Research Memorandum

Total Page:16

File Type:pdf, Size:1020Kb

Research Memorandum E I RESEARCH MEMORANDUM AERODYNAMIC CBAFLACTERISTICS OF A WING WITH QUARTER-CHOFCO I LINF, SWEPT BACK No,ASPECT RATIO 4, TAPER i FLAT10 0.6,AND NACA 65A006 AIRFOIL SECTION TRANSONIC-BUMP METHOD By Thomas f. .Erg;Jr., and Boyd C. Myers, II Langley Aeronautical Laboratory Langley Air Force Base, Va. """- .NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON September 6, 1949 UNCUSSiFfg-? P a RATIO 0.6,. e NAGA 6s006 -OIL SF,CTkON t . AB part of a transonic resemch.prog??am, a series of win@Oay combinations qe being investigated in the Langley high-peed 7- by 1o"foot' tunnel over a Mach nmiber range from about 0.60 to 1.18, by use of the tranaonic4Ump test technique. i This paper presents the results-of the investigation of a win-ane and a wing-frmelage configuration amploykg a wing with quartemhard line swept back 600, aspect ratio 4, taper ratio 0.6, and an WA65~006 airfpii section. The results are presentedas lift, drag, pitchine moment, and bendineanent coefficients for'both confipatim. The effect of a wing fence on the wing-fuselage charsbteristics was also investigated. In addition,e.ffective downwaah angles and point dynamic 'pressures for a range of tail heights at a probable tail .length &e presented. for the two configuratiomFnvestlgated. Only a brief ' Wsie is given in order to facilitate the publiehhg of the data. IIJTRODUCTION A series of wiwfuselage canbinations ISbeing inveetigated in the Langley high-peed 7- by 10-foot tunnel to study the effects of,- gemtry on longitudinal stability characteristic8 at transonic speeda. In the trm.8dc-bmq technique used, a Mach nmber range of 0.60 to 1.18 is obtained.Previous data published in this series are presented in references 1 to 3. 2 - XACA RM ~9~27 This paper yresents the resulk8 of the investigation of the whg- .. alone and WTng-fuselage configurations .employing a wing with the qumter-chord line sweptback 60°, aspect ratio 4, taper ratio 0.6, arid t an NACA 65~006airfoil section parallel to the free stream. The wing of the semiepan model had 60° of sweepback referred to the quarter-chord line, aspect ratio 4, taper ratio 0.6, asd an MACA 65~006 airfoil section (reference 4) parallel to the free stream. The wing was made of steel and the fuselage of brms. A hrwview drawing of the model is presented in figure I and ordhates of the fwelage of fineness ratlo 10 are given in table I. Details of a wing-fence arrangement tested are shown in figure 2. The model was mounted On an electrical'straqn-gage balance enclosed in the bump, asd the lift, drag, pitching moment, and bending moment about the model plane of symmetry were mea8ured with calibrated potentiometers. Effective dowriwmh angles were detemed far a range of tail heights by measuring the floatfng angles opthe tails at five different positions with calibrated slide"wire potentfameters.Details of the floating tails are given in figures 2 and 3, while a view of the model mounted on the bmp, showing three of the floating tails, fa given in figure 4. The tails used in %hi8 investigation me the 8- a,a those used in references 1 to 3. A total-pressure rake W&B used to determine the dynamic+resame ratios for a range of tail heights in a plane whlch contained the 2-ercentmean+rodynamic"chord point of-the free-floating tala. The total-pessure tubes *e spaced 1/8 inch apart near the chord line exte-ded and 1/4 inch ap& asewhere. I 3 . c, I bendlnmnt coefficient about root chord Use (at plane I 9 effective dsnamfc .pressure over span of mdel, po&s per square foot (p~2/2) S twice wing mea of semiapan model, 0.125 squaze foot - C mean aerodgnamic chord of wing, 0.181 foot; based on relationship c%y. (us% the theoreticaltip) S .. C local wing chord - .I Ct mean aerodynamic chord of tail b twice span of semispan del spanwise distance fram wing root -. P air density, slugs per cubic foot v free-stream velocity, feet per second M effective Mach number over span of model . Mach M2 local number I Ma average chordwise local Mach nurmber - R Reynolds number of wing based an c . a angle .of attack, degrees 1 - .E effective downwash angle, de@;rees ratio of point dynamic pressure, along a line c.mta5ning the ! Q qumter-chord points of the mean aerodynamic chords of the free-floating tails, to the local free+tream.dynamic preseure " 4 - NACA RM LgG27 ht tail heightrelative'to wing chord plane extended, perced semispan; positive for tail positions above chord plane extended I a.c. aerodynamic center Subscripts: M at con8th-t Mach nmber CL = 0 at zero lift The tests were conducted in the Langley high-peed 7- by IO-foot tmel by use of an adaptation of the