Part I, Chapter 3 Simplicial Finite Elements 3.1 Simplices and Barycentric Coordinates

Total Page:16

File Type:pdf, Size:1020Kb

Part I, Chapter 3 Simplicial Finite Elements 3.1 Simplices and Barycentric Coordinates Part I, Chapter 3 Simplicial finite elements This chapter deals with finite elements (K,P,Σ) where K is a simplex in ♥♥ Rd with d 2, the degrees of freedom Σ are either nodal values in K or ≥ integrals over the faces (or edges) of K, and P is the space Pk,d composed of multivariate polynomials of total degree at most k 0. We focus our attention on scalar-valued finite elements, but most of the results≥ in this chapter can be extended to the vector-valued case by reasoning componentwise. Examples of vector-valued elements where the normal and the tangential components at the boundary of K play specific roles are studied in Chapters 8 and 9. 3.1 Simplices and barycentric coordinates Simplices in Rd, d 1, are ubiquitous objects in the finite element theory. We review important properties≥ of simplices in this section. 3.1.1 Simplices Definition 3.1 (Simplex, vertices). Let d 1. Let zi i 0: d be a set of d ≥ { } ∈{ } points in R such that the vectors z1 z0,..., zd z0 are linearly inde- pendent. Then, the convex hull of these{ − points is called− a}simplex in Rd, say K = conv(z0,..., zd). By definition, K is a closed set. If d = 1, a simplex is an interval [xl,xr] with real numbers xl < xr; if d = 2, a simplex is a triangle; and if d = 3, a simplex is a tetrahedron. The points zi i 0: d are the vertices of K. { } ∈{ } Example 3.2 (Unit simplex). The unit simplex in Rd corresponds to the d choice x R 0 xi 1, i 1:d , i 1: d xi 1 . This set has { ∈ | ≤ ≤ ∀ ∈ { } ∈{ } ≤ } d-dimensional measure equal to 1 . d! P Definition 3.3 (Faces, normals). For all i 0:d , the convex hull of the set z ,..., z z is denoted F and is called∈ { the face} of K opposite to the { 0 d} \ { i} i 30 Chapter 3. Simplicial finite elements d vertex zi. By construction, Fi is a subset of an affine hyperplane in R , and the unit normal to Fi pointing outward K is denoted nK,i. The unit outward normal vector on ∂K is denoted nK . Definition 3.4 (l-faces). For all l 0:d 1 , an l-face of K is the convex ∈ { − } hull of a subset of zi i 0: d of cardinality (l + 1). By definition the l-faces are closed. The 0-faces{ } ∈{ of K} are the vertices of K. The 1-faces of K are called edges. In dimension d = 2, the notions of edge and face coincide. In dimension d = 1, the notions of vertex, edge, and face coincide. Example 3.5 (Number of faces and edges). The number of l-faces in a d d+1 simplex in R is l+1 since an l-face is defined by selecting a subset of vertices with cardinality (l +1). In particular, there are (d +1) faces and vertices, and d(d+1) there are 2 edges. 3.1.2 Barycentric coordinates in a simplex d d Let K be a simplex in R with vertices zi i 0: d . For all x R , we denote { } ∈{ } ∈ by λi(x), for all i 1:d , the components of the vector x z0 in the basis (z z ,..., z ∈z {), i.e.,} − 1 − 0 d − 0 x z = λ (x)(z z ). (3.1) − 0 i i − 0 i 1: d ∈{X } Differentiating twice (3.1), we infer that the second Fr´echet derivative of λi 2 d vanishes identically, i.e., D λi(x)(h1, h2) = 0 for all h1, h2 R . This implies ∈ d that λi is an affine function of x, i.e., there exist γi R and gi R such d ∈ ∈ that λi(x)= γi + gi x for all x R . Note that Dλi is independent of x and · d ∈ Dλi(h)= gi h for all h R ; in other words, λi = gi. To allow· all the vertices∈ of K to play a symmetric∇ role, we introduce the additional function λ0(x) := 1 i 1: d λi(x), so that the following holds − ∈{ } for all x Rd: ∈ P λi(x)=1 and x = λi(x)zi. (3.2) i 0: d i 0: d ∈{X } ∈{X } A consequence of the above definitions is that λ (z )= δ , i,j 0:d , (3.3) i j ij ∀ ∈ { } This implies that the functions λi i 0: d are linearly independent: if the { } ∈{ } linear combination i 0: d βiλi(x) vanishes identically, evaluating it at a vertex