Toward Topic Search on the Web
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retail for Lease 2987 Granville Street Vancouver, British Columbia
RETAIL FOR LEASE 2987 GRANVILLE STREET VANCOUVER, BRITISH COLUMBIA Exceptional Yaletown Retail Opportunity CONTACT US Mario Negris Nolan Toigo Personal Real Estate Corporation Sales Representative Executive Vice President +1 778 372 3938 +1 604 662 3000 [email protected] [email protected] URBAN | PROPERTIES | GROUP WEST 5TH AVENUE UNO LANGANN INE ART AVAILABLE TAL SHOP CHEESECAE ETC. IRA HAA SPA ATINSONS WEST 6TH AVENUE UNER CONSTRUCTION ASTERPIECE PAULS PLACE OLETTERY ART|ANTIUES|ESIGN URBAN ITNESS ARARAT RUGS SCOTT ART RAIN SONS ART AVYAN CARPETS CANAIAN CANNABIS CANCER RESERACH ASTERS GALLERY HEEL INE ART STARBUCS AUCTION GALLERY WEST 7TH AVENUE VACANT INUSTRIAL REVOLUTION ONA NELLIS IAN TAN GALLERY AVAILABLE CACHE COUTURE VANCOUVER HAIR ACAEY URBAN BARN OUGLAS REYNOLS GALLERY SUYA HOE ECOR ALISON BOUTIUE THE BRIC GRANVILLE STREET AVAILABLE WEST 8TH AVENUE STRUCTUBE PA PAYRY RUG VILLA BEAU INTERIORS VERANAH ANTIUES CALIORNIA CLOSETS URBANITY SG P GALLERY ALLURE NAILS SPA UBREAITII RESH SLICE LE SALON HAE SOE SHOP URBATO GALLERY RE RUBY HAIR STUIO RBC AVAILABLE WEST BROADWAY BLEN COEE CONALS RESTAURANT CHOW SANG INIGO 2 LEVELS EWELLERY E3 URNITURE BURRITO CURRENCY STARBUCS ECHANGE SUSHI VAN GRANVILLE GREEN RHINO EICAL CLINIC IREHALL CANNABIS VANCOUVER SHOE REPAIR PHARASAVE RESTORATION HARWARE PUBLIC LIBRARY EWAR CHAPAN WOAN W 10TH AVENUE BAN O ONTREAL POTTERY BARN AVAILABLE 2 LEVELS ASON . REE PEOPLE AS BEER WINE SPIRITS SOT OC THE ARUIS HOUSE O NIVES ASHIA OE ASHION ROOTS ECCO STARBUCS COEE EYES OR YOU LUSSO BABY WIRELESS -
Objective Assessment of Cerebellar Ataxia: a Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N
www.nature.com/scientificreports OPEN Objective Assessment of Cerebellar Ataxia: A Comprehensive and Refned Approach Bipasha Kashyap1 ✉ , Dung Phan1, Pubudu N. Pathirana1, Malcolm Horne2, Laura Power3 & David Szmulewicz2,3,4 Parametric analysis of Cerebellar Ataxia (CA) could be of immense value compared to its subjective clinical assessments. This study focuses on a comprehensive scheme for objective assessment of CA through the instrumented versions of 9 commonly used neurological tests in 5 domains- speech, upper limb, lower limb, gait and balance. Twenty-three individuals diagnosed with CA to varying degrees and eleven age-matched healthy controls were recruited. Wearable inertial sensors and Kinect camera were utilised for data acquisition. Binary and multilabel discrimination power and intra-domain relationships of the features extracted from the sensor measures and the clinical scores were compared using Graph Theory, Centrality Measures, Random Forest binary and multilabel classifcation approaches. An optimal subset of 13 most important Principal Component (PC) features were selected for CA- control classifcation. This classifcation model resulted in an impressive performance accuracy of 97% (F1 score = 95.2%) with Holmesian dimensions distributed as 47.7% Stability, 6.3% Timing, 38.75% Accuracy and 7.24% Rhythmicity. Another optimal subset of 11 PC features demonstrated an F1 score of 84.2% in mapping the total 27 PC across 5 domains during CA multilabel discrimination. In both cases, the balance (Romberg) test contributed the most (31.1% and 42% respectively), followed by the peripheral tests whereas gait (Walking) test contributed the least. These fndings paved the way for a better understanding of the feasibility of an instrumented system to assist informed clinical decision- making. -
The Fourth Paradigm
ABOUT THE FOURTH PARADIGM This book presents the first broad look at the rapidly emerging field of data- THE FOUR intensive science, with the goal of influencing the worldwide scientific and com- puting research communities and inspiring the next generation of scientists. Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud- computing technologies. This collection of essays expands on the vision of pio- T neering computer scientist Jim Gray for a new, fourth paradigm of discovery based H PARADIGM on data-intensive science and offers insights into how it can be fully realized. “The impact of Jim Gray’s thinking is continuing to get people to think in a new way about how data and software are redefining what it means to do science.” —Bill GaTES “I often tell people working in eScience that they aren’t in this field because they are visionaries or super-intelligent—it’s because they care about science The and they are alive now. It is about technology changing the world, and science taking advantage of it, to do more and do better.” —RhyS FRANCIS, AUSTRALIAN eRESEARCH INFRASTRUCTURE COUNCIL F OURTH “One of the greatest challenges for 21st-century science is how we respond to this new era of data-intensive -