XWCA uin@low technique far obtaining transonic speeds. Themethod used involve6 the mounting of a model in the high-velocity flow field generated over the curved surface of a. bmrg locatea on the tunnel floor. (see reference 5.) Typical contours of 1ocal"ach nunibere in the region of the model location orl the bump, obtained from surveys with no model in posttion, are shown in figure 5. There ia a Mach number gradient whioh results in a diffQrence af about 0.04 over the'span of the model at the lowest aid higheet .Mach numbers with a maximum difference of about 0.07 present at a Machnumber of about 1.0. The chordwise Machnumber variation is generally lepe than 0.01. Ro.attampt has been made to evaluate the effects of these spanwise and chordwise variations in Mach number.The long-daafied lines shown neax the wlng.root repreeent a locd Mach number 5 percent below the rmxlmm value and indicate the extent of the bmrg boundary layer. The effective test Machnumber was obtained fram contour chart8 similar to thosg presented in-figure 5 from the relationship The vaxiation of mean test Reynolds number with Mach number is shown in figure 6, The boundaries in the figure indicate the range in Reynolds number caused by variatiorm in test conditions during the course of the investigation. Force and moment data, effective downmeh anglee, and the ratio of dynamic preeeure at 25 percent of the mean aerodynamic chords of the free-floating tails to flree-tream dynamic pressure were obtained for UCA RM L9G27 - 5 the model confi-guratione,tested through a Mach number range'of 0.60 to 1.18 and.an angle-of-ttack range of -2O to 8.O. The end-plate tares on drag were obtained through the test Mach n'lrmber range at zero angle of attack by testing the model canfiguratims without end plahs. .For these tests a gap of about 1/16 inch was maintained between the whg root asd the bump .surface, and a sponge- xipep seal waa faatened to the wlng butt beneath the surface of the hw to prevent leeas (fig. 4(b) ) . he drag end-phte tares were aas-d to be invasiant with angle of attack .and the- tar06 obtained at zero angle of attack were applied to dl drag data. Je" cnrrectione have not been evaluated inaemuch as the boudaq conditions to be satisffed are not rieously deffned. However, inR.nmuch aa the effectiye flow field is lmge cmgared with the apas d chard of the model, these correctiom are believed to be Bmall. The possibility of change In aerodynamic characterTstics of the wing due to twlst -resulting fram bending mder aerodpmmic 10- con- sidered. Fram etatic loading tests and reference 6, it was estimsted that. at the highest Ma& number attahed the effect of twist would be .to cause a farvd Eier-c-ntermovement .of about 2 percent. RO c&rectiane have been applied to the data presented. From meas-nts of 'tail floating angles xlthout a delFzlEtdled, it wss determined that EL tail spacing of 2 inches relative to the wing . chord plane would produce negligible interference effects of reflected shock waves rn the tail floating angle's. Downwaah angles for fhe alone configuration were therefore obtained simultaneously f& the middle, highest, and lowest tail positions in one series of teste and for the t'wo Intermediate positiorm in succeeding rum. (See ' fig. 3. ) For the wi-elage test8 the effective downwash &ngles'at the chord plane extended were determhed by.munting a free-float* tail on the center lfne of .the 'fuselage. The downwash angles presented are increments from the tal floating angle6 without a model in position. It should be noted that.the floating angles measured are actmUy a measure of the angle of zero pitching m&nt about the tail-pivot axis rather than of the angle of zero lift. It'- been esthated that, fathe tail. arrapgement used, a 2O spaswise domwash gradient over the tail win I result in an error of less than 0,.2O in. the resultant floating angle. Total pressures obtained *can the tail amey rake have been corrected for bow-wave loss. The static-gressure values. used in cmputing dynamiypre6.sure ratios were 0btalned.b~use of a static probe . without a model In position. 6 NACA RM ~9~27 A table of ‘the figures presenting the results follows: Figure Wimlonefwce data ....................... 7 Win&melage fmce data .......................8 Effect of--~fngfence (wing-fuselage) ....................9 Effective downwash angles (wing alme) ....... ; ....... 10 Effective dovnwash angles (wing-fuselage). .............ll Downmh gradients ...........................12 DynamZvrassure surveys ... ..-. ................13 summary of wrodynamic characteristics ...............14 Unlees gated, the &iscussion iB based on the amunary curves presented In figure 14.
