Deficiency of Znt8 Promotes Adiposity and Metabolic Dysfunction By

Total Page:16

File Type:pdf, Size:1020Kb

Deficiency of Znt8 Promotes Adiposity and Metabolic Dysfunction By Page 1 of 57 Diabetes 1 Deficiency of ZnT8 promotes adiposity and metabolic dysfunction by 2 increasing peripheral serotonin production 3 Running title: ZnT8 regulates peripheral serotonin production 4 5 Zhuo Mao1, Hui Lin1, Wen Su1, Jinghui Li1, Minsi Zhou1, Zhuoran Li1, Beibei 6 Zhou2, Qing Yang1, Mingyan Zhou1, Ke Pan2, Jinhan He3, * and Weizhen Zhang 1,4, * 7 8 1. Center for Diabetes, Obesity and Metabolism, Department of Physiology, 9 Shenzhen University Health Science Center, Shenzhen, Guangdong province, China. 10 2. Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 11 province, China. 12 3. Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer 13 Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China. 14 4. Department of Physiology and Pathophysiology, School of Basic Science, 15 Peking University Health Science Center, Beijing, China. 16 17 Correspondence to 18 Dr. Weizhen Zhang 19 Center for Diabetes, Obesity and Metabolism, Department of Physiology, 20 Shenzhen University Health Science Center, Shenzhen, Guangdong province, China. 21 Department of Physiology and Pathophysiology, School of Basic Science, Peking 22 University Health Science Center, Beijing, China. Diabetes Publish Ahead of Print, published online April 1, 2019 Diabetes Page 2 of 57 23 Email: [email protected] 24 Tel: +86-15010909001 25 26 Dr. Jinhan He 27 Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, 28 West China Hospital of Sichuan University, Chengdu, Sichuan, China. 29 E-mail: [email protected] 30 Tel.: +86-28-85426416 31 32 Word count: 7071 33 Figures: 8 (color) 34 Supplemental Figures: 11 35 Supplemental Tables: 1 Page 3 of 57 Diabetes 37 Abstract 38 ZnT8 is a zinc transporter enriched in the pancreatic beta cells and its 39 polymorphism is associated with increased susceptibility to type 2 diabetes. However, 40 the exact role of ZnT8 in systemic energy metabolism remains elusive. In this study, 41 we found that ZnT8 knockout mice displayed increased adiposity without obvious 42 weight gain. We also observed the intestinal tract morphology, motility and gut 43 microbiota were changed in ZnT8 knockout mice. Further study demonstrated that 44 ZnT8 was expressed in enteroendocrine cells, especially in 5-HT positive 45 enterochromffin cells. Lack of ZnT8 resulted in an elevated circulating 5-HT level 46 owing to enhanced expression of tryptophan hydroxylase 1. Blocking 5-HT synthesis 47 in ZnT8 deficient mice restored adiposity, high-fat diet-induced obesity and glucose 48 intolerance. Moreover, overexpression of human ZnT8 diabetes high risk allele 49 R325W increased 5-HT levels relative to the low risk allele in RIN14B cells. Our 50 study revealed an unexpected role of ZnT8 in regulating peripheral 5-HT biogenesis 51 and intestinal microenvironment, which might contribute to the increased risk of 52 obesity and type 2 diabetes. 53 54 Key words: ZnT8; 5-HT; obesity; adiposity; type 2 diabetes, intestinal hormones; 55 energy metabolism Diabetes Page 4 of 57 57 ZnT8 is a zinc transporter which is closely associated with both type 1 and type 2 58 diabetes mellitus (DM). It is an important autoantigen in T1DM patients [1]. 59 Meanwhile its gene polymorphism has also been identified as a risk factor for T2DM 60 [2], suggesting an important physiological function of ZnT8 in metabolic disease 61 progression. ZnT8 is highly abundant in pancreatic beta cells [3]. Several colonies of 62 global and beta cell or alpha cell specific ZnT8 knockout mice have been generated to 63 investigate its effects on insulin granule morphology, insulin secretion and systemic 64 glucose metabolism [4-6]. Global ZnT8 knockout mice exhibit an exacerbation of 65 diet-induced obesity and glucose intolerance compared to wild-type mice [4, 6]. 