Tensor Products and Relation Quantales
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Some Equational Classes of Distributive Double P-Algebras
iJEMONSTRATTO MATHEMATICA Vol IX No4 1976 Anna Romanowska ON SOME EQUATIONAL CLASSES OF DISTRIBUTIVE DOUBLE P-ALGEBRAS 1. Introduction Recently, T. Katrinak [5] showed that the two, three and four element chains are the only subdirect irreducible double Stone algebras and the lattice of equational subclasses of the equational class of all double Stone algebras forms a four element chain. R. Beazer [1] characterized the simple distri- butive double p-algebras. This paper is concerned with some other subdirectly irreducible distributive double p-algebras and with equational classes generated by these algebras. As corollary, the lattice of some equational classes of regular distributive double p-algebras is presented. 2. Preliminaries A universal algebra < L; V, A,*, 0, 1 > of type <2, 2, 1, 0, is called a p-algebra iff <L; V , A , 0, 1 > is a bounded lattice such that for every a £ L the element a*e I jL is the pseudocomplement of a, i.e. x ^ a iff a A x = 0. A universal algebra <L; V,A,*, +, 0, 1> is called a dp-al- gebra (double p-algebra) iff V, A,*, 0, 1 > is a p-alge- bra ana <Cl; V, A, 0, 1 > is a dual p-algebra (x > a+iff x V a = 1). A distributive dp-algebra is called a ddp-algebra. A distributive p-algebra (dual p-algebra) is called a Fn~algebra (F^-algebra) iff L satisfies the identity (xyV.. .AxQ)*V (X*AX2A. .AXq)*V. .. V(x1 A ... Ax*)* = 1 (P*) + + ((x1V.. .Vxk) A(x^Vx2V. ..Vxk) A. ..A(x1 V.. -
A Semiring Approach to Equivalences, Bisimulations and Control
A Semiring Approach to Equivalences, Bisimulations and Control Roland Gl¨uck1, Bernhard M¨oller1 and Michel Sintzoff2 1 Universit¨atAugsburg 2 Universit´ecatholique de Louvain Abstract. Equivalences, partitions and (bi)simulations are usually tack- led using concrete relations. There are only few treatments by abstract relation algebra or category theory. We give an approach based on the theory of semirings and quantales. This allows applying the results di- rectly to structures such as path and tree algebras which is not as straightforward in the other approaches mentioned. Also, the amount of higher-order formulations used is low and only a one-sorted algebra is used. This makes the theory suitable for fully automated first-order proof systems. As a small application we show how to use the algebra to construct a simple control policy for infinite-state transition systems. 1 Introduction Semirings have turned out to be useful for algebraic reasoning about relations and graphs, for example in [3]. Even edge-weighted graphs were successfully treated in this setting by means of fuzzy relations, as shown in [5] and [6]. Hence it is surprising that up to now no treatment of equivalence relations and bisim- ulations in this area has taken place, although a relational-algebraic approach was given in [11]. A recent, purely lattice-theoretic abstraction of bisimulations appears in [8]. The present paper was stimulated by [10], since the set-theoretic approach of that paper lends itself to a more compact treatment using modal semirings. This motivated the treatment of subsequent work by the third author by the same algebraic tools, as presented here. -
On Generalized Topological Molecular Lattices 1. Introduction And
Sahand Communications in Mathematical Analysis (SCMA) Vol. 10 No. 1 (2018), 1-15 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2017.27148 On generalized topological molecular lattices Narges Nazari1 and Ghasem Mirhosseinkhani2∗ Abstract. In this paper, we introduce the concept of the gener- alized topological molecular lattices as a generalization of Wang's topological molecular lattices, topological spaces, fuzzy topologi- cal spaces, L-fuzzy topological spaces and soft topological spaces. Topological molecular lattices were defined by closed elements, but in this new structure we present the concept of the open elements and define a closed element by the pseudocomplement of an open element. We have two structures on a completely distributive com- plete lattice, topology and generalized co-topology which are not dual to each other. We study the basic concepts, in particular sep- aration axioms and some relations among them. 1. Introduction and preliminaries Since the set of open sets of a topological space is a frame, many important properties to topological spaces may be expressed without referring to the points. The first person who exploit possibility of ap- plying the lattice theory to the topology was Henry Wallman. He used the lattice-theoretic ideas to construct what is now called the \Wallman compactification” of a T1-topological space. This idea was pursued by Mckinsey, Tarski, N¨obeling, Lesier, Ehresmann, B´enabou, etc. How- ever, the importance of attention to open sets as a lattice appeared as late as 1962 in [3, 9]. After that, many authors became interested and developed the field. The pioneering paper [6] by Isbell merits particu- lar mention for opening several important topics. -
