Effective Types: Examples (P1796R0) 2 3 4 PETER SEWELL, University of Cambridge 5 KAYVAN MEMARIAN, University of Cambridge 6 VICTOR B

Total Page:16

File Type:pdf, Size:1020Kb

Effective Types: Examples (P1796R0) 2 3 4 PETER SEWELL, University of Cambridge 5 KAYVAN MEMARIAN, University of Cambridge 6 VICTOR B 1 Effective types: examples (P1796R0) 2 3 4 PETER SEWELL, University of Cambridge 5 KAYVAN MEMARIAN, University of Cambridge 6 VICTOR B. F. GOMES, University of Cambridge 7 JENS GUSTEDT, INRIA 8 HUBERT TONG 9 10 11 This is a collection of examples exploring the semantics that should be allowed for objects 12 and subobjects in allocated regions – especially, where the defined/undefined-behaviour 13 boundary should be, and how that relates to compiler alias analysis. The examples are in 14 C, but much should be similar in C++. We refer to the ISO C notion of effective types, 15 but that turns out to be quite flawed. Some examples at the end (from Hubert Tong) show 16 that existing compiler behaviour is not consistent with type-changing updates. 17 This is an updated version of part of n2294 C Memory Object Model Study Group: 18 Progress Report, 2018-09-16. 19 1 INTRODUCTION 20 21 Paragraphs 6.5p{6,7} of the standard introduce effective types. These were added to 22 C in C99 to permit compilers to do optimisations driven by type-based alias analysis, 23 by ruling out programs involving unannotated aliasing of references to different types 24 (regarding them as having undefined behaviour). However, this is one of the less clear, 25 less well-understood, and more controversial aspects of the standard, as one can see from 1 2 26 various GCC and Linux Kernel mailing list threads , blog postings , and the responses to 3 4 27 Questions 10, 11, and 15 of our survey . See also earlier committee discussion . 28 Moreover, the ISO text seems not to capture existing mainstream compiler behaviour. 29 The ISO text (recalled below) is in terms of the types of the lvalues used for access, but 30 compilers appear to do type-based alias analysis based on the construction of the lvalues, 31 not just the types of the lvalues as a whole. Additionally, some compilers seem to differ 32 from ISO in requiring syntactic visibility of union definitions in order to allow accesses to 33 structures with common prefixes inside unions. The ISO text also leaves several questions 34 unclear, e.g. relating to memory initialised piece-by-piece and then read as a struct or 35 array, or vice versa. 36 Additionally, several major systems software projects, including the Linux Ker- 37 nel, the FreeBSD Kernel, and PostgreSQL disable type-based alias analysis with the 38 -fno-strict-aliasing compiler flag. The semantics of this (as for other dialects ofC)is 39 currently not specified by the ISO standard; it is debatable whether it would be usefulto 40 do that. 41 1https://gcc.gnu.org/ml/gcc/2010-01/msg00013.html, https://lkml.org/lkml/2003/2/26/158, and http: 42 //www.mail-archive.com/[email protected]/msg01647.html 2 http://blog.regehr.org/archives/959, http://cellperformance.beyond3d.com/articles/2006/06/ 43 understanding-strict-aliasing.html, http://davmac.wordpress.com/2010/02/26/c99-revisited/, 44 http://dbp-consulting.com/tutorials/StrictAliasing.html, and http://stackoverflow.com/questions/ 45 2958633/gcc-strict-aliasing-and-horror-stories 46 3https://www.cl.cam.ac.uk/~pes20/cerberus/notes50-survey-discussion.html (N2014), http://www. 47 open-std.org/jtc1/sc22/wg14/www/docs/n2015.pdf (N2015) 4 48 http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1409.htm and http://www.open-std.org/jtc1/ sc22/wg14/www/docs/n1422.pdf (p14) 49 50 2019. 51 Draft of June 18, 2019 52 2 Peter Sewell, Kayvan Memarian, Victor B. F. Gomes, Jens Gustedt, and Hubert Tong 1.1 The ISO standard text 53 54 The C11 standard says, in 6.5: 55 6 The effective type of an object for an access to its stored value is the declared type 56 of the object, if any87). If a value is stored into an object having no declared type 57 through an lvalue having a type that is not a character type, then the type of the 58 lvalue becomes the effective type of the object for that access and for subsequent 59 accesses that do not modify the stored value. If a value is copied into an object having 60 no declared type using memcpy or memmove, or is copied as an array of character type, 61 then the effective type of the modified object for that access and for subsequent 62 accesses that do not modify the value is the effective type of the object from which 63 the value is copied, if it has one. For all other accesses to an object having no declared 64 type, the effective type of the object is simply the type of the lvalue used forthe 65 access. 