High-Throughput Single-Cell Functional Elucidation of Neurodevelopmental Disease–Associated Genes Reveals Convergent Mechanisms Altering Neuronal Differentiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aberrant Methylation Underlies Insulin Gene Expression in Human Insulinoma
ARTICLE https://doi.org/10.1038/s41467-020-18839-1 OPEN Aberrant methylation underlies insulin gene expression in human insulinoma Esra Karakose1,6, Huan Wang 2,6, William Inabnet1, Rajesh V. Thakker 3, Steven Libutti4, Gustavo Fernandez-Ranvier 1, Hyunsuk Suh1, Mark Stevenson 3, Yayoi Kinoshita1, Michael Donovan1, Yevgeniy Antipin1,2, Yan Li5, Xiaoxiao Liu 5, Fulai Jin 5, Peng Wang 1, Andrew Uzilov 1,2, ✉ Carmen Argmann 1, Eric E. Schadt 1,2, Andrew F. Stewart 1,7 , Donald K. Scott 1,7 & Luca Lambertini 1,6 1234567890():,; Human insulinomas are rare, benign, slowly proliferating, insulin-producing beta cell tumors that provide a molecular “recipe” or “roadmap” for pathways that control human beta cell regeneration. An earlier study revealed abnormal methylation in the imprinted p15.5-p15.4 region of chromosome 11, known to be abnormally methylated in another disorder of expanded beta cell mass and function: the focal variant of congenital hyperinsulinism. Here, we compare deep DNA methylome sequencing on 19 human insulinomas, and five sets of normal beta cells. We find a remarkably consistent, abnormal methylation pattern in insu- linomas. The findings suggest that abnormal insulin (INS) promoter methylation and altered transcription factor expression create alternative drivers of INS expression, replacing cano- nical PDX1-driven beta cell specification with a pathological, looping, distal enhancer-based form of transcriptional regulation. Finally, NFaT transcription factors, rather than the cano- nical PDX1 enhancer complex, are predicted to drive INS transactivation. 1 From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. -
Correction of Cognitive Deficits in Mouse Models Of
Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A Thu Lan Nguyen, Arnaud Duchon, Antigoni Manousopoulou, Nadège Loaëc, Benoît Villiers, Guillaume Pani, Meltem Karatas, Anna E Mechling, Laura-Adela Harsan, Emmanuelle Limanton, et al. To cite this version: Thu Lan Nguyen, Arnaud Duchon, Antigoni Manousopoulou, Nadège Loaëc, Benoît Villiers, et al.. Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological in- hibitor of DYRK1A. Disease Models & Mechanisms, Cambridge Company of Biologists, 2018, 11 (9), pp.dmm035634. 10.1242/dmm.035634. hal-01862465 HAL Id: hal-01862465 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01862465 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm035634. doi:10.1242/dmm.035634 RESEARCH ARTICLE Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A Thu Lan Nguyen1,2,3,4,5, Arnaud Duchon1,2,3,4, Antigoni Manousopoulou6, Nadegè Loaëc5, Benoît Villiers5, Guillaume Pani1,2,3,4, Meltem Karatas7,8, Anna E. Mechling8, Laura-Adela Harsan7,8, Emmanuelle Limanton9, Jean-Pierre Bazureau9, François Carreaux9, Spiros D. -
The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways. -
Autism Ontario Genetics Webinar EN.Pdf
Autism Ontario Genetics Webinar Thursday October 29, 2020 12:00 – 1:00 pm Panelist Stephen Scherer, PhD - Scientist Ny Hoang, MS, CGC – Genetic Counsellor Ryan Yuen, PhD - Scientist Evdokia Anagnostou, MD - Child Neurologist Autism Spectrum Disorders weak genetic factor Complex Multifactorial Condition strong genetic factor environmental factors Genetic contribution is highly variable Strong genetic Moderate genetic Weaker genetic factor factor factor Examples of genetic factors: SHANK3, NRXN1, CHD8, ARID1B, 16p13.11, 22q11 Genetic contribution is a biological difference chromosome Cell DNA sequence Protein Genetic contribution is a biological difference chromosome Cell DNA sequence genetic variant Protein not working Protein Protein not working DNA sequence genetic variant Deletions & Duplications Single Nucleotide Variations 1q21.1 deletions/ duplications CHD8, ARID1B, SCN2A, SYNGAP1, 16p13.11 deletions/ duplications SHANK3, ANK2, GRIN2B, CHD2 NRXN3, ASTN2, MBD5, PTCHD1 DNA sequence genetic variant Repeat Expansions Example: Fragile X syndrome (FMR1) CGGCGGCGGCGGCGG Normal repeat size: 5-40 CGGCGGCGGCGGCGGCGGCGGCGGCGG Syndrome repeat size: >200 DNA sequence genetic variant Repeat Expansions Fragile X syndrome (FMR1), repeat >200 • Disorders linked to well- CGG defined repeat pattern (motif) Friedreich Ataxia (FXN), repeat >100 • Only one pattern per disorder GAA • Myotonic dystrophy Type 1 (DMPK), repeat >50 Normal repeat size range CTG known Huntington’s Disease (HTT), repeat >35 CAG Spinocerebellar Ataxia Type 10 (ATXN10), repeat >800 -