Dualities for Some De Morgan Algebras with Operators and Lukasiewicz Algebras
/. Austral. Math. Soc. (Series A) 34 (1983), 377-393 DUALITIES FOR SOME DE MORGAN ALGEBRAS WITH OPERATORS AND LUKASIEWICZ ALGEBRAS ROBERTO CIGNOLI and MARTA S. DE GALLEGO (Received 3 September 1981, Revised 22 June 1982) Communicated by J. B. Miller Abstract Algebras (A, V, A, ~ , Y,0,1) of type (2,2,1,1,0,0) such that (A, V, A, ~ ,0,1) is a De Morgan algebra and y is a lattice homomorphism from A into its center that satisfies one of the conditions (i) a « ya or (ii) a < ~ a V ya are considered. The dual categories and the lattice of their subvarieties are determined, and applications to Lukasiewicz algebras are given. 1980 Mathematics subject classification (Amer. Math. Soc): 06 D 30, 03 G 20, 03 G 25, 08 B 15. Introduction Throughout this paper, A will denote the class of De Morgan algebras and 6E the category of De Morgan algebras and homomorphisms. The class of Kleene algebras (that is De Morgan algebras which satisfy the equation (aA~a)V(6 V~fe) = feV~£>) will be denoted by K, and the corresponding category by %. For each A in A, B(A) will denote the center of A, that is the subalgebra of all complemented elements of A, and K(A) the subalgebra of B(A) formed by the elements a such that the De Morgan negation ~ a coincides with the complement of a (see Cignoli and de Gallego (1981)). Let A e A. For each a G A, define Ka - {k G K(A): a < k) and Ha - {k G K(A): a =£~ a V k}. -
The Involutive Quantaloid of Completely Distributive Lattices Luigi Santocanale
The Involutive Quantaloid of Completely Distributive Lattices Luigi Santocanale To cite this version: Luigi Santocanale. The Involutive Quantaloid of Completely Distributive Lattices. RAMICS 2020, Uli Fahrenberg; Peter Jipsen; Michael Winter, Apr 2020, Palaiseau, France. pp.286-301. hal-02342655v3 HAL Id: hal-02342655 https://hal.archives-ouvertes.fr/hal-02342655v3 Submitted on 6 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE INVOLUTIVE QUANTALOID OF COMPLETELY DISTRIBUTIVE LATTICES LUIGI SANTOCANALE Laboratoire d’Informatique et des Syst`emes, UMR 7020, Aix-Marseille Universit´e, CNRS Abstract. Let L be a complete lattice and let Q(L) be the unital quan- tale of join-continuous endo-functions of L. We prove that Q(L) has at most two cyclic elements, and that if it has a non-trivial cyclic element, then L is completely distributive and Q(L) is involutive (that is, non-commutative cyclic ⋆-autonomous). If this is the case, then the dual tensor operation cor- responds, via Raney’s transforms, to composition in the (dual) quantale of meet-continuous endo-functions of L. Latt Let W be the category of sup-lattices and join-continuous functions and Lattcd Latt let W be the full subcategory of W whose objects are the completely Lattcd distributive lattices. -
Mathematica Slovaca
Mathematica Slovaca Léonard Kwuida; Christian Pech; Heiko Reppe Generalizations of Boolean algebras. An attribute exploration Mathematica Slovaca, Vol. 56 (2006), No. 2, 145--165 Persistent URL: http://dml.cz/dmlcz/130417 Terms of use: © Mathematical Institute of the Slovak Academy of Sciences, 2006 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz Malhematica Slovaca ©2006 Math. Slovaca, 56 (2006), No. 2, 145-165 sffiSJS o?scfínces Dedicated to Professor Tibor Katrindk GENERALIZATIONS OF BOOLEAN ALGEBRAS. AN ATTRIBUTE EXPLORATION LEONARD KWUIDA* — CHRISTIAN PECH** — HEIKO REPPE** (Communicated by Sylvia Pulmannovd) ABSTRACT. This paper gives an overview on generalizations of Boolean alge bras. These are lattices enriched by (unary) operations fulfilling some properties of the Boolean negation. The aim is to find the relationship between known ex tensions of Boolean algebras and the class of weakly dicomplemented lattices, recently introduced for contextual logic purposes, and which generalizes as well Boolean algebras. 1. Introduction and motivation A Boolean algebra is an algebra (L, A, V,',0,1) of type (2,2,1,0,0) such that (L, A, V, 0,1) is a bounded distributive lattice and the unary operation is a complementation. Boolean algebras were discovered from the investigations of the laws of thought by George Boole [Bo54]. The binary operations A and V were used to model the conjunction and the disjunction respectively, while the unary operation models the negation. -
Pseudocomplemented Semilattices, Boolean Algebras, and Compatible Products1