Recommended publications
  • Wind Tunnel Analysis and Flight Test of a Wing Fence on a T-38
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-6-2009 Wind Tunnel Analysis and Flight Test of a Wing Fence on a T-38 Michael D. Williams Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Williams, Michael D., "Wind Tunnel Analysis and Flight Test of a Wing Fence on a T-38" (2009). Theses and Dissertations. 2407. https://scholar.afit.edu/etd/2407 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Michael D. Williams, Major, USAF AFIT/GAE/ENY/09-M20 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. AFIT/GAE/ENY/09-M20 WIND TUNNEL ANALYSIS AND FLIGHT TEST OF A WING FENCE ON A T-38 THESIS Presented to the Faculty Department of Aeronautical and Astronautical Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Michael D.
    [Show full text]
  • Selected Structural Elements of the Wing to Increase the Lift Force
    I efektywność transportu Ernest Gnapowski Selected structural elements of the wing to increase the lift force JEL: L93 DOI: 10.24136/atest.2018.494 Data zgłoszenia: 19.11.2018 Data akceptacji: 15.12.2018 The article presents a currently used structural elements to increase the lift force. Presented mechanical and no-mechanical construction elements that increase the lifting force. The author's attention to the new direction of flow control using a DBD plasma actuator. This is a new direction of active flow control. Słowa kluczowe: aerodynamic, high-lift device, plasma actuator DBD Introduction One of the many causes of accidents and disasters in aviation is Fig. 1. The most common airline profiles; a) symmetrical, b) semi- a loss of lift force during flight, most often caused by flow disturb- symmetrical, c) flat bottomed, d) under-cambered ances around a wing profile. This is especially true when starting or landing, the wing operates in the limiting angles of attack. There Even a properly selected wing profile in certain conditions (at may be a stall and catastrophic disturbance of the flight path. high angles of attack) loses the lift force. To counteract this, con- Wing profiles have a specific geometry that determines the use struction offices introduce elements that improve the flow laminarity of a particular profile in aircraft constructions. The parameters which and improve safety. influence the choice of the design of the profile are; speed of flight, wing loading, purpose aircraft. Each airfoil has determined experi- Wing cuff mentally or by calculation the maximum angle of attack α and the Wing cuff is a static aerodynamic modification of the front part of minimum speed at which no loss of aerodynamic lift.
