using such imperfect devices and – using Hoeffding’s inequality and Doob’s optional stopping theorem – the statistical analysis in such Bell tests. I. INTRODUCTION II. BELL’S THEOREM AND LOOPHOLES Let us consider the simplest scenario of only two parties Bell’s theorem [1] about the incompatibility of a local re- called Alice and Bob, who perform measurements on distant alist world view with quantum mechanics is one of the most physical systems.
    [Show full text]
  • Manipulating Frequency-Entangled Photons Laurent Olislager
    Manipulating frequency-entangled photons Laurent Olislager To cite this version: Laurent Olislager. Manipulating frequency-entangled photons. Optics / Photonic. Université de Franche-Comté; Université libre de Bruxelles (1970-..), 2014. English. NNT : 2014BESA2079. tel- 01743877 HAL Id: tel-01743877 https://tel.archives-ouvertes.fr/tel-01743877 Submitted on 26 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université libre de Bruxelles Université de Franche-Comté École polytechnique de Bruxelles Institut FEMTO-ST Service OPÉRA Laboratoire d’Optique Thèse de Doctorat présentée par Laurent OLISLAGER pour obtenir le Grade de Docteur de l'Université de Franche-Comté Spécialité : optique et photonique Manipulating frequency-entangled photons Manipulation de photons intriqués en fréquence Soutenue le 19 décembre 2014 devant le jury composé de : – Matthieu Bloch, Pr., Georgia Tech Lorraine, Metz, France (Rapporteur) – Edouard Brainis, Pr., Universiteit Gent, Ghent, Belgium (Membre) – Nicolas Cerf, Pr., Université libre de Bruxelles, Brussels,
    [Show full text]
  • Is Einsteinian No-Signalling Violated in Bell Tests? Received Sep 01, 2017; Accepted Oct 16, 2017 1 Introduction
    Open Phys. 2017; 15:739–753 Research Article Marian Kupczynski* Is Einsteinian no-signalling violated in Bell tests? https://doi.org/10.1515/phys-2017-0087 Received Sep 01, 2017; accepted Oct 16, 2017 1 Introduction Abstract: Relativistic invariance is a physical law verified The violation of Bell-type inequalities [1, 2] was reported in several domains of physics. The impossibility of faster in several excellent experiments [3–8] confirming the exis- than light influences is not questioned by quantum the- tence of long-distance correlations predicted by quantum ory. In quantum electrodynamics, in quantum field the- mechanics (QM). Several magical explanations of these ory and in the standard model relativistic invariance is in- correlations are given: quantum instantaneous correla- corporated by construction. Quantum mechanics predicts tions come from outside space time, they result from retro- strong long range correlations between outcomes of spin causation (causation from the future to the past), they are projection measurements performed in distant laborato- due to superdeterminism (experimentalists have no free- ries. In spite of these strong correlations marginal proba- dom to choose the experimental settings) etc. A recent crit- bility distributions should not depend on what was mea- ical review of these ideas and extensive bibliography may sured in the other laboratory what is called shortly: non- be found in [9–11]. signalling. In several experiments, performed to test vari- Several authors [12–53] arrived, often independently, ous Bell-type inequalities, some unexplained dependence to similar conclusions and explained rationally why Bell of empirical marginal probability distributions on distant inequalities might be violated.
    [Show full text]
  • Computational Perspectives on Bell Inequalities and Many-Body Quantum Correlations
    Computational Perspectives on Bell Inequalities and Many-body Quantum Correlations Matthew Joseph Hoban A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Physics and Astronomy arXiv:1204.5913v1 [quant-ph] 26 Apr 2012 University College London January 20, 2018 I, Matthew Joseph Hoban confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract The predictions of quantum mechanics cannot be resolved with a completely classical view of the world. In particular, the statistics of space-like separated measurements on entangled quantum systems violate a Bell inequality [Bell1964]. We put forward a computational perspective on a broad class of Bell tests that study correlators, or the statistics of joint measurement outcomes. We associate particular maps, or functions to particular theories. The violation of a Bell inequality then implies the ability to perform some functions, or computations that classical, or more generally, local hidden variable (LHV) theories cannot. We derive an infinite class of Bell inequalities that establish a link to so- called \non-local games" [Cleve2004]. We then make the connection between Raussendorf and Briegel's formulation of Measurement-based Quantum Com- puting (MBQC) [Raussendorf2001], and these non-local games. Not only can we show that a quantum violation implies a computational advantage in this model, we show that adaptive measurements are required to perform all quantum com- putations. Finally, we explore post-selection of data in Bell tests from both a practical and conceptual point-of-view, with particular consideration to so-called \loopholes".