66 Unexpectedly, this phenotype was not observed in mice that lack ZnT8 specifically in 67 beta cells or alpha cells [6]. This discrepancy strongly implies the presence of ZnT8 in 68 non-beta/alpha cell or extrapancreatic tissues plays a critical role in organism energy 69 homeostasis. Since ZnT8 is negligible in hypothalamus, fat and skeletal muscle [6], 70 we therefore speculate that ZnT8 may be expressed in other endocrine tissues or cells. 71 Gastrointestinal (GI) tract contains the largest number of various endocrine cells. 72 Many GI hormones play critical roles in glucose homeostasis [7]. 73 5-hydroxytryptamine (5-HT, serotonin) is the most prevalent GI hormone which 74 exhibits both central and peripheral functions. More than 90% of 5-HT is synthesized 75 in and released from the enterochromaffin cells (ECCs). Other tissues, such as 76 neurons, adipose tissues and pancreas, only produces a small amount of 5-HT [8]. The 77 initial and rate-limiting step of 5-HT synthesis is catalyzed by the tryptophan 78 hydroxylase (TPH). There are two isoforms of TPHs, TPH1 in the peripheral tissues Page 5 of 57 Diabetes 79 and TPH2 in the central nervous system (CNS) and enteric neurons [9]. 5-HT system 80 possesses complex bioactivities mediated by different types of 5-HT receptor (5HTR) 81 expressed in various tissues. In the CNS, 5-HT acts as a neurotransmitter to regulate 82 appetite, emotions, sleep, and systemic metabolism through sympathetic nervous 83 system (SNS) [10]. The peripheral 5-HT function is relatively less clear compared to 84 its central role. The classical action of peripheral 5-HT includes regulation of GI 85 functions such as motility, secretion, sensation, modulation of platelet coagulation and 86 bone density [11]. Interestingly, obesity increases peripheral 5-HT level [12]. And 87 genetic polymorphism of TPH1 is associated with obesity [13]. Recent studies have 88 found that peripheral 5-HT promotes white adipose tissue (WAT) lipogenesis and 89 inhibits brown adipose tissues (BAT) adaptive thermogenesis [14, 15]. Genetic 90 deficiency or pharmacological inhibition of 5-HT synthesis enzyme TPH1 in mice 91 leads to a resistance to diet-induced obesity and glucose intolerance [14, 15], 92 suggesting that peripheral 5-HT is an important regulator of lipid metabolism and 93 systemic energy homeostasis. 94 In this study, we generated a new strain of ZnT8 knockout mice using TALEN 95 technology. We examined the presence of ZnT8 in enteroendocrine cells (EECs) and 96 its role in 5-HT biogenesis and lipid metabolism using cell biological and transgenic 97 techniques. We also observed an unexpected change in colon morphology, function 98 and microbiota in ZnT8 deficient mice which may contribute to the increased 99 sensitivity of diet-induced obesity and T2DM. Diabetes Page 6 of 57 100 Research Design and Methods 101 Animals 102 ZnT8 knockout mice (Slc30a8-/- mice) were generated by Cyagen Biosciences 103 Inc. (Guangzhou, China). Exon 3 of Slc30a8 gene was selected as the target site. 104 TALEN mRNAs generated by in vitro transcription were then injected into fertilized 105 eggs from C57BL/6N strain for knockout mouse production. The founders were 106 genotyped by PCR followed by DNA sequencing analysis. The positive founders 107 were breeding to the next generation which was genotyped by PCR and DNA 108 sequencing analysis. 109 For high-fat diet (HFD) treatment experiment, male mice (aged 6-8 weeks old) 110 were fed either a normal chow diet (ND) or an HFD (45 % fat calories, Research 111 Diets D12451 or 60 % fat calories, Research Diets D12492). For TPH inhibitor 112 injection experiment, PBS or 4-Chloro-DL-phenylalanine methyl ester hydrochloride 113 (PCPA, C3635, Sigma-Aldrich) (300 mg/kg BW) was administered as a daily 114 intraperitoneal injection. All animal experiments were undertaken with the approval 115 of the Scientific Investigation Board of Health Science Center of Shenzhen University 116 (Shenzhen, Guangdong Province, China). 