De Novo POGZ Mutations in Sporadic
Matsumura et al. Journal of Molecular Psychiatry (2016) 4:1 DOI 10.1186/s40303-016-0016-x SHORT REPORT Open Access De novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ Kensuke Matsumura1, Takanobu Nakazawa2*, Kazuki Nagayasu2, Nanaka Gotoda-Nishimura1, Atsushi Kasai1, Atsuko Hayata-Takano1, Norihito Shintani1, Hidenaga Yamamori3, Yuka Yasuda3, Ryota Hashimoto3,4 and Hitoshi Hashimoto1,2,4 Abstract Background: A spontaneous de novo mutation is a new mutation appeared in a child that neither the parent carries. Recent studies suggest that recurrent de novo loss-of-function mutations identified in patients with sporadic autism spectrum disorder (ASD) play a key role in the etiology of the disorder. POGZ is one of the most recurrently mutated genes in ASD patients. Our laboratory and other groups have recently found that POGZ has at least 18 independent de novo possible loss-of-function mutations. Despite the apparent importance, these mutations have never previously been assessed via functional analysis. Methods: Using wild-type, the Q1042R-mutated, and R1008X-mutated POGZ, we performed DNA-binding experiments for proteins that used the CENP-B box sequence in vitro. Data were statistically analyzed by one-way ANOVA followed by Tukey-Kramer post hoc tests. Results: This study reveals that ASD-associated de novo mutations (Q1042R and R1008X) in the POGZ disrupt its DNA-binding activity. Conclusions: Here, we report the first functional characterization of de novo POGZ mutations identified in sporadic ASD cases. These findings provide important insights into the cellular basis of ASD. Keywords: Autism spectrum disorder, Recurrent mutation, De novo mutation, POGZ, DNA-binding activity Background including CHD8, ARID1B, SYNGAP1, DYRK1A, SCN2A, The genetic etiology of autism spectrum disorder (ASD) ANK2, ADNP, DSCAM, CHD2, KDM5B, SUV420H1, remains poorly understood. -
Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases Andrea I
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.01.020206; this version posted April 2, 2020. The copyright holder has placed this preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt this material for any purpose without crediting the original authors. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases Andrea I. Krahn, Carrow Wells, David H. Drewry, Lenore K. Beitel, Thomas M. Durcan, Alison D. Axtman* ABSTRACT: Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anti-cancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. KEYWORDS: kinase, neurodegeneration, -
DYRK1A Binds to an Evolutionarily Conserved WD40-Repeat Title Protein WDR68 and Induces Its Nuclear Translocation
DYRK1A binds to an evolutionarily conserved WD40-repeat Title protein WDR68 and induces its nuclear translocation. Author(s) Miyata, Yoshihiko; Nishida, Eisuke Citation Biochimica et biophysica acta (2011), 1813(10): 1728-1739 Issue Date 2011-10 URL http://hdl.handle.net/2433/148020 © 2011 Elsevier B.V.; This is not the published version. Please cite only the published version.; この論文は出版社版であり Right ません。引用の際には出版社版をご確認ご利用ください 。 Type Journal Article Textversion author Kyoto University *REVISED Manuscript (text UNmarked) Click here to view linked References DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation Yoshihiko Miyata*, Eisuke Nishida Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan * Corresponding author. Department of Cell & Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan. Tel.: +81-75-753-4231; fax: +81-75-753-4235. 