Gene Doping and Sport Next Generation of Illegal Doping, and Doping Detection, in Sport

Total Page:16

File Type:pdf, Size:1020Kb

Gene Doping and Sport Next Generation of Illegal Doping, and Doping Detection, in Sport POLICYFORUM ETHICS Advances in gene therapy set the stage for the Gene Doping and Sport next generation of illegal doping, and doping detection, in sport. Theodore Friedmann, 1* Olivier Rabin, 2 Mark S. Frankel 3† e humans have long sought to severe adverse events such as lar identifi cation of foreign erythropoietin, enhance ourselves beyond nor- treatment-induced leukemia, and detection of abnormally high erythro- Wmal through cosmetic surgery or even deaths ( 17– 19). Nev- cyte production following exogenous eryth- and drugs. Science is increasingly becoming ertheless, it is inevitable that, ropoietin exposure). Although this is the humanity’s partner and handmaiden in those as the science and techniques most direct approach, new assays are con- efforts ( 1) and has added genetic manipulation mature, these same methods stantly needed to respond to chemical modi- to our enhancement tool kit. Many forms of and concepts will be applied fi cations that make some drugs more diffi - human enhancement are becoming more fea- to broader nontherapeutic cult to detect, and therefore more prone to sible, sought-after, and even justifi able in the uses, including gene-based doping abuse. quest for healthier, happier, and longer lives. “enhancement” of human A potentially more powerful detection Around the world, people have been traits linked to sport. method has emerged, based on the concept exposed to the notion of human enhancement Toward that end, genetic methods have that chemical, biological, or genetic dop- through sport, as some athletes seek a boost to been used, for instance, to demonstrate ing agents are likely to produce broad meta- success, stardom, and fi nancial reward. In the enhanced muscle function from the insulin- bolic, genetic, and proteomic changes. These past, doping and cheating in sport have been like growth factor (IGF-1) or follistatin trans- changes are now detectable by techniques enabled by advances in pharmacology and genes ( 20, 21) and stably increased, regulat- such as microarray- or sequence-based tran- physiology. Recently, the successful develop- able, erythropoietin-enhanced blood pro- scriptional profiling and proteomic and ment of gene therapy has provided the con- duction in primates ( 22). One of the most metabolomic analyses that can defi ne molec- on June 17, 2013 cepts, tools, opportunity, and, for some, justi- widely discussed transcriptional modula- ular “signatures” of exposure to specifi c dop- fi cation for genetic modifi cation of functions tion approaches has involved small molecule ing agents, or families of drugs, or methods. that affect normal human traits, including modulators of peroxisomal proliferator-acti- Such signatures may be used to identify per- athletic performance. This intersection of sci- vated receptor delta (PPAR-δ), which regu- turbed physiological systems, even in the ence and sport raises fundamental ethical and lates expression of genes involved in lipid absence of knowledge of, or assays for, spe- policy issues that neither domain can resolve metabolism, energy utilization, and insulin cifi c doping agents. This approach is similar absent a broader societal conversation ( 2). As action and that increases the production of to that commonly used in searches for molec- science progresses and sport and antidoping slow twitch oxidative energy-effi cient mus- ular signatures of oncogenesis, developmen- www.sciencemag.org authorities express increasing concerns, the cle fi bers. These effects have important impli- tal disorders, and so on ( 26, 27). time is right to look at how advances in genet- cations for therapy of diabetes, obesity, and Highly concerned by the risk of gene dop- ics are affecting sport in ways unexpected just muscle disease. Furthermore, mice overex- ing, the World Anti-Doping Agency (WADA) a decade ago. pressing a PPAR-δ transgene or treated with ( 28), which has retained gene doping in its list a PPAR-δ agonist show enhanced endurance of prohibited substances and methods since Genetic Manipulation for Doping performance ( 23). 