66 7 An object shall have its stored value accessed only by an lvalue expression that has 67 one of the following types:88) 68 – a type compatible with the effective type of the object, 69 – a qualified version of a type compatible with the effective type of the object, 70 – a type that is the signed or unsigned type corresponding to the effective type of the 71 object, 72 – a type that is the signed or unsigned type corresponding to a qualified version of 73 the effective type of the object, 74 – an aggregate or union type that includes one of the aforementioned types among its 75 members (including, recursively, a member of a subaggregate or contained union), 76 or 77 – a character type. 78 Footnote 87) Allocated objects have no declared type. 79 Footnote 88) The intent of this list is to specify those circumstances in which an object 80 may or may not be aliased. 81 82 As Footnote 87 says, allocated objects (from malloc, calloc, and presumably any fresh 83 space from realloc) have no declared type, whereas objects with static, thread, or automatic 84 storage durations have some declared type. 85 For the latter, 6.5p{6,7} say that the effective types are fixed and that their values 86 can only be accessed by an lvalue that is similar (“compatible”, modulo signedness and 87 qualifiers), an aggregate or union containing such a type, or (to access its representation) 88 a character type. 89 For the former, the effective type is determined by the type of the last write, or, ifthat 90 is done by a memcpy, memmove, or user-code char array copy, the effective type of the source. 91 2 EFFECTIVE TYPE EXAMPLES 92 93 2.1 Basic Effective Types 94 Q73. Can one do type punning between arbitrary types? 95 This basic example involves a write of a uint32_t that is read as a float (assuming 96 that the two have the same size, and, unchecked in the code, that the latter does not 97 require a stronger alignment constraint, and that casts between those two pointer types are 98 implementation-defined to work). The example is clearly and uncontroversially forbidden 99 by the standard text, and this fact is exploited by current compilers, which use the types 100 of the arguments of f to reason that pointers p1 and p2 cannot alias. 101 102 // effective_type_1.c 103 Draft of June 18, 2019 104 Effective types: examples (P1796R0) 3 #include <stdio.h> 105 #include <inttypes.h> 106 #include <assert.h> 107 void f(uint32_t *p1, float *p2) { 108 *p1 = 2; 109 *p2 = 3.0; // does this have defined behaviour? 110 printf("f: *p1 = %" PRIu32 "\n",*p1); 111 } 112 int main() { _ 113 assert(sizeof(uint32 t)==sizeof(float)); uint32_t 114 i = 1; uint32_t p1 = &i; 115 * float *p2; 116 p2 = (float *)p1; 117 f(p1, p2); 118 printf("i=%" PRIu32 " *p1=%" PRIu32 119 " *p2=%f\n",i,*p1,*p2); 120 } 121 122 With -fstrict-aliasing (the default for GCC), GCC assumes in the body of f that the 123 write to *p2 cannot affect the value of *p1, printing 2 (instead of the integer value of the 124 representation of 3.0 that would the most recent write in a concrete semantics): while 125 with -fno-strict-aliasing it does not assume that. The former behaviour can be justified 126 by regarding the program as having undefined behaviour, due to the write of the uint32_t 127 i with a float lvalue. 128 129 2.2 Structs and their members 130 Q91. Can a pointer to a structure alias with a pointer to one of its members? 131 In this example f is given a pointer to a struct and an aliased pointer to its first member, 132 writing via the struct pointer and reading via the member pointer. We presume this 133 is intended to be allowed. The ISO text permits it if one reads the first bullet “a type 134 compatible with the effective type of the object” as referring to the int subobject of s and 135 not the whole st typed object s, but the text is generally unclear about the status of 136 subobjects. 137 138 // effective_type_2c.c 139 #include <stdio.h> 140 typedef struct { int i; } st; void f(st sp, int p) { 141 * * sp->i = 2; 142 *p = 3; 143 printf("f: sp->i=%i *p=%i\n",sp->i,*p); // prints 3,3 not 2,3 ? 144 } 145 int main() { 146 st s = {.i = 1}; 147 st *sp = &s; 148 int *p = &(s.i); 149 f(sp, p); 150 printf("s.i=%i sp->i=%i *p=%i\n", s.i, sp->i, *p); } 151 152 153 Q76. After writing a structure to a malloc’d region, can its members can be 154 accessed via pointers of the individual member types? 155 Draft of June 18, 2019 156 4 Peter Sewell, Kayvan Memarian, Victor B.