    [Show full text]
  • The Effect of Slot Configuration on Active Flow Control Performance of Swept Wings At
    The Effect of Slot Configuration on Active Flow Control Performance of Swept Wings at Low Reynolds Numbers Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Honors Research Distinction in Aeronautical and Astronautical Engineering at The Ohio State University By Ali N. Hussain B.S. Program in Aeronautical and Astronautical Engineering The Ohio State University Department of Mechanical & Aerospace Engineering April 2018 Thesis Committee Dr. Jeffrey P. Bons, Advisor Dr. Clifford Whitfield, Committee Member © Copyright by Ali N. Hussain 2018 2 Abstract Active flow control (AFC) in the form of a discrete wall normal slot was investigated on a NACA 643-618 laminar wing model. The wing model has a leading-edge sweep of (Λ = 30°) and tests were performed using a chordwise Reynolds number of 100,000 with specific focus on the stall characteristics and performance of AFC while reducing energy needs. The study included comparing a segmented slot to a single continuous slot as well as the positioning of the slot itself along the chord at a spanwise location of z/b = 70%. For an Aeff/A of 0.5 (as compared to the original slot) maximum lift performance improved 9.6% for multiple slots while a single slot improved the maximum lift by 8.3% over the baseline. Surface flow visualization using tufts revealed that a single slot is much more effective at stopping spanwise flow and delaying stall to a higher angle of attack by 4°. For an Aeff/A of 0.75 (as compared to the original slot), lift performance improved 15.6% and 16.2% by covering x/c = 25% of the slot on the pressure and suction side of the airfoil, respectively.
    [Show full text]
  • General Aviation Aircraft Design
    Contents 1. The Aircraft Design Process 3.2 Constraint Analysis 57 3.2.1 General Methodology 58 1.1 Introduction 2 3.2.2 Introduction of Stall Speed Limits into 1.1.1 The Content of this Chapter 5 the Constraint Diagram 65 1.1.2 Important Elements of a New Aircraft 3.3 Introduction to Trade Studies 66 Design 5 3.3.1 Step-by-step: Stall Speed e Cruise Speed 1.2 General Process of Aircraft Design 11 Carpet Plot 67 1.2.1 Common Description of the Design Process 11 3.3.2 Design of Experiments 69 1.2.2 Important Regulatory Concepts 13 3.3.3 Cost Functions 72 1.3 Aircraft Design Algorithm 15 Exercises 74 1.3.1 Conceptual Design Algorithm for a GA Variables 75 Aircraft 16 1.3.2 Implementation of the Conceptual 4. Aircraft Conceptual Layout Design Algorithm 16 1.4 Elements of Project Engineering 19 4.1 Introduction 77 1.4.1 Gantt Diagrams 19 4.1.1 The Content of this Chapter 78 1.4.2 Fishbone Diagram for Preliminary 4.1.2 Requirements, Mission, and Applicable Regulations 78 Airplane Design 19 4.1.3 Past and Present Directions in Aircraft Design 79 1.4.3 Managing Compliance with Project 4.1.4 Aircraft Component Recognition 79 Requirements 21 4.2 The Fundamentals of the Configuration Layout 82 1.4.4 Project Plan and Task Management 21 4.2.1 Vertical Wing Location 82 1.4.5 Quality Function Deployment and a House 4.2.2 Wing Configuration 86 of Quality 21 4.2.3 Wing Dihedral 86 1.5 Presenting the Design Project 27 4.2.4 Wing Structural Configuration 87 Variables 32 4.2.5 Cabin Configurations 88 References 32 4.2.6 Propeller Configuration 89 4.2.7 Engine Placement 89 2.