2004, has sponsored international research Some early experimental studies illustrate Not surprisingly, these scientific teams with early results providing growing the potential of gene therapy for treating dis- approaches are known in sport communities credence to the utility of molecular signatures Downloaded from eases ( 3– 8). Although most gene therapy and are coming temptingly close to human in doping detection. For instance, exposure of approaches involve gain-of-function expres- doping. A German athletic coach was found murine myoblasts to IGF-1 has been shown to sion of exogenous transgenes, other methods attempting to obtain Repoxygen, a gene- induce transcriptional and proteomic changes for genetic modifi cation have also emerged transfer vector that induces expression of the that may eventually constitute a “signature” ( 9– 15). A defi nitive approach to genetic mod- erythropoietin gene ( 24). A Chinese genet- specifi c for exogenous IGF-1 exposure ( 29, ifi cation for therapy would involve an emerg- ics laboratory reportedly offered gene-based 30). Of course, the application of these kinds ing technology of site-specific sequence manipulations before the 2008 Olympic of global assays would require rigorous vali- correction of disease-causing mutations, as Games in Beijing ( 25). It is not clear whether dation of a connection with specifi c doping through the use of zinc finger–associated these or other similar attempts reached the agents or methods. recombinational methods ( 16). stage of actual use in human athletes, but Although highly effective in some mod- there seem to be few technical barriers stand- Marketing Gene Doping els, these gene therapy techniques are imper- ing in the way. The challenges posed to sports organizations fect and still highly risky, as demonstrated by concerned with gene doping are compounded Genetic Tools for Doping Detection by the ubiquity of the Internet, relatively 1University of California at San Diego, La Jolla, CA 92093, Traditional approaches to detection of dop- unconstrained by geographical boundaries, 2 USA. World Anti-Doping Agency (WADA), Montreal, Que- ing in sport have been based on chemical or which, when fueled with private commer- bec H4Z 1B7, Canada. 3American Association for the Advancement of Science, Washington, DC 20005, USA. molecular detection of the doping agent or of cial interests, creates a powerful marketing markers refl ecting the physiological or met- tool for promotion and distribution of per- *T.F. is chair of WADA’s Gene Doping Expert Group and has performed research sponsored by WADA. abolic effect(s) of the agent (e.g., chemical formance-enhancing agents. An industry has CREDIT: ADAPTED FROM ISTOCKPHOTO.COM CREDIT: †Author for correspondence. E-mail: [email protected] assays for steroids and stimulants, molecu- emerged to cater to the desire of athletes and www.sciencemag.org SCIENCE VOL 327 5 FEBRUARY 2010 647 Published by AAAS POLICYFORUM their coaches to fi nd a competitive edge. cal research. They also must be aware that 20. S. Lee, E. R. Barton, H. L. Sweeney, R. P. Farrar, Viral expression of insulin-like growth factor-I enhances Athletes are an especially vulnerable some athletes and coaches will be tempted, muscle hypertrophy in resistance-trained rats. J. Appl. population in the marketing of performance prematurely and unwisely, to take advantage Physiol. 96, 1097 (2004). enhancement ( 31). Reputable athletes or of results packaged by some as performance 21. J. Kota et al, Sci. Transl. Med. 1, 6ra15 (2009). coaches with little knowledge of genetics are at enhancement “breakthroughs,” even if they 22. V. M. Rivera et al., Long-term pharmacologically regu- lated expression of erythropoietin in primates following a disadvantage in assessing “scientifi c” claims are untested in humans and the only “break- AAV-mediated gene transfer. Blood 105, 1424 (2005). that appear in advertisements. Marketing is through” is faster or stronger mice ( 40, 41). 23. V. A. Narkar et al., AMPK and PPARdelta agonists are particularly worrisome when the science is exercise mimetics. Cell 134, 405 (2008). 24. DW-World, Deutsche-Welle, www.dw-world.de/dw/ still a work in progress, when a person’s health References and Notes article/0,2144,1890782,00.html can be adversely affected, and when consumer 1. E. A. Williams, Good, Better, Best: The Human Quest 25. Associated Press, 23 July 2009, www.msnbc.msn.com/ knowledge about genetics is low. Although for Enhancement, Washington, DC, 1 and 2 June 2006 id/25816605/. (Workshop summary report, AAAS, Washington, DC, 26. F. J. Rauscher, 3rd, The year ahead. Cancer Res. 69, 1 advertisements promoting products that prom- 2007); www.aaas.org/spp/sfrl/projects/human_enhance- (2009). ise to enhance athletic performance have per- ment/pdfs/HESummaryReport.pdf. 27. A. Anguiano et al., Gene expression profi les of tumor vaded the Internet for many years, recently it 2. There have long been divergent views of sport doping biology provide a novel approach to prognosis and may has become home for advertisements that pro- and the value of antidoping regulation ( 41). Some com- guide the selection of therapeutic targets in multiple mentators have addressed how the use of performance- myeloma. J. Clin. Oncol. 