    [Show full text]
  • Testing Quantum Mechanics and Bell's Inequality with Cosmological
    Testing Quantum Mechanics and bell’s inequality with cosmological Observations Andrew Friedman NSF STS Postdoctoral Fellow, MIT Visiting Research Scientist MIT Center for Theoretical Physics http://web.mit.edu/asf/www/ [email protected] 3/10/14 MIT Kavli Institute for Astrophysics & Space Research, Brown Bag Lunch Talk 1 Dr. Jason Dr. Andrew Prof. David Prof. Alan Gallicchio Friedman Kaiser Guth U. Chicago 4,5 MIT 1,2,3 MIT 1,2,3 MIT 1,2 +MIT UROP “Testing Bell's Inequality with Cosmic Photons: Students Closing the Setting-Independence Loophole” Isabella Sanders Gallicchio, Friedman, & Kaiser 2014 = GFK14 Anthony Mark Phys. Rev. Lett. accepted, arXiv:1310.3288 “The Shared Causal Pasts and Futures of Cosmological Events” Friedman, Kaiser & Gallicchio 2013 = F13a Phys. Rev. D. Vol. 88, Iss. 4, 044038, arXiv:1305.3943 1:MIT Physics, 2:MIT CTP, 3:MIT STS, 4:U. Chicago KICP, 5:South Pole Telescope 3/10/14 MIT Kavli Institute for Astrophysics & Space Research, Brown Bag Lunch Talk 2 Outline 1. Bell’s Theorem 2. Cosmic Bell Experiment Gallicchio, Friedman, & Kaiser 2014 (GFK14) Phys. Rev. Lett. accepted, arXiv:1310.3288 3. Shared Causal Pasts of Cosmic Events Friedman, Kaiser, & Gallicchio 2013 (F13a) Phys. Rev. D. Vol. 88, Issue 4, Id. 044038, arXiv:1305.3943 4. Causally Disconnected Quasars Friedman+2014b in prep. (F14b) 5. Actually Doing the Experiment? 3/10/14 MIT Kavli Institute for Astrophysics & Space Research, Brown Bag Lunch Talk 3 COSMIC BELL In the news media links on last slide 3/10/14 MIT Kavli Institute for Astrophysics & Space Research,
    [Show full text]
  • Requirements for a Loophole‐Free Photonic Bell Test Using Imperfect Setting Generators Johannes Kofler, Marissa Giustina, Jan-Åke Larsson and Morgan W
    Requirements for a loophole‐free photonic Bell test using imperfect setting generators Johannes Kofler, Marissa Giustina, Jan-Åke Larsson and Morgan W. Mitchell The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-126806 N.B.: When citing this work, cite the original publication. Kofler, J., Giustina, M., Larsson, J., Mitchell, M. W., (2016), Requirements for a loophole-free photonic Bell test using imperfect setting generators, Physical Review A. Atomic, Molecular, and Optical Physics, 93(3), 032115. https://doi.org/10.1103/PhysRevA.93.032115 Original publication available at: https://doi.org/10.1103/PhysRevA.93.032115 Copyright: American Physical Society http://www.aps.org/ Requirements for a loophole-free photonic Bell test using imperfect setting generators Johannes Kofler,1 Marissa Giustina,2, 3 Jan-Åke Larsson,4 and Morgan W. Mitchell5, 6 1Max Planck Institute of Quantum Optics (MPQ), Hans-Kopfermann-Straße 1, 85748 Garching/Munich, Germany 2Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria 3Quantum Optics, Quantum Nanophysics, and Quantum Information, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria 4Institutionen for Systemteknik, Link¨opingsUniversitet, SE-58183 Link¨oping, Sweden 5ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain 6ICREA – Instituci´oCatalana de Recerca i Estudis Avan¸cats,08015 Barcelona, Spain (Dated: October 8, 2018) Experimental violations of Bell inequalities are in general vulnerable to so-called “loopholes.” In this work, we analyse the characteristics of a loophole-free Bell test with photons, closing simultaneously the locality, freedom-of-choice, fair-sampling (i.e.
    [Show full text]
  • Bell Tests in Physical Systems
    Bell tests in physical systems Seung-Woo Lee St. Hugh's College, Oxford A thesis submitted to the Mathematical and Physical Sciences Division for the degree of Doctor of Philosophy in the University of Oxford Trinity Term, 2009 Atomic and Laser Physics, University of Oxford Bell tests in physical systems Seung-Woo Lee, St. Hugh's College, Oxford Trinity Term, 2009 Abstract Quantum non-locality and entanglement in realistic physical systems have been of great interest due to their importance, both for gaining a better understanding of quantum physical principles and for applications in quantum information process- ing. Both quantum non-locality and entanglement can be e®ectively detected by testing Bell inequalities. Thus, ¯nding Bell inequalities applicable to realistic phys- ical systems has been an important issue in recent years. However, there have been several conceptual di±culties in the generalisation of Bell inequalities from bipartite 2-dimensional cases to more complex cases, which give rise to many fundamental questions about the nature of quantum non-locality and entanglement. In this the- sis, we contribute to answering several fundamental questions by formulating new types of Bell inequalities and also by proposing a practical entanglement detection scheme that is applicable to any physical system. To start with, we formulate a generalised structure of Bell inequalities for bipar- tite arbitrary dimensional systems. The generalised structure can be represented either by correlation functions or by joint probabilities. We show that all previously known Bell inequalities can be written in the form of the generalised structure. Moreover, the generalised structure allows us to construct new Bell inequalities in a convenient way.
    [Show full text]