1 ABSTRACT DYRK1A is encoded in the Down’s syndrome critical region on human chromosome 21, and plays an important role in the functional and developmental regulation of many types of cells, including neuronal cells. Here we have identified WDR68, an evolutionarily conserved protein with WD40-repeat domains, as a cellular binding partner of DYRK1A. WDR68 was originally identified in petunia as AN11 that controls the pigmentation of flowers by stimulating the transcription of anthocyanin biosynthetic genes. Experiments with RNA interference showed that WDR68 was indispensable for the optimal proliferation and survival of mammalian cultured cell, and WDR68 depletion induced cell apoptosis. DYRK1A and DYRK1B, but not DYRK2, DYRK3, or DYRK4, bound to endogenous and expressed WDR68. -
Co-Occupancy by Multiple Cardiac Transcription Factors Identifies
Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart Aibin Hea,b,1, Sek Won Konga,b,c,1, Qing Maa,b, and William T. Pua,b,2 aDepartment of Cardiology and cChildren’s Hospital Informatics Program, Children’s Hospital Boston, Boston, MA 02115; and bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved February 23, 2011 (received for review November 12, 2010) Identification of genomic regions that control tissue-specific gene study of a handful of model genes (e.g., refs. 7–10), it has not been expression is currently problematic. ChIP and high-throughput se- evaluated using unbiased, genome-wide approaches. quencing (ChIP-seq) of enhancer-associated proteins such as p300 In this study, we used a modified ChIP-seq approach to define identifies some but not all enhancers active in a tissue. Here we genome wide the binding sites of these cardiac TFs (1). We show that co-occupancy of a chromatin region by multiple tran- provide unbiased support for collaborative TF interactions in scription factors (TFs) identifies a distinct set of enhancers. GATA- driving cardiac gene expression and use this principle to show that chromatin co-occupancy by multiple TFs identifies enhancers binding protein 4 (GATA4), NK2 transcription factor-related, lo- with cardiac activity in vivo. The majority of these multiple TF- cus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and “ binding loci (MTL) enhancers were distinct from p300-bound myocyte-enhancer factor 2A (MEF2A), here referred to as cardiac enhancers in location and functional properties. -
A Heterozygous Microdeletion of 20Q13.13 Encompassing ADNP Gene in a Child with Helsmoortel–Van Der Aa Syndrome
European Journal of Human Genetics (2018) 26:1497–1501 https://doi.org/10.1038/s41431-018-0165-8 ARTICLE A heterozygous microdeletion of 20q13.13 encompassing ADNP gene in a child with Helsmoortel–van der Aa syndrome 1,2 1 3 1 4 Minh-Tuan Huynh ● Elise Boudry-Labis ● Alfred Massard ● Caroline Thuillier ● Bruno Delobel ● 4 5 Bénédicte Duban-Bedu ● Catherine Vincent-Delorme Received: 8 September 2017 / Revised: 3 April 2018 / Accepted: 11 April 2018 / Published online: 13 June 2018 © European Society of Human Genetics 2018 Abstract Helsmoortel–van der Aa (SWI/SNF autism-related or ADNP syndrome) is an autosomal dominant monogenic syndrome caused by de novo variants in the last exon of ADNP gene and no deletions have been documented to date. We report the first case of a 3 years and 10 months old boy exhibiting typical features of ADNP syndrome, including intellectual disability, autistic traits, facial dysmorphism, hyperlaxity, mood disorder, behavioral problems, and severe chronic constipation. 60K Agilent array-comparative genomic hybridization (CGH) identified a heterozygous interstitial microdeletion at 20q13.13 chromosome region, encompassing ADNP and DPM1. Taking into account the clinical phenotype of previously reported cases with ADNP single-point variants, – – 1234567890();,: 1234567890();,: genotype phenotype correlation in the proband was established and the diagnosis of Helsmoortel van der Aa syndrome was made. Our report thus confirms that ADNP haploinsufficiency is associated with Helsmoortel–van der Aa syndrome as well as highlights the utility of whole-genome array-CGH for detection of unbalanced submicroscopic chromosomal rearrangements in routine clinical setting in patients with unexplained intellectual disability and/or syndromic autism. -