Journal of Algebra 242, 60᎐91Ž. 2001 doi:10.1006rjabr.2001.8807, available online at http:rrwww.idealibrary.com on Pseudocomplemented Semilattices, Boolean Algebras, and Compatible Products1 Antonio Fernandez´´ Lopez and Marıa ´ Isabel Tocon ´ Barroso View metadata, citationDepartamento and similar papers de Algebra, at core.ac.uk Geometrıa´´ y Topologıa, Facultad de Ciencias, brought to you by CORE Uni¨ersidad de Malaga,´´ 29071 Malaga, Spain provided by Elsevier - Publisher Connector E-mail: [email protected], [email protected] Communicated by Georgia Benkart Received November 19, 1999 DEDICATED TO PROFESSOR J. MARSHALL OSBORN Pseudocomplemented semilattices are studied here from an algebraic point of view, stressing the pivotal role played by the pseudocomplements and the relation- ship between pseudocomplemented semilattices and Boolean algebras. Following the pattern of semiprime ring theory, a notion of Goldie dimension is introduced for complete pseudocomplemented lattices and calculated in terms of maximal uniform elements if they exist in abundance. Products in lattices with 0-element are studied and questions about the existence and uniqueness of compatible products in pseudocomplemented lattices, as well as about the abundance of prime elements in lattices with a compatible product, are discussed. Finally, a Yood decomposition theorem for topological rings is extended to complete pseudocom- plemented lattices. ᮊ 2001 Academic Press Key Words: pseudocomplemented semilattice; Boolean algebra; compatible product. INTRODUCTION A pseudocomplemented semilattice is aŽ. meet semilattice S having a least element 0 and is such that, for each x in S, there exists a largest element x H such that x n x Hs 0. In spite of what the name could suggest, a complemented lattice need not be pseudocomplemented, as is easily seen by considering the lattice of all subspaces of a vector space of dimension greater than one. -
B. Banaschewski A. Pultr
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES B. BANASCHEWSKI A. PULTR Booleanization Cahiers de topologie et géométrie différentielle catégoriques, tome 37, no 1 (1996), p. 41-60 <http://www.numdam.org/item?id=CTGDC_1996__37_1_41_0> © Andrée C. Ehresmann et les auteurs, 1996, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE ET Volume XXXVII-1 (1996) GEOMETRIE DIFFERENTIELLE CATEGORIQUES BOOLEANIZATION by B. BANASCHEWSKI and A. PUL TR R6sum6 : Cet article est une etude des aspects diff6rents de la procedure qui associe a un cadre L l’algèbre de Boole compléte BL des 616ments r6guliers a = a**. En particulier, nous 6tudions des applications entre cadres qui induisent des homomorphismes entre ces Booleanizations, et des proprietes de quelques foncteurs associ6s comprenant des homomorphismes faiblement ouverts. De plus, nous consid6rons des propri6t6s de limites et colimites dans le contexte de ces homomorphismes. Recall that the well-known result in topology that the regular open subsets of any space form a complete Boolean algebra naturally ex- tends to arbitrary frames, as originally observed by Glivenko [11] and later put in proper perspective by Isbell [13]. This associates with each frame L the complete Boolean algebra 93L, consisting of the elements a = a**, together with the homomorphism BL : BL ---+ L taking each element a to its double pseudocomplement a**. -
Pseudocomplementation
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 79, Number 4, August 1980 ONE-VARIABLEEQUATIONAL COMPACTNESS IN PARTIALLY DISTRIBUTIVE SEMILATTICES WITH PSEUDOCOMPLEMENTATION SYDNEY BULMAN-FLEMTNG1AND ISIDORE FLEISCHER1 Abstract. A universal algebra A is called one-variable equationally compact if every system of equations with constants in A involving a single variable x, every finite subsystem of which has a solution in A, has itself a solution in A. The one-variable equationally compact semilattices with pseudocomplementation <S; A> *. 0> which satisfy the partial distributivelaw x A (y A *)* ~ (x A y*) V (x A **) are characterized, and as a consequence we are able to describe the one-variable compact Stone semilattices. Similar considerations yield a characteri- zation of the one-variable equationally compact Stone algebras, extending a well known result for distributive lattices. The one-variable equationally compact semilattices with pseudocomplementa- tion <5; A> *»0> which satisfy the partial distributive law x A (y A z)* = (•* A y*) V (x A **) are characterized, and as a consequence we are able to describe the one-variable equationally compact Stone semilattices. Similar considerations yield a characterization of the one-variable equationally compact Stone algebras, extend- ing a well known result for distributive lattices. A universal algebra A is called one-variable equationally compact if every system of equations with constants in A involving a single variable x, every finite subsystem of which has a solution in A, has itself a solution in A. Note that the equations to be considered are equalities between one-variable polynomials with constants in A, i.e. expressions built up from the elements of A and a single variable x by repeated application of the fundamental operations of A. -
Representation of Integral Quantales by Tolerances