Recommended publications
  • Exploring C Semantics and Pointer Provenance
    Exploring C Semantics and Pointer Provenance KAYVAN MEMARIAN, University of Cambridge VICTOR B. F. GOMES, University of Cambridge BROOKS DAVIS, SRI International STEPHEN KELL, University of Cambridge ALEXANDER RICHARDSON, University of Cambridge ROBERT N. M. WATSON, University of Cambridge PETER SEWELL, University of Cambridge The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, 67 but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage — which itself is difficult to investigate. In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI. This allows us to experimentally assess our proposals on those test cases.
    [Show full text]
  • Timur Doumler @Timur Audio
    Type punning in modern C++ version 1.1 Timur Doumler @timur_audio C++ Russia 30 October 2019 Image: ESA/Hubble Type punning in modern C++ 2 How not to do type punning in modern C++ 3 How to write portable code that achieves the same effect as type punning in modern C++ 4 How to write portable code that achieves the same effect as type punning in modern C++ without causing undefined behaviour 5 6 7 � 8 � (�) 9 10 11 12 struct Widget { virtual void doSomething() { printf("Widget"); } }; struct Gizmo { virtual void doSomethingCompletelyDifferent() { printf("Gizmo"); } }; int main() { Gizmo g; Widget* w = (Widget*)&g; w->doSomething(); } Example from Luna @lunasorcery 13 struct Widget { virtual void doSomething() { printf("Widget"); } }; struct Gizmo { virtual void doSomethingCompletelyDifferent() { printf("Gizmo"); } }; int main() { Gizmo g; Widget* w = (Widget*)&g; w->doSomething(); } Example from Luna @lunasorcery 14 15 Don’t use C-style casts. 16 struct Widget { virtual void doSomething() { printf("Widget"); } }; struct Gizmo { virtual void doSomethingCompletelyDifferent() { printf("Gizmo"); } }; int main() { Gizmo g; Widget* w = (Widget*)&g; w->doSomething(); } Example from Luna @lunasorcery 17 18 19 20 float F0 00 80 01 int F0 00 80 01 21 float F0 00 80 01 int F0 00 80 01 float F0 00 80 01 char* std::byte* F0 00 80 01 22 float F0 00 80 01 int F0 00 80 01 float F0 00 80 01 char* std::byte* F0 00 80 01 Widget F0 00 80 01 01 BD 83 E3 float[2] F0 00 80 01 01 BD 83 E3 23 float F0 00 80 01 int F0 00 80 01 float F0 00 80 01 char* std::byte*
    [Show full text]
  • Aliasing Restrictions of C11 Formalized in Coq
    Aliasing restrictions of C11 formalized in Coq Robbert Krebbers Radboud University Nijmegen December 11, 2013 @ CPP, Melbourne, Australia int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Alias analysis: to determine whether pointers can alias Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x *p; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Aliasing Aliasing: multiple pointers referring to the same object int f(int *p, int *q) { int x = *p; *q = 314; return x; } If p and q alias, the original value n of *p is returned n p q Optimizing x away is unsound: 314 would be returned Alias analysis: to determine whether pointers can alias It can still be called with aliased pointers: x union { int x; float y; } u; y u.x = 271; return h(&u.x, &u.y); &u.x &u.y C89 allows p and q to be aliased, and thus requires it to return 271 C99/C11 allows type-based alias analysis: I A compiler
    [Show full text]
  • SATE V Ockham Sound Analysis Criteria
    NISTIR 8113 SATE V Ockham Sound Analysis Criteria Paul E. Black Athos Ribeiro This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8113 NISTIR 8113 SATE V Ockham Sound Analysis Criteria Paul E. Black Software and Systems Division Information Technology Laboratory Athos Ribeiro Department of Computer Science University of Sao˜ Paulo Sao˜ Paulo, SP Brazil This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8113 March 2016 Including updates as of June 2017 U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Kent Rochford, Acting NIST Director and Under Secretary of Commerce for Standards and Technology Abstract Static analyzers examine the source or executable code of programs to find problems. Many static analyzers use heuristics or approximations to handle programs up to millions of lines of code. We established the Ockham Sound Analysis Criteria to recognize static analyzers whose findings are always correct. In brief the criteria are (1) the analyzer’s findings are claimed to always be correct, (2) it produces findings for most of a program, and (3) even one incorrect finding disqualifies an analyzer. This document begins by explaining the background and requirements of the Ockham Criteria. In Static Analysis Tool Exposition (SATE) V, only one tool was submitted to be re- viewed. Pascal Cuoq and Florent Kirchner ran the August 2013 development version of Frama-C on pertinent parts of the Juliet 1.2 test suite. We divided the warnings into eight classes, including improper buffer access, NULL pointer dereference, integer overflow, and use of uninitialized variable.