117 Antibody 118 The rabbit anti-ZnT8 polyclonal antibody was generated against the synthetic 119 mouse ZnT8 peptide (KPVNKDQCPGDRPEHPEAGGIYH, 29-51 aa). The 120 antibodies against insulin, chromogranin A, UCP1, Beta3 AR, GIP and GLP-1 were 121 from Abcam. Anti TH antibody was from Millipore. The tubulin, actin and GAPDH Page 7 of 57 Diabetes 122 antibodies were from Proteintech. The Alexa Fluor 488 and Alexa Fluor 594 dye were 123 obtained from Molecular Probes. The horseradish peroxidase (HRP)-labeled 124 secondary antibody was purchased from Amersham BioSciences (GE Healthcare). 125 Histology and Immunofluorescent staining 126 The dissected tissues were fixed with 4% paraformaldehyde (PFA) in PBS for 16 127 hrs at 4°C. The samples were sequentially dehydrated and embedded in paraffin. Then 128 the tissue samples were sectioned at a 6-μm thickness and were used for standard 129 H&E staining and quantification. The quantification was determined by the Image J 130 software. Immunochemistry/immunofluorescent staining were performed following 131 general protocols. Images were obtained by Nikon Eclipse Ti microscope. 132 Oil Red O staining and PAS staining 133 The frozen liver sections were washed in PBS once and were fixed with 4% PFA 134 in PBS for 15 min at room temperature and then washed three times with PBS. The 135 sections were incubated in the 60% isopropyl alcohol and then stained with filtered 136 Oil Red O solution (1.5 mg/mL) for 30 min and rinsed twice with distilled water. 137 Periodic Acid Schiff (PAS)staining for glycogen in the liver and goblet cells in 138 the colon were performed using the commercial kit (Solarbio, Beijing) following the 139 manual instruction. 140 Oral/intraperitoneal glucose tolerance test (OGTT/IPGTT) 141 ZnT8 group mice were first starved for 16 hrs, followed by an oral glucose 142 infusion or intraperitoneal glucose injection (1.5 g/kg body weight). The blood 143 glucose levels were measured from the tail vein before and at 15, 30, 60, 90 and 120 Diabetes Page 8 of 57 144 min after injection using a glucometer (Accu-check, Roche).
Recommended publications
  • Are Zinc Transporter Type 8 Antibodies a Marker of Autoimmune Thyroiditis in Non-Obese Adults with New-Onset Diabetes?
    A Rogowicz-Frontczak and ZnT8A are associated with ATPO 170:4 651–658 Clinical Study others in diabetes Are zinc transporter type 8 antibodies a marker of autoimmune thyroiditis in non-obese adults with new-onset diabetes? Anita Rogowicz-Frontczak1, Dorota Zozulin´ ska-Zio´ łkiewicz1, Monika Litwinowicz2, Paweł Niedz´wiecki1, Krystyna Wyka3 and Bogna Wierusz-Wysocka1 Correspondence should be addressed to Departments of 1Internal Medicine and Diabetology and 2Internal Diseases, Metabolic Disorders and Dietetics, A Rogowicz-Frontczak Poznan University of Medical Sciences, Mickiewicza 2, 60-834 Poznan, Poland and 3Medical University of Lodz, Email Lodz, Poland [email protected] Abstract Objective: The diagnosis of autoimmune diabetes in non-obese adults is based on the detection of glutamic acid decarboxylase autoantibodies (GADA), islet cell antibodies (ICA) and antibodies to tyrosine phosphatase (IA-2A). Zinc transporter 8 (ZnT8) has been identified as a new autoantigen in patients with type 1 diabetes mellitus. The coincidence of autoimmune thyroiditis (AITD) with diabetes is common; therefore, screening of TSH and thyroid peroxidase antibodies (ATPO) is recommended during the diagnosis of diabetes. In this study, we determined whether the occurrence of islet autoantibodies is associated with a positive titre of ATPO in newly diagnosed adult-onset autoimmune diabetic patients. Design and methods: The study involved 80 non-obese adults aged 44 (interquartile range (IQR): 37–51) years with a BMI of 24.0 (IQR: 22.2–26.0) kg/m2 and new-onset diabetes. The markers of autoimmune diabetes (GADA, ICA, IA-2A and ZnT8A), TSH and thyroid peroxidase antibodies (ATPO) were evaluated. Results: In the study population, 70% (nZ56) of the subjects were positive for at least one of the four assessed markers of autoimmune diabetes (83.9% GADA, 62.5% ICA, 42.8% IA-2A and 33% ZnT8A) and 37.5% of the subjects were positive for ATPO.