27, 4197 (2009). mote products to “alter muscle genes…by acti- enhancing drugs in sports and their regulation have 28. Established in 1999, WADA has been the principal agency vating your genetic machinery” ( 32), or that adversely affected fair competition ( 42). Others have responsible for antidoping activities in sport. Responsive state “your genetic limitations are a thing of the suggested that drug- or gene-based doping causes little to initiatives and requests from various stakeholders, 33 or no harm to athletes, sport, and public policy and that WADA establishes global antidoping rules following past!” ( ) or “Finally, every bodybuilder can the controversies surrounding doping could readily be extensive consultation processes with international sports be genetically gifted!” ( 34). obviated by simply carrying out doping under medical federations, and governments of the world. More than supervision ( 43).
Recommended publications
  • Olympic Doping
    Even some Olympic athletes cheat with drugs | Science News for Students 3/16/20, 6:42 AM HEALTH & MEDICINE Even some Olympic athletes cheat with drugs As new ways of doping emerge, scientists develop ways to catch the cheaters Athletes train to get stronger, run faster and jump higher. But some may turn to an illegal short-cut: performance-enhancing drugs. Scientists are working to find these cheaters. JACOB AMMENTORP LUND/ISTOCKPHOTO By Sarah Zielinski August 15, 2016 at 6:00 am MANCHESTER, England — Keen viewers of the Rio Olympics this week may notice that one country’s team is a lot smaller than usual. Russia brought only about 70 percent of the athletes it had expected would compete. Some 30 percent — including all weightlifters and all but one track and field athletes — were banned from the competition. The reason? They were caught up in a cheating scandal. The type of cheating these athletes had participated in is known as “doping.” It involves the use of drugs to improve performance. These drugs have medical purposes for people who are ill. But in healthy athletes, they can provide an illegal advantage by boosting muscle growth or offering other benefits. And it’s not just using these substances that can get an athlete in trouble. Athletes also can get banned for refusing to participate in (or tampering with) efforts to find others who use doping drugs. The Russian scandal involved an elaborate plot to https://www.sciencenewsforstudents.org/article/even-some-olympic-athletes-cheat-drugs Page 1 of 5 Even some Olympic athletes cheat with drugs | Science News for Students 3/16/20, 6:42 AM interfere with these tests.
    [Show full text]
  • Gene… Sport Science 14 (2020) Suppl 1: 18-23
    Mazzeo, F., et al.: New technology and no drugs in sport: gene… Sport Science 14 (2020) Suppl 1: 18-23 NEW TECHNOLOGY AND NO DRUGS IN SPORT: GENE DOPING REGULATION, EDUCATION AND RESEARCH Filomena Mazzeo1 and Antonio Ascione2 1Department of Sport Sciences and Wellness, Parthenope University, Naples, Italy 2University of Bari “Aldo Moro”, Italy Review paper Abstract This article examines the current state of genetic doping, the use of gene therapy in sports medicine, and the ethics of genetic improvement. The purpose of gene therapy is to use the foundations of genetic engineering for therapeutic use. Gene doping is a expansion of gene therapy. Innovative research in genetics and genomics will be used not only to diagnose and treat disease, but also to increase endurance and muscle mass. The first genetic therapy tests were conducted with proteins closely related to doping (e.g. erythropoietin and growth hormone). The World Anti-Doping Agency (WADA), an international organization created in 1999 to "promote, coordinate, and monitor the fight against doping in sport in all its forms," defines gene doping as the "nontherapeutic use of cells, genes, genetic elements, or modulation of gene expression, having the capacity to enhance performance" (World Anti-Doping Agency, 2008). This method represents a new Technology, but not devoid of adverse and fatal effects; gene doping could be dangerous for the athlete. The use of the athlete's biological-molecular passport represents a possible preventive and precautionary anti-doping strategy. The best way to prevent gene doping is a combination of regulation, education, research and the known of health risks.