    [Show full text]
  • Half-Precision Floating-Point Formats for Pagerank: Opportunities and Challenges
    Half-Precision Floating-Point Formats for PageRank: Opportunities and Challenges Molahosseini, A. S., & Vandierendonck, H. (2020). Half-Precision Floating-Point Formats for PageRank: Opportunities and Challenges. In 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020 [9286179] (IEEE High Performance Extreme Computing Conference: Proceedings). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/HPEC43674.2020.9286179 Published in: 2020 IEEE High Performance Extreme Computing Conference, HPEC 2020 Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2020 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please
    [Show full text]
  • A Formal C Memory Model for Separation Logic
    Journal of Automated Reasoning manuscript No. (will be inserted by the editor) A Formal C Memory Model for Separation Logic Robbert Krebbers Received: n/a Abstract The core of a formal semantics of an imperative programming language is a memory model that describes the behavior of operations on the memory. Defining a memory model that matches the description of C in the C11 standard is challenging because C allows both high-level (by means of typed expressions) and low-level (by means of bit manipulation) memory accesses. The C11 standard has restricted the interaction between these two levels to make more effective compiler optimizations possible, at the expense of making the memory model complicated. We describe a formal memory model of the (non-concurrent part of the) C11 stan- dard that incorporates these restrictions, and at the same time describes low-level memory operations. This formal memory model includes a rich permission model to make it usable in separation logic and supports reasoning about program transfor- mations. The memory model and essential properties of it have been fully formalized using the Coq proof assistant. Keywords ISO C11 Standard · C Verification · Memory Models · Separation Logic · Interactive Theorem Proving · Coq 1 Introduction A memory model is the core of a semantics of an imperative programming language. It models the memory states and describes the behavior of memory operations. The main operations described by a C memory model are: – Reading a value at a given address. – Storing a value at a given address. – Allocating a new object to hold a local variable or storage obtained via malloc.
    [Show full text]
  • Low−Level C Topic for CS2263 Alumni −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− People Who Have Taken CS2617 Should Instead Read the Full Set of Notes (Cnotes)
    Low−level C Topic for CS2263 Alumni −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− People who have taken CS2617 should instead read the full set of notes (cnotes). Note: 2nd ed of textbook was for C−89 (classic "ANSI−C". Third is based on the 2018 revision. There were many changes in 30 years. C−11 and C−99 are also in widespread use. A new version (currently called C−2X) is expected in 2021 or 2022. Change look fairly small (new "decimal floats", if you care.) The Preprocessor −−−−−−−−−−−−−−−− Unlike Java, the C compiler has a "preprocessor" that does textual substitutions and "conditional compilation" before the "real compiler" runs. This was borrowed from assembly languages. Fancy uses of preprocessor are often deprecated, especially since C99. Still commonly used use for defining constants and in doing the C equivalent to Java’s "import". Preprocessor "directives" start with #. No ’;’ at end Macros in the C Preprocessor −−−−−−−−−−−−−−−−−−−−−−−−−−−−− #define FOO 12*2 thereafter, wherever the symbol FOO occurs in your code, it is textually replaced by 12*2 . Think find−and−replace. Macro can have parameters #define BAR(x) 12*x If we have BAR(3*z) in your code, it is textually replaced by 12*3*z #undef BAR will "undefine" BAR. After this, BAR(3*z) remains as is. Perils of Macros −−−−−−−−−−−−−−−−− #define SQUARE(x) ((x)*(x)) used much later with int x = 0; int y = SQUARE(x++); What value for x is expected by a programmer looking only at these lines? What value does x actually have? Making Strings and Concatenating Tokens −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− (optional fancy topic) In a macro definition, the # operator puts quote marks around a macro argument.