    [Show full text]
  • Explaining Chemical Reactions
    On the Use of Active Flow Control to Trim and Control a Tailles Aircraft Model Item Type text; Electronic Thesis Authors Jentzsch, Marvin Patrick Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 06:46:41 Link to Item http://hdl.handle.net/10150/625917 ON THE USE OF ACTIVE FLOW CONTROL TO TRIM AND CONTROL A TAILLES AIRCRAFT MODEL by Marvin Jentzsch ____________________________ Copyright Marvin Jentzsch 2017 A Thesis Submitted to the Faculty of the DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN AEROSPACE ENGINEERING In the Graduate College THE UNIVERSITY OF ARIZONA 2017 2 STATEMENT BY AUTHOR The thesis titled On the Use of Active Flow Control to Trim and Control a Tailless Aircraft Model prepared by Marvin Jentzsch has been submitted in partial fulfillment of requirements for a master’s degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • The Effect of Passive and Active Boundary-Layer Fences on Delta Wing Performance at Low Reynolds Number
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-2020 The Effect of Passive and Active Boundary-layer Fences on Delta Wing Performance at Low Reynolds Number Anna C. Demoret Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Demoret, Anna C., "The Effect of Passive and Active Boundary-layer Fences on Delta Wing Performance at Low Reynolds Number" (2020). Theses and Dissertations. 3213. https://scholar.afit.edu/etd/3213 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. THE EFFECT OF PASSIVE AND ACTIVE BOUNDARY-LAYER FENCES ON DELTA WING PERFORMANCE AT LOW REYNOLDS NUMBER THESIS Anna C. Demoret, Second Lieutenant, USAF AFIT-ENY-MS-20-M-258 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-MS-20-M-258 THE EFFECT OF PASSIVE AND ACTIVE BOUNDARY-LAYER FENCES ON DELTA WING PERFORMANCE AT LOW REYNOLDS NUMBER THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Anna C.
    [Show full text]
  • Commercial Aircraft Performance Improvement Using Winglets
    Nikola N. Gavrilović Commercial Aircraft Performance Graduate Research Assistant Improvement Using Winglets University of Belgrade Faculty of Mechanical Engineering Aerodynamic drag force breakdown of a typical transport aircraft shows Boško P. Rašuo that lift-induced drag can amount to as much as 40% of total drag at Full Professor cruise conditions and 80-90% of the total drag in take-off configuration. University of Belgrade Faculty of Mechanical Engineering One way of reducing lift-induced drag is by using wing-tip devices. By applying several types of winglets, which are already used on commercial George S. Dulikravich airplanes, we study their influence on aircraft performance. Numerical Full Professor investigation of five configurations of winglets is described and Florida International University preliminary indications of their aerodynamic performance are provided. Department of Mechanical and Materials Engineering, Miami, Florida, USA Moreover, using advanced multi-objective design optimization software an optimal one-parameter winglet configuration was detrmined that Vladimir Parezanović simultaneously minimizes drag and maximizes lift. Researcher Institute PPRIME, CNRS UPR3346 Poitiers, France Keywords: Winglet, Bionics, Computational fluid dynamics, Drag reduction, Lift-induced drag, Optimization 1. INTRODUCTION of soaring birds and their use of tip feathers to control flight, continued on the quest to reduce induced drag The main motivation for using wingtip devices is and improve aircraft performance and further develop reduction of lift-induced drag force. Environmental the concept of winglets in the late 1970s [4]. This issues and rising operational costs have forced industry research provided a fundamental knowledge and design to improve efficiency of commercial air transport and approach required for extremely attractive option to this has led to some innovative developments for improve aerodynamic efficiency of civilian aircraft, reducing lift-induced drag.
    [Show full text]
  • CFD Analysis of a T-38 Wing Fence
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 6-5-2007 CFD Analysis of a T-38 Wing Fence Daniel A. Solfelt Follow this and additional works at: https://scholar.afit.edu/etd Part of the Aerodynamics and Fluid Mechanics Commons Recommended Citation Solfelt, Daniel A., "CFD Analysis of a T-38 Wing Fence" (2007). Theses and Dissertations. 2950. https://scholar.afit.edu/etd/2950 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. CFD Analysis of a T-38 Wing Fence THESIS Daniel Allan Solfelt, Ensign, USN AFIT/GAE/ENY/07-J19 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this thesis are those of the author and do not reflect the o±cial policy or position of the United States Air Force, United States Navy, Department of Defense, or the United States Government. AFIT/GAE/ENY/07-J19 CFD Analysis of a T-38 Wing Fence THESIS Presented to the Faculty Department of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Ful¯llment of the Requirements for the Degree of Master of Science in Aeronautical Engineering Daniel Allan Solfelt, B.S.A.E.