z yields β = 0∈{ for all} j 0:d . Moreover, since K is the convex hull j j P ∈ { } of zi i 0: d , we infer that { } ∈{ } 0 λ (x) 1, x K, i 0:d . (3.4) ≤ i ≤ ∀ ∈ ∀ ∈ { } Part I. Getting Started 31 Definition 3.6 (Barycentric coordinates). The functions λi i 0: d are called the barycentric coordinates in K. { } ∈{ } Proposition 3.7 (Geometric expression). The barycentric coordinates are such that F λ (x) = 1 | i| n (x z ), (3.5) i − d K K,i· − i | | Fi for all x K and all i 0:d , whence λi = d| K| nK,i. ∈ ∈ { } ∇ − | | Proof. Since λi is constant on Fi, its gradient is collinear to nK,i. Since λi is affine, we can write λi(x) = 1 cinK,i (x zi). We obtain ci by using that K = 1 F (n (z z )) for− all j = i·. − | | d | i| K,i· j − i 6 ⊓⊔ Remark 3.8 (Geometric identities). The following holds: F n = 0, F n (c c )= K I , (3.6) | i| K,i | i| K,i ⊗ Fi − K | | d i 0: d i 0: d ∈{X } ∈{X } I where cFi is the barycenter of Fi, cK that of K, and d the identity matrix in d d R × . These identities hold in any polyhedron, see Exercise 3.1 for proofs. ⊓⊔ (♦) 3.1.3 Geometric map TA The following construction is important for finite elements having degrees of freedom over edges or faces, see 3.4 and Chapters 8 and 9 for examples. Let A be an affine subspace of Rd of§ dimension l 1:d 1 . We can build an l ∈ { − } A affine geometric map TA : R A as follows: Fix a simplex S in A with A → l l vertices zi i 0: l and fix a simplex S in R with vertices zi i 0: l and ∈{ } ∈{ } { } l { } l barycentric coordinates λi i 0: l . Typically, S is the unit simplex in R . { } ∈{ } A b l b l A Then, set TA(y) = i 0: l λi(y)zi for all y R . Note that TA(S ) = S ∈{ } ∈ and T (z ) = zA for all ib 0:l ; we often considerb the restriction of T to A i i P A l ∈ {b } b S and abuse the notation by still writing TA instead of TA Sl . b | b Propositionb 3.9 (Diffeomorphism). The map TA is a smooth diffeomor- phism. Proof. Since the barycentric coordinates λi i 0: l are affine functions, the { } ∈{ } map TA is of class C∞ and DTA(y) is independent of y. Thus, we only need l l to verify that the linear map DTA : R Rb is invertible, which will follow by → l verifying that DTA is injective. Let h R be such that DTA(h) = 0. This A A ∈ yields i 1: l Dλi(h)(zi z0 ) = 0, so that Dλi(h) = 0 for all i 0:l ∈{ } − ∈ { } since the vectors (zA zA,..., zA zA) are linearly independent. We conclude P 1 0 l 0 using Exercise 3.2(iv).b − − b ⊓⊔ 32 Chapter 3. Simplicial finite elements 3.2 The polynomial space Pk,d The real vector space Pk,d is composed of d-variate polynomial functions p : Rd R of total degree at most k. Thus, → P = span xα1 ...xαd , 0 α ,...,α k, α + ... + α k . (3.7) k,d { 1 d ≤ 1 d ≤ 1 d ≤ } The importance of the polynomial space Pk,d is rooted in the fact that the Taylor expansion of order k of a d-variate function belongs to Pk,d. Another important fact is that, for any smooth function v : Rd R, → [ v P ] [ Dk+1v(x) = 0, x Rd ]. (3.8) ∈ k,d ⇐⇒ ∀ ∈ The vector space Pk,d has dimension k +1 if d = 1, k + d 1 dim Pk,d = = 2 (k + 1)(k +2) if d = 2, (3.9) d 1 6 (k + 1)(k + 2)(k +3) if d = 3. See Exercise 3.3 for the proof. We omit the subscript d and simply write Pk when the context is unambiguous. d An element α = (α1,...,αd) of N is called a multi-index, and its length is defined to be α = α1 + ... + αd. A generic polynomial function p Pk,d can be written in| the| form ∈ α α α1 αd p(x)= aαx , x := x1 ...xd , (3.10) α ∈AXk,d with real coefficients a and multi-index set = α Nd α k . Note α Ak,d { ∈ || |≤ } that card( ) = dim(P )= k+d . Ak,d k,d d d Lemma 3.10 (Trace). Let Hbe an affine hyperplane in R and let TH : d 1 R − H be an affine bijective map. Then, p TH Pk,d 1 for all p Pk,d. → ◦ ∈ − ∈ k+1 d 1 Proof. Observe first that D (p TH )(y) =0 for all y R − by using the chain rule and the fact that T is◦ affine, then apply (3.8).∈ H ⊓⊔ 3.3 Lagrange (nodal) finite elements We begin with a simple example, see Table 3.1 for k = 1.
