106 Review Article Neonatal Cranial Ultrasound: Advanced Techniques and Image Interpretation Erica L. Riedesel1 1 Division of Pediatric Radiology, Department of Radiology, University Address for correspondence Erica L. Riedesel, MD, Division of of Wisconsin School of Medicine and Public Health, Madison, Pediatric Radiology, Department of Radiology, University of Wisconsin, United States Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, United States J Pediatr Neurol 2018;16:106–124. (e-mail:
[email protected];
[email protected]). Abstract Neonatal cranial ultrasound has become an essential part of the routine care of Keywords neonates. Ultrasound is noninvasive, relatively inexpensive, and can be performed at ► cranial ultrasound the bedside. Addition of advanced ultrasound techniques such as use of high-frequency ► Doppler linear transducers, additional acoustic windows, and color and pulsed wave Doppler ► B-flow imaging can significantly improve image quality and diagnostic accuracy of cranial ultrasound. ► intraventricular This review will focus on these techniques and their application in the detection of hemorrhage central nervous system pathology in the high-risk preterm and term neonates. ► germinal matrix hemorrhage ► hypoxic-ischemic injury ► ventriculomegaly ► meningitis Introduction at corrected gestational age 36 to 40 weeks (term equivalent) to screen for evidence of more severe white matter injury.1 Neonatal cranial ultrasound has become an essential part of Findings on the term equivalent ultrasound in conjunction routine care in high-risk preterm and term neonates. Ultra- with magnetic resonance imaging (MRI) can be used to predict sound is noninvasive, requires no sedation, and is relatively neurodevelopment outcomes. inexpensive, making it the ideal primary diagnostic screen- In term infants, cranial ultrasound is suggested for evalua- ing tool for intracranial pathology.