    [Show full text]
  • Development of Doping in Sports: Overview and Analysis
    Journal of Physical Education and Sport ® (JPES), 18(3), Art 244, pp. 1669 - 1677, 2018 online ISSN: 2247 - 806X; p-ISSN: 2247 – 8051; ISSN - L = 2247 - 8051 © JPES Original Article Development of Doping in sports: overview and analysis FILOMENA MAZZEO1, GAETANO ALTAVILLA2, FRANCESCA D’ELIA3, GAETANO RAIOLA3 1Department of Science and Technology University of Naples “Parthenope”, Naples, ITALY 2Faculty of Kinesiology, University of Split, Split CROATIA 3Department of Human Philosophical and Education sciences, University of Salerno, ITALY Published online: September 30, 2018 (Accepted for publication August 10, 2018) DOI:10.7752/jpes.2018.03244 Abstract: Doping is a public health issue and not simply a problem inside the professional sports community It is a complex and ancient phenomenon considering the vast variety of substances, supplied through both legal and illegal trading routes. It occurs in elite athletes but also affects amateur athletes and was generally considered as dangerous and unhealthy. Furthermore, it involves athletes’ friends and relatives, medical staff, managers, chemists, biologists and pharmacists, pharmaceutical industries, clandestine laboratories and criminal organizations. Over time, doping has shown a great ability to discover and always use new substances and appropriated the new scientific discoveries. Unfortunately, new discoveries for the human health are been used in distorted way by the athletes. In fact, the athletes may be able to use gene therapy to re-engineer their bodies for better performances. Drug dependence depends on several factors: the socio-environmental context of the subject and what effects have the substance in the body. We will agree that sport is essentially under the current anti-doping campaign executed by a coordinated alliance between the World Anti-Doping Agency (WADA), law enforcement authorities, sports organizers and the media.
    [Show full text]
  • Gene Doping Detection Based on Polymerase Chain Reaction (PCR)
    Laboratory Guidelines Gene Doping Detection based on Polymerase Chain Reaction (PCR) Version 1.0 January 2021 TABLE OF CONTENTS 1.0 Objective ......................................................................................................................... 3 2.0 Scope .............................................................................................................................. 3 3.0 Introduction .................................................................................................................... 3 4.0 Test Requirements ........................................................................................................ 3 4.1. Test Method Validation Requirements ..................................................................................... 3 4.2. Test Method Accreditation Requirements ................................................................................ 4 4.3. Pre-analytical Procedure ......................................................................................................... 4 4.4. Analytical Testing Procedure ................................................................................................... 5 4.4.1. Initial Testing Procedure (ITP) .......................................................................................... 5 4.4.2. Confirmation Procedures (CPs) ........................................................................................ 6 5.0 Interpretation and Reporting of Results .....................................................................