    [Show full text]
  • Exploring C Semantics and Pointer Provenance
    Exploring C Semantics and Pointer Provenance KAYVAN MEMARIAN, University of Cambridge, UK VICTOR B. F. GOMES, University of Cambridge, UK BROOKS DAVIS, SRI International, USA STEPHEN KELL, University of Cambridge, UK ALEXANDER RICHARDSON, University of Cambridge, UK ROBERT N. M. WATSON, University of Cambridge, UK PETER SEWELL, University of Cambridge, UK The semantics of pointers and memory objects in C has been a vexed question for many years. C values cannot be treated as either purely abstract or purely concrete entities: the language exposes their representations, 67 but compiler optimisations rely on analyses that reason about provenance and initialisation status, not just runtime representations. The ISO WG14 standard leaves much of this unclear, and in some respects differs with de facto standard usage — which itself is difficult to investigate. In this paper we explore the possible source-language semantics for memory objects and pointers, in ISO C and in C as it is used and implemented in practice, focussing especially on pointer provenance. We aim to, as far as possible, reconcile the ISO C standard, mainstream compiler behaviour, and the semantics relied on by the corpus of existing C code. We present two coherent proposals, tracking provenance via integers and not; both address many design questions. We highlight some pros and cons and open questions, and illustrate the discussion with a library of test cases. We make our semantics executable as a test oracle, integrating it with the Cerberus semantics for much of the rest of C, which we have made substantially more complete and robust, and equipped with a web-interface GUI.
    [Show full text]
  • Lenient Execution of C on a JVM How I Learned to Stop Worrying and Execute the Code
    Lenient Execution of C on a JVM How I Learned to Stop Worrying and Execute the Code Manuel Rigger Roland Schatz Johannes Kepler University Linz, Austria Oracle Labs, Austria [email protected] [email protected] Matthias Grimmer Hanspeter M¨ossenb¨ock Oracle Labs, Austria Johannes Kepler University Linz, Austria [email protected] [email protected] ABSTRACT that rely on undefined behavior risk introducing bugs that Most C programs do not strictly conform to the C standard, are hard to find, can result in security vulnerabilities, or and often show undefined behavior, e.g., on signed integer remain as time bombs in the code that explode after compiler overflow. When compiled by non-optimizing compilers, such updates [31, 44, 45]. programs often behave as the programmer intended. However, While bug-finding tools help programmers to find and optimizing compilers may exploit undefined semantics for eliminate undefined behavior in C programs, the majority more aggressive optimizations, thus possibly breaking the of C code will still contain at least some occurrences of non- code. Analysis tools can help to find and fix such issues. Alter- portable code. This includes unspecified and implementation- natively, one could define a C dialect in which clear semantics defined patterns, which do not render the whole program are defined for frequent program patterns whose behavior invalid, but can still cause surprising results. To address would otherwise be undefined. In this paper, we present such this, it has been advocated to come up with a more lenient a dialect, called Lenient C, that specifies semantics for behav- C dialect, that better suits the programmers' needs and ior that the standard left open for interpretation.