Recommended publications
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
    A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order.
    [Show full text]
  • The Fractal Dimension of Product Sets
    THE FRACTAL DIMENSION OF PRODUCT SETS A PREPRINT Clayton Moore Williams Brigham Young University [email protected] Machiel van Frankenhuijsen Utah Valley University [email protected] February 26, 2021 ABSTRACT Using methods from nonstandard analysis, we define a nonstandard Minkowski dimension which exists for all bounded sets and which has the property that dim(A × B) = dim(A) + dim(B). That is, our new dimension is “product-summable”. To illustrate our theorem we generalize an example of Falconer’s1 to show that the standard upper Minkowski dimension, as well as the Hausdorff di- mension, are not product-summable. We also include a method for creating sets of arbitrary rational dimension. Introduction There are several notions of dimension used in fractal geometry, which coincide for many sets but have important, distinct properties. Indeed, determining the most proper notion of dimension has been a major problem in geometric measure theory from its inception, and debate over what it means for a set to be fractal has often reduced to debate over the propernotion of dimension. A classical example is the “Devil’s Staircase” set, which is intuitively fractal but which has integer Hausdorff dimension2. As Falconer notes in The Geometry of Fractal Sets3, the Hausdorff dimension is “undoubtedly, the most widely investigated and most widely used” notion of dimension. It can, however, be difficult to compute or even bound (from below) for many sets. For this reason one might want to work with the Minkowski dimension, for which one can often obtain explicit formulas. Moreover, the Minkowski dimension is computed using finite covers and hence has a series of useful identities which can be used in analysis.
    [Show full text]
  • Efficient Learning of Simplices
    Efficient Learning of Simplices Joseph Anderson Navin Goyal Computer Science and Engineering Microsoft Research India Ohio State University [email protected] [email protected] Luis Rademacher Computer Science and Engineering Ohio State University [email protected] Abstract We show an efficient algorithm for the following problem: Given uniformly random points from an arbitrary n-dimensional simplex, estimate the simplex. The size of the sample and the number of arithmetic operations of our algorithm are polynomial in n. This answers a question of Frieze, Jerrum and Kannan [FJK96]. Our result can also be interpreted as efficiently learning the intersection of n + 1 half-spaces in Rn in the model where the intersection is bounded and we are given polynomially many uniform samples from it. Our proof uses the local search technique from Independent Component Analysis (ICA), also used by [FJK96]. Unlike these previous algorithms, which were based on analyzing the fourth moment, ours is based on the third moment. We also show a direct connection between the problem of learning a simplex and ICA: a simple randomized reduction to ICA from the problem of learning a simplex. The connection is based on a known representation of the uniform measure on a sim- plex. Similar representations lead to a reduction from the problem of learning an affine arXiv:1211.2227v3 [cs.LG] 6 Jun 2013 transformation of an n-dimensional ℓp ball to ICA. 1 Introduction We are given uniformly random samples from an unknown convex body in Rn, how many samples are needed to approximately reconstruct the body? It seems intuitively clear, at least for n = 2, 3, that if we are given sufficiently many such samples then we can reconstruct (or learn) the body with very little error.