    [Show full text]
  • Illegal Manipulation of Your Body
    ES.010 Chemistry of Sports Illegal manipulation of your body Schedule of events for today: 1. Update on workout on Thursday – in the pool 4 pm. 2. Drugs in sports 3. Introduction to Wind tunnel testing – preview of next week’s class with Kim Blair. Drugs in Sports • Blood Doping, Artificial • THG Oxygen Carriers and • Human Chorionic Erythropoietin (EPO) Gonadotrophin (HCG) • Human Growth Hormone • Adrenocorticotropic Hormone • Anabolic Steroids (ACTH) • Insulin-like Growth Factor • Beta-2-Agonists (IGF-1) • Hormone Antagonists and • Cocaine Modulators • Caffeine • Diuretics • Narcotics • Gene Doping • Cannabinoids • Amphetamines Why do Athletes Take Drugs? There are a large number of reasons why an athlete may decide to take drugs. A selection are listed here: • Pressure to succeed, either from themselves or coaches/family and sponsors (major reason) • Belief that their competitors are taking drugs • Pressure from governments/national authorities (as occurred in the eastern bloc countries in the 60's and 70's) • Financial rewards for outstanding performance • Lack of access to, or funding for training facilities and additional support (nutrition, psychological support) • Community and media attitudes and expectations of success Reference:http://www.teachpe.com/drugs/drugs.php. Drugs in Sports • Blood Doping and Erythropoietin • THG (EPO) • Human Chorionic Gonadotrophin • Human Growth Hormone (HCG) • Anabolic Steroids • Adrenocorticotropic Hormone • Insulin-like Growth Factor (IGF- (ACTH) 1) • Beta-2-Agonists • Cocaine • Hormone Antagonists
    [Show full text]
  • A Behavioral Law and Economics Approach to Legal Regulation of Doping in Sports Shayna M
    Marquette Sports Law Review Volume 19 Article 7 Issue 1 Fall Are We All Dopes? A Behavioral Law and Economics Approach to Legal Regulation of Doping in Sports Shayna M. Sigman Follow this and additional works at: http://scholarship.law.marquette.edu/sportslaw Part of the Entertainment and Sports Law Commons Repository Citation Shayna M. Sigman, Are We All Dopes? A Behavioral Law and Economics Approach to Legal Regulation of Doping in Sports, 19 Marq. Sports L. Rev. 125 (2008) Available at: http://scholarship.law.marquette.edu/sportslaw/vol19/iss1/7 This Symposium is brought to you for free and open access by the Journals at Marquette Law Scholarly Commons. For more information, please contact [email protected]. ARE WE ALL DOPES? A BEHAVIORAL LAW & ECONOMICS APPROACH TO LEGAL REGULATION OF DOPING IN SPORTS SHAYNA M. SIGMAN* INTRODUCTION You should care about the prevalence of performance-enhancing drugs (PEDs) and doping methods currently being used and abused within elite sports. You should care, not because teenagers and youth are harmed by this, even though they most likely are. 1 You should care, not because elite athletes or those attempting to become elite athletes are harmed by this, even though they most likely are. 2 Whether you are a recreational athlete or a couch potato, whether you are a serious sports fan, a casual fan, or not a fan at all, you should care about the fact that it is highly likely that you have been harmed by doping in sports. Associate Professor of Law, Jacob D. Fuchsberg Touro Law Center.
    [Show full text]
  • World Anti Doping Agency (WADA)
    PROJECT REVIEW “Development of a Prototype Blood-Based Test for Endogenous Erythropoietin Activity Based on Transcriptional Profiling” J. Rupert, D. McKenzie (University of British Columbia, Vancouver, Canada) We are developing a test for exogenous erythropoietin (epo) activity based on transcriptional profiling. This test would work for any method of Epo abuse, including gene doping. Epo, a hormone used to treat anaemia by stimulating red blood cell maturation, is frequently used by endurance athletes to boost their aerobic capacity. Treating anaemia with recombinant Epo is costly and gene therapy (in which the Epo gene is inserted into cells and stimulated to produce the hormone) is a promising alternative. Gene therapy has the potential to revolutionize medicine, but unfortunately many experts believe that illicit application of this technology to performance enhancement is inevitable and that Epo will likely be in the vanguard of this threat. Epo produced by a gene injected into athletes to augment normal production would be identical to the natural product and undetectable by current testing methods; however, the biological pathway of which Epo is part (the response to hypoxia) is complex and involves the coordinate regulation of genes in a variety of distinct, but related pathways. Selectively stimulating only the Epo pathway would not have the same system-wide effects as the natural stimulation of entire hypoxia pathway. Distinguishing between the augmented and the natural response would be possible by comparing transcriptional profiles, which represent the total complement of RNA transcripts (the intermediates that transmit instructions from the genes to the body) in the tissue. In our project, Serial Analysis Gene Expression is being used to compare the transcriptional profile of the hypoxia response to that of foreign Epo activity.