DYRK1A Inhibition and Cognitive Rescue in a Down Syndrome Mouse
www.nature.com/scientificreports OPEN DYRK1A inhibition and cognitive rescue in a Down syndrome mouse model are induced by new fuoro- Received: 15 June 2017 Accepted: 18 January 2018 DANDY derivatives Published: xx xx xxxx Fernanda Neumann1, Stéphanie Gourdain1, Christelle Albac2, Alain D. Dekker 2,3, Linh Chi Bui4, Julien Dairou5, Isabelle Schmitz-Afonso1, Nathalie Hue1, Fernando Rodrigues-Lima4, Jean M. Delabar2, Marie-Claude Potier2, Jean-Pierre Le Caër1, David Touboul1, Benoît Delatour2, Kevin Cariou1 & Robert H. Dodd1 Inhibition of DYRK1A kinase, produced by chromosome 21 and consequently overproduced in trisomy 21 subjects, has been suggested as a therapeutic approach to treating the cognitive defciencies observed in Down syndrome (DS). We now report the synthesis and potent DYRK1A inhibitory activities of fuoro derivatives of 3,5-di(polyhydroxyaryl)-7-azaindoles (F-DANDYs). One of these compounds (3-(4-fuorophenyl)-5-(3,4-dihydroxyphenyl)-1H-pyrrolo[2,3-b]pyridine, 5a) was selected for in vivo studies of cognitive rescuing efects in a standard mouse model of DS (Ts65Dn line). Using the Morris water maze task, Ts65Dn mice treated i.p. with 20 mg/kg of 5a performed signifcantly better than Ts65Dn mice treated with placebo, confrming the promnesiant efect of 5a in the trisomic mice. Overall, these results demonstrate for the frst time that selective and competitive inhibition of DYRK1A kinase by the F-DANDY derivative 5a may provide a viable treatment strategy for combating the memory and learning defciencies encountered in DS. Down syndrome (DS), or trisomy 21, is the most common genetically acquired form of intellectual disability1–3, occurring in approximately 1 out of 650–1000 newborns in Europe4,5 and North America6. -
The Landscape of Human Mutually Exclusive Splicing
bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
ADNP Is a Therapeutically Inducible Repressor of WNT Signaling In
Published OnlineFirst November 30, 2016; DOI: 10.1158/1078-0432.CCR-16-1604 Cancer Therapy: Preclinical Clinical Cancer Research ADNP Is a Therapeutically Inducible Repressor of WNT Signaling in Colorectal Cancer Cristina Blaj1, Agnes Bringmann1, Eva Marina Schmidt1, Manuela Urbischek1, Sebastian Lamprecht1, Thomas Frohlich€ 2, Georg J. Arnold2, Stefan Krebs2, Helmut Blum2, Heiko Hermeking1,3,4, Andreas Jung1,3,4, Thomas Kirchner1,3,4, and David Horst1,3,4 Abstract Purpose: Constitutively active WNT signaling is a hallmark Results: ADNP was overexpressed in colon cancer cells with of colorectal cancers and a driver of malignant tumor high WNT activity, where it acted as a WNT repressor. Silencing progression. Therapeutic targeting of WNT signaling is dif- ADNP expression increased migration, invasion, and prolifera- ficult due to high pathway complexity and its role in tissue tion of colon cancer cells and accelerated tumor growth in homeostasis. Here, we identify the transcription factor xenografts in vivo. Treatment with subnarcotic doses of ketamine ADNP as a pharmacologically inducible repressor of WNT induced ADNP expression, significantly inhibited tumor growth, signaling in colon cancer. and prolonged survival of tumor-bearing animals. In human Experimental Design: We used transcriptomic, proteomic, patients with colon cancer, high ADNP expression was linked to and in situ analyses to identify ADNP expression in colo- good prognosis. rectal cancer and cell biology approaches to determine its Conclusions: Our findings indicate that ADNP is a tumor function. We induced ADNP expression in colon cancer suppressor and promising prognostic marker, and that ketamine xenografts by low-dose ketamine in vivo.Clinicalassocia- treatment with ADNP induction is a potential therapeutic approach tions were determined in a cohort of 221 human colorectal that may add benefit to current treatment protocols for patients cancer cases.