    [Show full text]
  • Paraperspective ≡ Affine
    International Journal of Computer Vision, 19(2): 169–180, 1996. Paraperspective ´ Affine Ronen Basri Dept. of Applied Math The Weizmann Institute of Science Rehovot 76100, Israel [email protected] Abstract It is shown that the set of all paraperspective images with arbitrary reference point and the set of all affine images of a 3-D object are identical. Consequently, all uncali- brated paraperspective images of an object can be constructed from a 3-D model of the object by applying an affine transformation to the model, and every affine image of the object represents some uncalibrated paraperspective image of the object. It follows that the paraperspective images of an object can be expressed as linear combinations of any two non-degenerate images of the object. When the image position of the reference point is given the parameters of the affine transformation (and, likewise, the coefficients of the linear combinations) satisfy two quadratic constraints. Conversely, when the values of parameters are given the image position of the reference point is determined by solving a bi-quadratic equation. Key words: affine transformations, calibration, linear combinations, paraperspective projec- tion, 3-D object recognition. 1 Introduction It is shown below that given an object O ½ R3, the set of all images of O obtained by applying a rigid transformation followed by a paraperspective projection with arbitrary reference point and the set of all images of O obtained by applying a 3-D affine transformation followed by an orthographic projection are identical. Consequently, all paraperspective images of an object can be constructed from a 3-D model of the object by applying an affine transformation to the model, and every affine image of the object represents some paraperspective image of the object.
    [Show full text]
  • Fractal-Based Methods As a Technique for Estimating the Intrinsic Dimensionality of High-Dimensional Data: a Survey
    INFORMATICA, 2016, Vol. 27, No. 2, 257–281 257 2016 Vilnius University DOI: http://dx.doi.org/10.15388/Informatica.2016.84 Fractal-Based Methods as a Technique for Estimating the Intrinsic Dimensionality of High-Dimensional Data: A Survey Rasa KARBAUSKAITE˙ ∗, Gintautas DZEMYDA Institute of Mathematics and Informatics, Vilnius University Akademijos 4, LT-08663, Vilnius, Lithuania e-mail: [email protected], [email protected] Received: December 2015; accepted: April 2016 Abstract. The estimation of intrinsic dimensionality of high-dimensional data still remains a chal- lenging issue. Various approaches to interpret and estimate the intrinsic dimensionality are deve- loped. Referring to the following two classifications of estimators of the intrinsic dimensionality – local/global estimators and projection techniques/geometric approaches – we focus on the fractal- based methods that are assigned to the global estimators and geometric approaches. The compu- tational aspects of estimating the intrinsic dimensionality of high-dimensional data are the core issue in this paper. The advantages and disadvantages of the fractal-based methods are disclosed and applications of these methods are presented briefly. Key words: high-dimensional data, intrinsic dimensionality, topological dimension, fractal dimension, fractal-based methods, box-counting dimension, information dimension, correlation dimension, packing dimension. 1. Introduction In real applications, we confront with data that are of a very high dimensionality. For ex- ample, in image analysis, each image is described by a large number of pixels of different colour. The analysis of DNA microarray data (Kriukien˙e et al., 2013) deals with a high dimensionality, too. The analysis of high-dimensional data is usually challenging.
    [Show full text]
  • Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface
    Robert Collins CSE486, Penn State Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface y x Robert Collins CSE486, Penn State Review : Forward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u M M V ext Y proj y Maff v W Z U X Mint u V Y v W Z U M u V m11 m12 m13 m14 v W m21 m22 m23 m24 m31 m31 m33 m34 Robert Collins CSE486, PennWorld State to Camera Transformation PC PW W Y X U R Z C V Rotate to Translate by - C align axes (align origins) PC = R ( PW - C ) = R PW + T Robert Collins CSE486, Penn State Perspective Matrix Equation X (Camera Coordinates) x = f Z Y X y = f x' f 0 0 0 Z Y y' = 0 f 0 0 Z z' 0 0 1 0 1 p = M int ⋅ PC Robert Collins CSE486, Penn State Film to Pixel Coords 2D affine transformation from film coords (x,y) to pixel coordinates (u,v): X u’ a11 a12xa'13 f 0 0 0 Y v’ a21 a22 ya'23 = 0 f 0 0 w’ Z 0 0z1' 0 0 1 0 1 Maff Mproj u = Mint PC = Maff Mproj PC Robert Collins CSE486, Penn StateProjection of Points on Planar Surface Perspective projection y Film coordinates x Point on plane Rotation + Translation Robert Collins CSE486, Penn State Projection of Planar Points Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Punchline: For planar surfaces, 3D to 2D perspective projection reduces to a 2D to 2D transformation.