    [Show full text]
  • The Ethics of Gene Doping
    l Rese ca arc ni h li & C B Dierickx et al., J Clinic Res Bioeth 2012, 3:2 f Journal of o i o l e a DOI: 10.4172/2155-9627.1000136 t h n r i c u s o J Clinical Research & Bioethics ISSN: 2155-9627 Research Article Open Access The Ethics of Gene Doping: A Survey of Elite Athletes and Academic Professionals Kris Dierickx1*, Seppe Deckx2 and Kristien Hens1 1Centre for Biomedical Ethics and Law, Kapucijnenvoer 35/3 Box 7001, 3000 Leuven, Belgium 2Afdeling Adapted Physical Activity en Psychomotorische Revalidatie, Tervuursevest 101 Box 1500, 3001 Heverlee, Belgium Abstract With the advent of genome-wide association studies more is known about genes that influence performance and health-related fitness. Gene therapy has the potential to be abused for performance gain by athletes. This is called gene doping. At the moment there is little known about the opinions of athletes and professionals with regard to the use of gene doping for performance gain. Therefore we found it useful to query the opinions of elite athletes at the Catholic University of Louvain and the professors working at the Faculty of Kinesiology and Rehabilitation Sciences. We received 75 questionnaires, corresponding to a response rate of 56%. We used SAS Enterprise Guide 4 for the statistical analysis. We performed a frequency analysis and the data were tested using a bilateral Wilcoxon-Mann- Whitney U test at a significance level of 0.05 to check for differences. We found that a majority of the respondents had already heard of gene doping.
    [Show full text]
  • Detection of Multiple Transgene Fragments in a Mouse Model of Gene Doping Based on Plasmid Vector Using Taqman-Qpcr Assay
    G C A T T A C G G C A T genes Article Detection of Multiple Transgene Fragments in a Mouse Model of Gene Doping Based on Plasmid Vector Using TaqMan-qPCR Assay 1, 2, 3 1, Takehito Sugasawa y, Kai Aoki y, Kouki Yanazawa and Kazuhiro Takekoshi * 1 Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; [email protected] 2 Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; fi[email protected] 3 Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-29-853-3389 These authors contributed equally to this work. y Received: 21 May 2020; Accepted: 3 July 2020; Published: 6 July 2020 Abstract: The World Anti-Doping Agency has prohibited gene doping in the context of progress in gene therapy. There is a risk that the augmentation of genes using plasmids could be applied for gene doping. However, no gold standard method to detect this has been established. Here, we aimed to develop a method to detect multiple transgene fragments as proof of gene doping. Firstly, gene delivery model mice as a mimic of gene doping were created by injecting firefly luciferase plasmid with polyethylenimine (PEI) into the abdominal cavity. The results confirmed successful establishment of the model, with sufficient luminescence upon in vivo imaging.