    [Show full text]
  • Autism and Gastrointestinal Symptoms Karoly Horvath, MD, Phd and Jay A
    Autism and Gastrointestinal Symptoms Karoly Horvath, MD, PhD and Jay A. Perman, MD Address In the last decade, the focus in autism research migrated Department of Pediatrics, University of Maryland School of Medicine, from psychological studies to exploration of the biologic 22 South Greene Street, N5W70, Box 140, Baltimore, basis of this devastating disorder. Studies using neuro- MD 21201-1595, USA. E-mail: [email protected] imaging and brain autopsy, as well as immunologic, genetic, metabolic, and gastrointestinal research efforts, have Current Gastroenterology Reports 2002, 4:251–258 Current Science Inc. ISSN 1522–8037 resulted in a significant amount of new information. Copyright © 2002 by Current Science Inc. However, this biologic research is still in the evolutionary stage, with many controversies, especially in brain and genetic research. For example, no consensus has been Autism is a collection of behavioral symptoms reached regarding the brain areas responsible for autism. characterized by dysfunction in social interaction and The gastrointestinal tract is an easier target for investi- communication in affected children. It is typically gation than the brain. However, only two studies of associated with restrictive, repetitive, and stereotypic gastrointestinal symptoms in autism were reported prior behavior and manifests within the first 3 years of life. to 1996. In 1971, a report of 15 randomly selected autistic The cause of this disorder is not known. Over the patients described six children who had bulky, odorous, past decade, a significant upswing in research has or loose stools, or intermittent diarrhea, and one with celiac occurred to examine the biologic basis of autism. disease [2].
    [Show full text]
  • A Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
    Diabetologia https://doi.org/10.1007/s00125-020-05181-w CONSENSUS REPORT Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Wendy K. Chung1,2 & Karel Erion3 & Jose C. Florez4,5,6,7,8 & Andrew T. Hattersley9 & Marie-France Hivert5,10 & Christine G. Lee11 & Mark I. McCarthy12,13,14 & John J. Nolan15 & Jill M. Norris16 & Ewan R. Pearson17 & Louis Philipson 18,19 & Allison T. McElvaine20 & William T. Cefalu11 & Stephen S. Rich21,22 & Paul W. Franks23,24 # European Association for the Study of Diabetes and American Diabetes Association 2020 Abstract The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from popu- lations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e.
    [Show full text]
  • Mestrado Thais Cristine
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM IMUNOLOGIA BÁSICA E APLICADA THAIS CRISTINE ARNS Identificação de cascatas gênicas com base na modulação transcricional de células sanguíneas mononucleares periféricas de pacientes com diabetes mellitus do tipo 1 RIBEIRÃO PRETO 2013 THAIS CRISTINE ARNS Identificação de cascatas gênicas com base na modulação transcricional de células sanguíneas mononucleares periféricas de pacientes com diabetes mellitus do tipo 1 Dissertação apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Mestre em Ciências. Área de Concentração: Imunologia Orientador: Prof. Dr. Geraldo Aleixo da Silva Passos Júnior RIBEIRÃO PRETO 2013 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Arns, Thais Cristine Identificação de cascatas gênicas com base na modulação transcricional de células sanguíneas mononucleares periféricas de pacientes com diabetes mellitus do tipo 1. Ribeirão Preto, 2013. 159p. Dissertação de Mestrado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de concentração: Imunologia. Orientador: Passos, Geraldo Aleixo 1. Diabetes do tipo 1, 2. Microarrays, 3. Gene Set Analysis (GSA), 4. Expressão gênica, 5. Bioinformática. FOLHA DE APROVAÇÃO THAIS CRISTINE ARNS Identificação de cascatas gênicas com base na modulação transcricional de células sanguíneas mononucleares periféricas de pacientes com diabetes mellitus do tipo 1 Dissertação apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Mestre em Ciências. Área de Concentração: Imunologia Aprovado em: __________________ Banca Examinadora Prof.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Regulatory Mechanisms of Somatostatin Expression
    International Journal of Molecular Sciences Review Regulatory Mechanisms of Somatostatin Expression Emmanuel Ampofo * , Lisa Nalbach, Michael D. Menger and Matthias W. Laschke Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany; [email protected] (L.N.); [email protected] (M.D.M.); [email protected] (M.W.L.) * Correspondence: [email protected]; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553 Received: 25 May 2020; Accepted: 9 June 2020; Published: 11 June 2020 Abstract: Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease. Keywords: somatostatin; pre-prosomatostatin; δ-cells; central nervous system (CNS); gut; hypothalamus; cAMP resonse element (CRE); pancreas/duodenum homeobox protein (PDX)1; paired box protein (PAX)6; growth hormone (GH); brain-derived neurotrophic factor (BDNF); glutamateric system; pancreas 1.