Abstract Counterexample-Based Refinement for Powerset
Abstract Counterexample-based Refinement for Powerset Domains R. Manevich1,†, J. Field2 , T. A. Henzinger3,§, G. Ramalingam4,¶, and M. Sagiv1 1 Tel Aviv University, {rumster,msagiv}@tau.ac.il 2 IBM T.J. Watson Research Center, [email protected] 3 EPFL, [email protected] 4 Microsoft Research India, [email protected] Abstract. Counterexample-guided abstraction refinement (CEGAR) is a powerful technique to scale automatic program analysis techniques to large programs. However, so far it has been used primarily for model checking in the context of predicate abstraction. We formalize CEGAR for general powerset domains. If a spurious abstract counterexample needs to be removed through abstraction refinement, there are often several choices, such as which program location(s) to refine, which ab- stract domain(s) to use at different locations, and which abstract values to compute. We define several plausible preference orderings on abstrac- tion refinements, such as refining as “late” as possible and as “coarse” as possible. We present generic algorithms for finding refinements that are optimal with respect to the different preference orderings. We also compare the different orderings with respect to desirable properties, in- cluding the property if locally optimal refinements compose to a global optimum. Finally, we point out some difficulties with CEGAR for non- powerset domains. 1 Introduction The CEGAR (Counterexample-guided Abstraction Refinement) paradigm [1, 3] has been the subject of a significant body of work in the automatic verification community. The basic idea is as follows. First, we statically analyze a program using a given abstraction. When an error is discovered, the analyzer generates an abstract counterexample, and checks whether the error occurs in the corre- sponding concrete execution path. -
A/B Testing Challenges in Large Scale Social Networks
From Infrastructure to Culture: A/B Testing Challenges in Large Scale Social Networks Ya Xu, Nanyu Chen, Adrian Fernandez, Omar Sinno, Anmol Bhasin LinkedIn Corp, 2029 Stierlin Court, Mountain View, CA 94043 {yaxu, nchen, afernandez, osinno, abhasin}@linkedin.com ABSTRACT experiments. The theory of controlled experiment dates back to Sir Ronald A. A/B testing, also known as bucket testing, split testing, or Fisher’s experiments at the Rothamsted Agricultural Experimental controlled experiment, is a standard way to evaluate user Station in England in the 1920s [11]. Since then, many textbooks engagement or satisfaction from a new service, feature, or and papers from different fields have provided theoretical product. It is widely used among online websites, including social foundations [20, 21, 32, 33] for running controlled experiments. network sites such as Facebook, LinkedIn, and Twitter to make While the theory may be straightforward, the deployment and data-driven decisions. At LinkedIn, we have seen tremendous mining of experiments in practice and at scale can be complex and growth of controlled experiments over time, with now over 400 challenging [13, 14]. In particular, several past KDD papers have concurrent experiments running per day. General A/B testing discussed at length the experimentation systems used at Microsoft frameworks and methodologies, including challenges and pitfalls, Bing and Google [8, 9], including best practices and pitfalls [7, have been discussed extensively in several previous KDD work 10]. Facebook also introduces the PlanOut language which [7, 8, 9, 10]. In this paper, we describe in depth the provides a toolkit for parameter-based experiments [12]. -
Microhoo: Lessons from a Takeover Attempt Nihat Aktas, Eric De Bodt