    [Show full text]
  • Prohibited List 2021
    WORLD ANTI-DOPING CODE INTERNATIONAL STANDARD PROHIBITED LIST 2021 This List shall come into effect on 1 January 2021. TABLE OF CONTENTS Please note that the list of examples of medical conditions below is not inclusive. SUBSTANCES & METHODS PROHIBITED AT ALL TIMES S0 Non-approved substances ..................................................................................4 S1 Anabolic agents ...................................................................................................5 Some of these substance(s) may be found, without limitation, in medications used for the treatment of e.g. male hypogonadism. S2 Peptide hormones, growth factors, related substances, and mimetics ...........7 Some of these substance(s) may be found, without limitation, in medications used for the treatment of e.g. anaemia, male hypogonadism, growth hormone deficiency. S3 Beta-2 agonists ...................................................................................................9 Some of these substance(s) may be found, without limitation, in medications used for the treatment of e.g. asthma and other respiratory disorders. S4 Hormone and metabolic modulators ...............................................................10 Some of these substance(s) may be found, without limitation, in medications used for the treatment of e.g. breast cancer, diabetes, infertility (female), polycystic ovarian syndrome. S5 Diuretics and masking agents ..........................................................................12 Some of these substance(s) may
    [Show full text]
  • The Emergence of Gene-Doping
    VOLUME XXI NUMBER 3 SUMMER 2008 ENHANCEMENT IN SPORT – THE These kinds of genetic approaches to justified in the world of sport, where EMERGENCE OF GENE-DOPING therapy have begun to demonstrate life- competitive pressures, medical injuries, Mark S. Frankel saving results. For instance, children financial incentives such as huge salaries suffering from lethal forms of genetic and lucrative endorsement deals, national Mark S. Frankel, Ph.D., is Director of immune deficiencies have had their pride, and public adulation coalesce to the AAAS Program on Scientific immune defects corrected by the create the “perfect storm” for Freedom, Responsibility and Law, the introduction of normal forms of several performance enhancement. editor of PER, and was on the program genes into their blood cells. Many of committee for the WADA Symposium on them have lived normal childhood lives One recent example from the laboratory Gene Doping held in St. Petersburg, for as long as seven-to-eight years since has made the prospect of gene doping Russia, June 2008. the treatment. However, to underscore the increasingly likely. In July, researchers experimental and potentially dangerous at the Salk Institute in San Diego While many of the grand nature of the technology, several of the reported that they had used two drugs to accomplishments by extraordinary children have developed leukemia as a alter energy metabolism and the pattern athletes at the 2008 Olympics took our direct result of their treatment, and one of of muscle fibers in mice. This had the breath away, there are still those holding them has died [2]. effect of enabling the mice to run faster their breaths, hoping that the dazzling and longer than normal.
    [Show full text]
  • Athlete Biological Passport: Practical Application in Sports J Kumaravel1, Dhruv Mahendru2, Vidya M Mahalmani3, Phulen Sarma4, Ajay Prakash5, Bikash Medhi6
    REVIEW ARTICLE Athlete Biological Passport: Practical Application in Sports J Kumaravel1, Dhruv Mahendru2, Vidya M Mahalmani3, Phulen Sarma4, Ajay Prakash5, Bikash Medhi6 ABSTRACT The role of athlete biological passport (ABP) is the longitudinal tracking of the doping biomarkers. There are three modules of this program: hematological, steroidal, and endocrinological. As of now, only the first two modules have been executed. The ABP program has become stronger since the introduction of the hematological module and is a vital instrument to combat doping malpractices. Since the ABP program focuses on the longitudinal tracking of various parameters that are affected by the use of performance-enhancing substances, it may be called an indirect tool for the detection of doping. The Athlete Passport Management Unit (APMU) linked with the laboratories performing the antidoping testing takes care of the administrative side of this program for ensuring an unbiased analysis of the outcomes after the evaluation of the passport. The results of the ABP profile of an athlete might be influenced due to some factors leading to misinterpretation of the data, which is a challenge for the authorities and needs to be looked upon. It is an important tool in the fight against doping. Recent developments in metabolomics show the ABP’s tremendous potential. ABP’s further progress with close analysis of biological parameters is now the most effective approach to stop athletes using undetectable banned substances. Keywords: Antidoping, Athlete biological passport, Athlete passport management unit, Challenges, Modules. Journal of Postgraduate Medicine, Education and Research (2020): 10.5005/jp-journals-10028-1380 INTRODUCTION 1–6Department of Pharmacology, Postgraduate Institute of Medical Doping has been a major concern threatening the integrity of Education and Research, Chandigarh, India sports and requires serious attention.
    [Show full text]