    [Show full text]
  • Euclidean Versus Projective Geometry
    Projective Geometry Projective Geometry Euclidean versus Projective Geometry n Euclidean geometry describes shapes “as they are” – Properties of objects that are unchanged by rigid motions » Lengths » Angles » Parallelism n Projective geometry describes objects “as they appear” – Lengths, angles, parallelism become “distorted” when we look at objects – Mathematical model for how images of the 3D world are formed. Projective Geometry Overview n Tools of algebraic geometry n Informal description of projective geometry in a plane n Descriptions of lines and points n Points at infinity and line at infinity n Projective transformations, projectivity matrix n Example of application n Special projectivities: affine transforms, similarities, Euclidean transforms n Cross-ratio invariance for points, lines, planes Projective Geometry Tools of Algebraic Geometry 1 n Plane passing through origin and perpendicular to vector n = (a,b,c) is locus of points x = ( x 1 , x 2 , x 3 ) such that n · x = 0 => a x1 + b x2 + c x3 = 0 n Plane through origin is completely defined by (a,b,c) x3 x = (x1, x2 , x3 ) x2 O x1 n = (a,b,c) Projective Geometry Tools of Algebraic Geometry 2 n A vector parallel to intersection of 2 planes ( a , b , c ) and (a',b',c') is obtained by cross-product (a'',b'',c'') = (a,b,c)´(a',b',c') (a'',b'',c'') O (a,b,c) (a',b',c') Projective Geometry Tools of Algebraic Geometry 3 n Plane passing through two points x and x’ is defined by (a,b,c) = x´ x' x = (x1, x2 , x3 ) x'= (x1 ', x2 ', x3 ') O (a,b,c) Projective Geometry Projective Geometry
    [Show full text]
  • Affine Transformations and Rotations
    CMSC 425 Dave Mount & Roger Eastman CMSC 425: Lecture 6 Affine Transformations and Rotations Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We have discussed points, vectors, and their operations, and coordinate frames and how to change the representation of points and vectors from one frame to another. Our next topic involves how to map points from one place to another. Suppose you want to draw an animation of a spinning ball. How would you define the function that maps each point on the ball to its position rotated through some given angle? We will consider a limited, but interesting class of transformations, called affine transfor- mations. These include (among others) the following transformations of space: translations, rotations, uniform and nonuniform scalings (stretching the axes by some constant scale fac- tor), reflections (flipping objects about a line) and shearings (which deform squares into parallelograms). They are illustrated in Fig. 1. rotation translation uniform nonuniform reflection shearing scaling scaling Fig. 1: Examples of affine transformations. These transformations all have a number of things in common. For example, they all map lines to lines. Note that some (translation, rotation, reflection) preserve the lengths of line segments and the angles between segments. These are called rigid transformations. Others (like uniform scaling) preserve angles but not lengths. Still others (like nonuniform scaling and shearing) do not preserve angles or lengths. Formal Definition: Formally, an affine transformation is a mapping from one affine space to another (which may be, and in fact usually is, the same space) that preserves affine combi- nations.
    [Show full text]
  • Lecture 04- Projective Geometry
    Lecture 04- Projective Geometry EE382-Visual localization & Perception Danping Zou @Shanghai Jiao Tong University 1 Projective geometry • Key concept - Homogenous coordinates – Represent an -dimensional vector by a dimensional coordinate Homogenous coordinate Cartesian coordinate – Can represent infinite points or lines August Ferdinand Möbius Danping Zou @Shanghai Jiao Tong University 1790-1868 2 2D projective geometry • Point representation: – A point can be represented by a homogenous coordinate: Homogeneous coordinates: Inhomogeneous coordinates: Danping Zou @Shanghai Jiao Tong University 3 2D projective geometry • Line representation: – A line is represented by a line equation: Hence a line can be naturally represented by a homogeneous coordinate: It has the same scale equivalence relationship: Danping Zou @Shanghai Jiao Tong University 4 2D projective geometry • A point lie on a line is simply described as: where and . A point or a line has only two degree of freedom (DoF, 自由度). Danping Zou @Shanghai Jiao Tong University 5 2D projective geometry • Intersection of lines: – The intersection of two lines is computed by the cross production of the two homogenous coordinates of the two lines: Intersection of lines Here, ‘ ‘ represents cross production Danping Zou @Shanghai Jiao Tong University 6 2D projective geometry • Example of intersection of two lines: Let the two lines be • The intersection point is computed as : • The inhomogeneous coordinate is Danping Zou @Shanghai Jiao Tong University 7 2D projective geometry • Line across two points: • The line across the two points is obtained by the cross production of the two homogenous coordinates of the two points: Danping Zou @Shanghai Jiao Tong University 8 2D projective geometry • Idea point (point at infinity): – Intersection of parallel lines – Let two parallel lines be where .