Representation of integral quantales by tolerances Kalle Kaarli and Sandor´ Radeleczki Dedicated to the memory of E. Tam´asSchmidt Abstract. The central result of the paper claims that every integral quantale Q has a natural embedding into the quantale of complete tolerances on the underlying lattice of Q. As an application, we show that the underlying lattice of any integral quantale is distributive in 1 and dually pseudocomplemented. Besides, we exhibit relationships between several earlier results. In particular, we give an alternative approach to Valentini's ordered sets and show how the ordered sets are related to tolerances. 1. Introduction Quantales are certain partially ordered algebraic structures that generalize locales (point free topologies) as well as various multiplicative lattices of ideals from ring theory and functional analysis (C∗-algebras, von Neumann algebras), see e.g., [17]. Definition 1.1. A quantale is an algebraic structure Q = (Q; _; ·) such that (Q; ≤) is a complete lattice (induced by the join operation _) and (Q; ·) is a semigroup satisfying _ _ a · fbi j i 2 Ig = fabi j i 2 Ig; (1.1) _ _ fbi j i 2 Ig · a = fbia j i 2 Ig (1.2) for all a 2 Q and bi 2 Q, i 2 I. Remark 1.2. As usual, we often write xy instead of x · y. In what follows the underlying lattice of a quantale Q is denoted by L. Thus, the universes of Q and L coincide: Q = L. The smallest and the greatest element of L will be denoted by 0 and 1, respectively. -
Decompositions for Relatively Normal Lattices
transactions of the american mathematical society Volume 341, Number 2, February 1994 DECOMPOSITIONS FOR RELATIVELYNORMAL LATTICES JAMES B. HART AND CONSTANTINETSINAKIS Abstract. Continuing the work begun in Snodgrass and Tsinakis [26, 27], we develop a family of decomposition theorems for classes of relatively normal lat- tices. These results subsume and are inspired by known decomposition theorems in order-algebra due to P. Conrad and D. B. McAlister. As direct corollaries of the main results, we obtain corresponding decomposition theorems for classes of partially ordered sets. Introduction A poset P = (P; <) is a root-system provided the principal upper set î p = {x £ P: p < x} is a chain for all p g P. A maximal chain in P is called a root. A lower-bounded, distributive lattice is relatively normal provided its set of prime ideals is a root-system under set-inclusion. The class of relatively normal lattices is defined by a universal-existential, positive sentence (see Theorem 1.1(4)); in all that follows, we shall denote this class by <^/T. The terms "normal" and "relatively normal" were coined by Monteiro in con- nection with his studies on filters and topological spaces (Monteiro [24, 25]). A bounded, distributive lattice is said to be normal if each of its prime ideals is contained in a unique maximal ideal. Monteiro proved ¿hat a topological space is normal (in the usual topological sense, with no separation axioms as- sumed) if and only if its lattice of open sets is normal. As the term suggests, a lower-bounded, distributive lattice is relatively normal if and only if each of its closed subintervals is a normal lattice. -
Quantale Algebras As a Generalization of Lattice-Valued Frames
Quantale algebras as a generalization of lattice-valued frames Sergey A. Solovyov∗ y z Abstract Recently, I. Stubbe constructed an isomorphism between the categories of right Q-modules and cocomplete skeletal Q-categories for a given unital quantale Q. Employing his results, we obtain an isomorphism between the categories of Q-algebras and Q-quantales, where Q is ad- ditionally assumed to be commutative. As a consequence, we provide a common framework for two concepts of lattice-valued frame, which are currently available in the literature. Moreover, we obtain a con- venient setting for lattice-valued extensions of the famous equivalence between the categories of sober topological spaces and spatial locales, as well as for answering the question on its relationships to the notion of stratification of lattice-valued topological spaces. Keywords: (Cocomplete) (skeletal) Q-category, lattice-valued frame, lattice- valued partially ordered set, quantale, quantale algebra, quantale module, sober topological space, spatial locale, stratification degree, stratified topological space. 2000 AMS Classification: 06F07, 18B99, 06A75, 54A40 1. Introduction 1.1. Lattice-valued frames. The well-known equivalence between the catego- ries of sober topological spaces and spatial locales, initiated by D. Papert and S. Papert [42], and developed in a rigid way by J. R. Isbell [31] and P. T. John- stone [32], opened an important relationship between general topology and uni- versal algebra. In particular, it provided a convenient framework for the famous topological representation theorems of M. Stone for Boolean algebras [71] and dis- tributive lattices [72], which in their turn (backed by the celebrated representation of distributive lattices of H.