MicroHoo: Lessons from a takeover attempt Nihat Aktas, Eric de Bodt, and Richard Roll This draft: July 14, 2010 ABSTRACT On February 1, 2008, Microsoft offered $43.7 billion for Yahoo. This was a milestone in the Microsoft versus Google battle to control the internet search industry and the related online advertising market. We provide an in-depth analysis of this failed takeover attempt. We attempt to identify the sources of overbidding (signaling, hubris-overconfidence, rational overpayment) and we show that the corporate control market has a disciplinary dimension but of an incidental and latent nature. Our results highlight the existence of takeover anticipation premiums in the stock prices of the potential targets. JEL classification: G34 Keywords: Overbidding; Competitive advantage; Rational overpayment; Latent competition Aktas de Bodt Roll Univ. Lille Nord de EMLYON Business UCLA Anderson France School 110 Westwood Plaza ECCCS Address 23 av. Guy de Collongue Los Angeles, CA 90095- 1 place Déliot - BP381 69130 Ecully 1481 59020 Lille Cédex France USA France Voice +33-4-7833-7847 +33-3-2090-7477 +1-310-825-6118 Fax +33-4-7833-7928 +33-3-2090-7629 +1-310-206-8404 E-mail [email protected] eric.debodt@univ- [email protected] lille2.fr 1 MicroHoo: Lessons from a takeover attempt 1. Introduction Fast Internet access, software as a service, cloud computing, netbooks, mobile platforms, one-line application stores,…, the first decade of the twenty-first century brought all the ingredients of a new technological revolution. These new technologies share one common denominator: the Internet. Two large competitors are face to face. -
UI Design and Interaction Guide for Windows Phone 7
UI Design and Interaction Guide 7 for Windows Phone 7 July 2010 Version 2.0 UI Design and Interaction Guide for Windows Phone 7 July 2010 Version 2.0 This is pre-release documentation and is subject to change in future releases. This document supports a preliminary release of a software product that may be changed substantially prior to final commercial release. This docu- ment is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document, including URL and other Internet Web site references, is subject to change without notice. The entire risk of the use or the results from the use of this document remains with the user. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this docu- ment. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. -
Abstract Domain of Boxes
BOXES: Abstract Domain of Boxes Arie Gurfinkel and Sagar Chaki Software Engineering Institute Carnegie Mellon University January 28, 2011 © 2011 Carnegie Mellon University NO WARRANTY THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder. This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at [email protected]. This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for -
An Overview of Hadoop
Hadoop Jon Dehdari Introduction Hadoop Project Distributed Filesystem MapReduce Jobs Hadoop Ecosystem Current Status An Overview of Hadoop Jon Dehdari The Ohio State University Department of Linguistics 1 / 26 Hadoop What is Hadoop? Jon Dehdari Introduction Hadoop is a software framework for scalable distributed Hadoop Project computing Distributed Filesystem MapReduce Jobs Hadoop Ecosystem Current Status 2 / 26 Hadoop MapReduce Jon Dehdari Introduction Hadoop Project Distributed Follows Google's MapReduce framework for distributed Filesystem computing MapReduce Jobs Hadoop Ecosystem Scalable - from one computer to thousands Current Status Fault-tolerant - assumes computers will die Cheap - uses commodity PCs, no special hardware needed More active role in distributed computing than Grid Engine, Torque, PBS, Maui, Moab, etc., which are just schedulers 3 / 26 Hadoop Map & Reduce Jon Dehdari Introduction Based on the functional programming concepts of Hadoop Project higher-order functions: Distributed Filesystem Map MapReduce Jobs FunProg: apply a function to every element in a list, Hadoop Ecosystem return new list Current Status MapRed: apply a function to every row in a file block, return new file block Reduce (Fold) FunProg: recursively apply a function to list, return scalar value MapRed: recursively apply a function to file block, return less-composite value than before 4 / 26 Hadoop Map & Reduce Jon Dehdari Introduction Based on the functional programming concepts of Hadoop Project higher-order functions: Distributed Filesystem Map -
Angle Measurement Performance]