    [Show full text]
  • Genetics of Type 2 Diabetes: Insights Into the Pathogenesis and Its Clinical Application
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 926713, 15 pages http://dx.doi.org/10.1155/2014/926713 Review Article Genetics of Type 2 Diabetes: Insights into the Pathogenesis and Its Clinical Application Xue Sun,1 Weihui Yu,2 and Cheng Hu1,3 1 Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2 Department of Endocrinology and Metabolism, Wenzhou Medical University Affiliated First Hospital, Wenzhou 325000, China 3 Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, South Branch, Shanghai 200233, China Correspondence should be addressed to Cheng Hu; [email protected] Received 7 March 2014; Accepted 22 March 2014; Published 17 April 2014 Academic Editor: Jiarui Wu Copyright © 2014 Xue Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. With rapidly increasing prevalence, diabetes has become one of the major causes of mortality worldwide. According to the latest studies, genetic information makes substantial contributions towards the prediction of diabetes risk and individualized antidiabetic treatment. To date, approximately 70 susceptibility genes have been identified as being associated with type 2 diabetes (T2D) ata −8 genome-wide significant level (<5×10 ). However, all the genetic loci identified so far account for only about 10% of the overall heritability of T2D. In addition, how these novel susceptibility loci correlate with the pathophysiology of the disease remains largely unknown.
    [Show full text]
  • Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes
    nutrients Review Targeting the Zinc Transporter ZIP7 in the Treatment of Insulin Resistance and Type 2 Diabetes John Adulcikas, Sabrina Sonda, Shaghayegh Norouzi, Sukhwinder Singh Sohal and Stephen Myers * College of Health and Medicine, School of Health Sciences, University of Tasmania, TAS 7005, Australia; [email protected] (J.A.); [email protected] (S.S.); [email protected] (S.N.); [email protected] (S.S.S.) * Correspondence: [email protected]; Tel.: +61-3-6324-5459 Received: 20 December 2018; Accepted: 12 February 2019; Published: 15 February 2019 Abstract: Type 2 diabetes mellitus (T2DM) is a disease associated with dysfunctional metabolic processes that lead to abnormally high levels of blood glucose. Preceding the development of T2DM is insulin resistance (IR), a disorder associated with suppressed or delayed responses to insulin. The effects of this response are predominately mediated through aberrant cell signalling processes and compromised glucose uptake into peripheral tissue including adipose, liver and skeletal muscle. Moreover, a major factor considered to be the cause of IR is endoplasmic reticulum (ER) stress. This subcellular organelle plays a pivotal role in protein folding and processes that increase ER stress, leads to maladaptive responses that result in cell death. Recently, zinc and the proteins that transport this metal ion have been implicated in the ER stress response. Specifically, the ER-specific zinc transporter ZIP7, coined the “gate-keeper” of zinc release from the ER into the cytosol, was shown to be essential for maintaining ER homeostasis in intestinal epithelium and myeloid leukaemia cells. Moreover, ZIP7 controls essential cell signalling pathways similar to insulin and activates glucose uptake in skeletal muscle.