    [Show full text]
  • Lecture 6: Definition and Construction of Finite Element Subspaces
    18 NUMERICAL SOLUTION OF PDES 2.6. Definition of finite elements. We first define triangular finite element spaces, consid- ering the case when Ω is a convex polygon. For each 0 < h < 1, we let Th be a triangulation of Ω¯ with the following properties: i: Ω¯ = ∪iTi, ii: If Ti and Tj are distinct, then exactly one of the following holds: (a) Ti ∩ Tj = ∅, (b) Ti ∩ Tj is a common vertex, (c) Ti ∩ Tj is a common side. iii: each Ti ∈ Th has diameter ≤ h. B ¢B ¢@ ¢ B PP B ¢ @ B PB¢ B¢ ¢ @ B @ ¢ @ PP B ¢ PB @P¢ PPPBB¢¢ PP PP PP Triangulation of Ω P ¢B PP ¢ B PP ¢@ ¢ B B @ ¢ @ P B @¢ ¢B ¢B PPB @ ¢ B ¢ B @¢ B¢ B @ @ Not allowed @@ @@ @ @ Given a triangulation Th of Ω, a finite element space is a space of piecewise polynomials with respect to Th that is constructed by specifying the following things for each T ∈ Th: Shape functions: a finite dimensional space V (T ) of polynomial functions on T . Degrees of freedom (DOF): a finite set of linear functionals ψi : V (T ) → R (i = 1,..., N) which are unisolvent on V (T ), i.e., if V (T ) has dimension N, then given any numbers αi, i = 1,..., N, there exists a unique function p ∈ V (T ), such that ψi(p) = αi, i = 1,..., N. Since these equations amount to a square linear system of equations, to show unisolvence, we show that the only solution of the system with all αi = 0 is p = 0. A typical example of a DOF is ψi(p) = p(xi).
    [Show full text]
  • Determinants and Transformations 1. (A.) 2
    Lecture 3 answers to exercises: Determinants and transformations 1. (a:) 2 · 4 − 3 · (−1) = 11 (b:) − 5 · 2 − 1 · 0 = −10 (c:) Of this matrix we cannot compute the determinant because it is not square. (d:) −5·7·1+1·(−2)·3+(−1)·1·0−(−1)·7·3−1·1·1−(−5)·(−2)·0 = −35−6+21−1 = −21 2. 2 5 −2 4 2 −2 6 4 −1 3 6 −1 1 2 3 −83 3 −1 1 3 42 1 x = = = 20 y = = = −10 4 5 −2 −4 4 4 5 −2 −4 2 3 4 −1 3 4 −1 −1 2 3 −1 2 3 4 5 2 3 4 6 −1 2 1 −57 1 z = = = 14 4 5 −2 −4 4 3 4 −1 −1 2 3 3. Yes. Just think of a matrix and apply it to the zero vector. The outcome of all components are zeros. 4. We find the desired matrix by multiplying the two matrices for the two parts. The 0 −1 matrix for reflection in x + y = 0 is , and the matrix for rotation of 45◦ about −1 0 p p 1 2 − 1 2 2 p 2p the origin is 1 1 . So we compute (note the order!): 2 2 2 2 p p p p 1 2 − 1 2 0 −1 1 2 − 1 2 2 p 2p 2 p 2 p 1 1 = 1 1 2 2 2 2 −1 0 − 2 2 − 2 2 5. A must be the zero matrix. This is true because the vectors 2 3 2, 1 0 2, and 0 2 4 are linearly independent.
    [Show full text]