SURVEYING INSTRUMENTS SOKKIA SET1000•SET2000 SET3000•SET4000 POWERSET SERIES TOTAL STATIONS Introducing the Version 4.2 POWERSET Series Enjoy the benefits of all the latest technology with standardized SDR software you can upgrade with ease With the integration of corrective hardware sensors, self-collimating soft- ware and the most powerful, easy-to-use field application programming ever, SOKKIA introduces a new era in CAS (Computer Aided Surveying). The POWERSET Series sets a new standard for surveying efficiency: 1 ) an extensive range of surveying software; 2) a large internal memory for high-speed data processing; 3) reliable memory cards for storage of survey data. • Entirely new design features a miniaturized telescope unit that makes sighting as easy as using a theodolite. Thanks to the POWERSET Series' advanced optics, you can use reflective sheet targets and standard glass prisms for greater flexibility in the field. • The dual-axis compensator and collimation program ensure consistently accurate measurements. • The POWERSET Series is designed for maximum ease of use. Large screens on each side of the instrument are easy to read in any field conditions, and the keyboards on both faces feature full alphanumeric keys. • All these advanced functions are packed into an incredibly compact instrument weighing a mere 5.6kg (12.4 lbs.) SET1000/SET2000 Dist. meas. with reflecting prism Range: 3,500m (11,400ft.)* Accuracy: ±(2+2ppmxD)mm** Dist. meas. with reflective sheet target Range: 120m (390ft.)*** Accuracy: ±(4+3ppmxD)mm** Angle measurement Display resolution: 0.5"/0.1 mgon or 1"/0.2mgon Accuracy: SET1000 1"(0.3mgon) SET2000 2"(0.6mgon) SET3000 Dist. -
Model Ensemble for Click Prediction in Bing Search Ads
Model Ensemble for Click Prediction in Bing Search Ads Xiaoliang Ling Weiwei Deng Chen Gu Microsoft Bing Microsoft Bing Microsoft Bing No. 5 Dan Ling Street No. 5 Dan Ling Street No. 5 Dan Ling Street Beijing, China Beijing, China Beijing, China [email protected] [email protected] [email protected] ∗ Hucheng Zhou Cui Li Feng Sun Microsoft Research Microsoft Research Microsoft Bing No. 5 Dan Ling Street No. 5 Dan Ling Street No. 5 Dan Ling Street Beijing, China Beijing, China Beijing, China [email protected] [email protected] [email protected] ABSTRACT Google [21], Facebook [14] and Yahoo! [3]. Recently, factoriza- Accurate estimation of the click-through rate (CTR) in sponsored tion machines (FMs) [24, 5, 18, 17], gradient boosting decision ads significantly impacts the user search experience and businesses’ trees (GBDTs) [25] and deep neural networks (DNNs) [29] have revenue, even 0.1% of accuracy improvement would yield greater also been evaluated and gradually adopted in industry. earnings in the hundreds of millions of dollars. CTR prediction is A single model would lead to suboptimal accuracy, and the above- generally formulated as a supervised classification problem. In this mentioned models all have various different advantages and dis- paper, we share our experience and learning on model ensemble de- advantages. They are usually ensembled together in an industry sign and our innovation. Specifically, we present 8 ensemble meth- setting (or even machine learning competition like Kaggle [15]) to ods and evaluate them on our production data. Boosting neural net- achieve better prediction accuracy. For instance, apps recommen- works with gradient boosting decision trees turns out to be the best. -
Consumer Heterogeneity and Paid Search Effectiveness
Consumer Heterogeneity and Paid Search E↵ectiveness: A Large Scale Field Experiment⇤ Thomas Blake† Chris Nosko‡ Steven Tadelis§ October 30, 2013 Abstract Internet advertising has been the fastest growing advertising channel in recent years with paid search ads comprising the bulk of this revenue. We present results from a series of large-scale field experiments done at eBay that were designed to measure the causal e↵ectiveness of paid search ads. Because search clicks and purchase behavior are correlated, we show that returns from paid search are a fraction of conventional non-experimental estimates. As an extreme case, we show that brand-keyword ads have no short-term benefits. For non-brand keywords we find that new and infrequent users are positively influenced by ads but that more frequent users whose purchasing behavior is not influenced by ads account for most of the advertising expenses, resulting in average returns that are negative. ⇤We are grateful to many ebay employees and executives who made this work possible. We thank Susan Athey, Randall Lewis, David Reiley, Justin Rao and Florian Zettelmeyer for comments on earlier drafts. †eBay Research Labs. Email: [email protected] ‡University of Chicago and eBay Research Labs. Email: [email protected] §UC Berkeley and eBay Research Labs. Email: [email protected] 1 Introduction Advertising expenses account for a sizable portion of costs for many companies across the globe. In recent years the internet advertising industry has grown disproportionately, with revenues in the