    [Show full text]
  • The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions Of
    The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Yuli Hu April 2021 © 2021 Yuli Hu. All Rights Reserved. 2 This thesis titled The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells by YULI HU has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Yang V. Li Professor of Biomedical Sciences Florenz Plassmann Dean, College of Arts and Sciences 3 Abstract YULI HU, M.S., April 2021, Biological Sciences The Effect of Acid on the Dynamics of Intracellular Zinc and the Marker Expressions of Pluripotency in Somatic Cells Director of Thesis: Yang V. Li Microenvironmental pH is one of the factors that affect the stability of zinc- protein binding. The tight binding between zinc and proteins is favored by the basic pH, whereas acidic pH favors a loose bound, and treatment of strong acid results in the dissociation of zinc. Physiologically, the stomach uses a very acidic pH to digest food which results in a high amount of soluble zinc in the stomach. Whether or not zinc co- present with acid and the effect of zinc on the gastric lining has rarely been discussed. In my experiments, acidic treatment induced the expression of a pluripotent marker in primary cultured gastric cells. It also stimulated the release of intracellular zinc, suggesting that acidic pH supported protein expression through dynamic zinc regulation.
    [Show full text]
  • Transporters
    Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences,
    [Show full text]
  • Gene Expression and Profiling of Human Islet Cell Subtypes: a Master’S Thesis
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2012-07-25 Gene Expression and Profiling of Human Islet Cell Subtypes: A Master’s Thesis David M. Blodgett University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Amino Acids, Peptides, and Proteins Commons, Cell and Developmental Biology Commons, Digestive System Commons, Endocrine System Commons, Genetic Phenomena Commons, Genetics and Genomics Commons, Hormones, Hormone Substitutes, and Hormone Antagonists Commons, and the Nucleic Acids, Nucleotides, and Nucleosides Commons Repository Citation Blodgett DM. (2012). Gene Expression and Profiling of Human Islet Cell Subtypes: A Master’s Thesis. GSBS Dissertations and Theses. https://doi.org/10.13028/q4t8-jf51. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/627 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. GENE EXPRESSION AND PROFILING OF HUMAN ISLET CELL SUBTYPES A Master’s Thesis Presented By DAVID MICHAEL BLODGETT Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN CLINICAL INVESTIGATION 25-JULY-2012 DEPARTMENT OF MEDICINE – DIABETES DIVISION ii GENE EXPRESSION AND PROFILING OF HUMAN ISLET CELL SUBTYPES A Master’s Thesis Presented By DAVID MICHAEL BLODGETT The signatures of the Master’s Thesis Committee signify completion and approval as to style and content of the Thesis Klaus Pechhold, M.D., Chair of Committee Anthony Carruthers, Ph.D., Member of Committee Philip DiIorio, Ph.D., Member of Committee Sally Kent, Ph.D., Member of Committee David M.
    [Show full text]
  • Cholecystokinin and Somatostatin Negatively Affect Growth of the Somatostatin-RIN-14B Cells
    Hindawi Publishing Corporation International Journal of Endocrinology Volume 2009, Article ID 875167, 6 pages doi:10.1155/2009/875167 Research Article Cholecystokinin and Somatostatin Negatively Affect Growth of the Somatostatin-RIN-14B Cells Karim El-Kouhen and Jean Morisset Service de Gastroentr´eologie, D´epartement de M´edecine, Facult´edeM´edecine, Universit´edeSherbrooke, Sherbrooke, QC, Canada J1H 5N4 Correspondence should be addressed to Karim El-Kouhen, [email protected] Received 14 May 2008; Revised 3 September 2008; Accepted 29 September 2008 Recommended by Andre Marette With the exclusive presence of the pancreatic CCK-2 receptors on the pancreatic delta cells of six different species, this study was undertaken to determine the role of cholecystokinin and gastrin on growth of these somatostatin (SS) cells. For this study, the SS-RIN-14B cells were used in culture and their growth was evaluated by cell counting. Results. To our surprise, we established by Western blot that these RIN cells possess the two CCK receptor subtypes, CCK-1 and CCK-2. Occupation of the CCK-1 receptors by caerulein, a CCK analog, led to inhibition of cell proliferation, an effect prevented by a specific CCK-1 receptor antagonist. Occupation of the CCK-2 receptors by the gastrin agonist pentagastrin had no effect on cell growth. Proliferation was not affected by SS released from these cells but was inhibited by exogenous SS. Conclusions. Growth of the SS-RIN-14B cells can be negatively affected by occupation of their CCK-1 receptors and by exogenous somatostatin. Copyright © 2009 K. El-Kouhen and J. Morisset. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]