    [Show full text]
  • C Memory Object and Value Semantics: the Space of De Facto and ISO Standards
    DRAFT – WORK IN PROGRESS C memory object and value semantics: the space of de facto and ISO standards [This revises and extends WG14 N2013] Revision: 1571 2016-03-17 David Chisnall Justus Matthiesen Kayvan Memarian Peter Sewell Robert N. M. Watson University of Cambridge http://www.cl.cam.ac.uk/~pes20/cerberus/ Contents 2.3.1 Q8. Should intra-object pointer sub- traction give provenance-free inte- 1 Introduction5 ger results?............. 15 1.1 Experimental Testing............6 2.3.2 Q9. Can one make a usable off- 1.2 Summary of answers............7 set between two separately allocated objects by inter-object subtraction 2 Abstract Pointers7 (using either pointer or integer arith- 2.1 Pointer Provenance.............7 metic), to make a usable pointer to the second by adding the offset to 2.1.1 Q1. Must the pointer used for the first?............... 16 a memory access have the right provenance, i.e. be derived from 2.3.3 Q10. Presuming that one can the pointer to the original alloca- have valid pointers with multiple tion (with undefined behaviour oth- provenances, does an inter-object erwise)? (This lets compilers do pointer subtraction give a value with provenance-based alias analysis)..7 explicitly-unknown provenance or 2.1.2 Q2. Can equality testing on pointers something more specific?...... 18 be affected by pointer provenance 2.3.4 Q11. Is the XOR linked list idiom information?............9 supported?............. 18 2.1.3 GCC and ISO C11 differ on the re- 2.3.5 Q12. For arithmetic over prove- sult of a == comparison on a one- nanced integer values, is the prove- past pointer............
    [Show full text]
  • Overload Journal
    A ower Language Nee s Power Tools Smart editor Reliable with full language support refactorings Support for C++03/C++ll, Rename, Extract Function -:(r):- Boost andlibc++,C++ 7 Constant/ Variable, templates and macros. Change8ignature, & more Code generation Profound and navigation code analysis Generate menu, On-the-f y, analysis Find context usages, with Gluick-fixes& dozens 0 Go to Symbol, and more ofsmart checks GET A C++ DEVELOPMENT,:rOOL THAT YOU DESERV ReSharper C++ AppCode CLion Visual Studio Extension IDE for iOS Cross-platform IDE for C•• developers and OS X development for C and C•• developers Start a free 30-day trial jb.gg/cpp-accu Find out more at www.qbssoftware.com QBS SOFTWARE OVERLOAD CONTENTS OVERLOAD 160 December 2020 Overload is a publication of the ACCU ISSN 1354-3172 For details of the ACCU, our publications Editor and activities, visit the ACCU website: Frances Buontempo [email protected] www.accu.org Advisors Ben Curry [email protected] Mikael Kilpeläinen [email protected] 4 Questions on the Form of Software Steve Love Lucian Radu Teodorescu considers whether the [email protected] difficulties in writing software are rooted in the Chris Oldwood essence of development. [email protected] Roger Orr 8 Building g++ from the [email protected] Balog Pal GCC Modules Branch [email protected] Roger Orr demonstrates how to get a compiler that Tor Arve Stangeland supports modules up and running. [email protected] Anthony Williams 10 Consuming the uk-covid19 API [email protected] Donald Hernik demonstrates how to wrangle data Advertising enquiries out of the UK API.
    [Show full text]
  • Anglia Ruskin University a Type-Safe Apparatus
    ANGLIA RUSKIN UNIVERSITY A TYPE-SAFE APPARATUS EXECUTING HIGHER ORDER FUNCTIONS IN CONJUNCTION WITH HARDWARE ERROR TOLERANCE JONATHAN RICHARD ROBERT KIMMITT A thesis in partial fulfilment of the requirements of Anglia Ruskin University for the degree of Doctor of Philosophy This research programme was carried out in collaboration with The University of Cambridge Submitted: October 2015 Acknowledgements This dissertation was self-funded and prepared in part fulfilment of the requirements of the degree of Doctor of Philosophy under the supervision of Dr David Greaves of The University of Cambridge, and Dr George Wilson and Professor Marcian Cirstea at Anglia Ruskin University, without whose help this dissertation would not have been possible. I am grateful to Dr John O’Donnell of The University of Glasgow and Dr Anil Madhavapeddy of The University of Cambridge for their willingness to examine the degree. Dedication Dedicated to my wife Christine Kimmitt i ANGLIA RUSKIN UNIVERSITY ABSTRACT FACULTY OF SCIENCE AND TECHNOLOGY DOCTOR OF PHILOSOPHY A TYPE-SAFE APPARATUS EXECUTING HIGHER ORDER FUNCTIONS IN CONJUNCTION WITH HARDWARE ERROR TOLERANCE JONATHAN RICHARD ROBERT KIMMITT October 2015 The increasing commoditization of computers in modern society has exceeded the pace of associated developments in reliability. Although theoretical computer science has advanced greatly in the last thirty years, many of the best techniques have yet to find their way into embedded computers, and their failure can have a great potential for disrupting society.
    [Show full text]