    [Show full text]
  • Airframe-Answer-Key.Pdf
    ii No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the publisher. Cover: Structural reconstruction of an IAI Westwind fuselage. Photo taken in cooperation with Straight Flight, Inc., Centennial, Colorado. Jeppesen 55 Inverness Drive East Englewood, CO 80112-5498 Web Site: www.jeppesen.com Email: [email protected] Copyright © Jeppesen All Rights Reserved. Published 2009 ANSWERS 28. Pratt 28. down 29. Warren 29. drag 30. conventional 30. increase 31. tricycle 31. slotted 32. parasite 32. Fowler 33. pressure 33. slot, aileron 34. fins 34. a. hydraulically AIRCRAFT 35. cowl flaps b. electrically 36. open 35. camber STRUCTURAL 37. a. beneath the wing 36. root ASSEMBLY AND b. at the rear fuselage 37. at the wing root 38. vortices RIGGING SECTION 1B 39. high, low 40. Winglets SECTION 1A 1. a. longitudinal, roll 41. wing fence b. lateral, pitch 42. canard 1. truss c. vertical, yaw 43. irreversible 2. stressed-skin, monocoque 2. longitudinal (roll) 44. a. ailerons 3. semi-monocoque 3. lateral (pitch) b. flight spoilers 4. semi-monocoque 4. vertical (yaw) 45. two 5. fail-safe 5. rudder 46. yaw damper 6. attack 6. a. static 47. a. Kreuger flaps 7. low b. dynamic b. variable camber 8. ribs 7. a. longitudinal (pitch) leading edge flaps 9. behind b. lateral (roll) 48. Type Certificate Data 10. truss c. vertical (yaw) Sheets 11. drag 8. stabilizer 49. washed-out 12. cantilever 9. elevators 50. droop 13.
    [Show full text]
  • Turbine Aeroplane Aerodynamics, Structures and Systems
    MODULE 11A FOR B1 CERTIFICATION TURBINE AEROPLANE AERODYNAMICS, STRUCTURES AND SYSTEMS Aviation Maintenance Technician Certification Series 72413 U.S. Hwy 40 Tabernash, CO 80478-0270 USA www.actechbooks.com +1 970 726-5111 AVAILABLE IN Printed Edition and Electronic (eBook) Format AVIATION MAINTENANCE TECHNICIAN CERTIFICATION SERIES Contributing Authors Thomas Forenz Kurt C. Gibson Charles L. Rodriguez Peter Vosbury Layout/Design Michael Amrine Version 004.1 - Effective Date 04.30.2021 Copyright © 2016–2021 — Aircraft Technical Book Company. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. To order books or for Customer Service, please call +1 970 726-5111. www.actechbooks.com Printed in the United States of America For comments or suggestions about this book, please call or write to: 1.970.726.5111 | [email protected] WELCOME The publishers of this Aviation Maintenance Technician Certification Series welcome you to the world of aviation maintenance. As you move towards EASA certification, you are required to gain suitable knowledge and experience in your chosen area. Qualification on basic subjects for each aircraft maintenance license category or subcategory is accomplished in accordance with the following matrix. Where applicable, subjects are indicated by an "X" in the column below the license heading. For other educational tools created to prepare candidates for licensure, contact Aircraft Technical Book Company. We wish you good luck and success in your studies and in your aviation career! REVISION LOG VERSION EFFECTIVE DATE DESCRIPTION OF CHANGE 001 2015 10 Module Creation and Release 002 2016 01 Minor Revisions 003 2017 09 Format Update 003.1 2019 02 Added section on Pneumatic and Pressure Pumps in Sub-Module 16.
    [Show full text]
  • Some High Alpha and Handling Qualities Aerodynamics
    Some High Alpha and Handling Qualities Aerodynamics W.H. Mason Configuration Aerodynamics Class Slide 1 4/19/18 Issues in Hi-α Aero • General Aviation – Prevention/recovery from spins – Beware: Tail Damping Power Factor (TDPF) » Sometimes advocated for use in design » Has been shown to be inaccurate! • Fighters – Resistance to “departure” from controlled flight – Carefree hi-α air combat maneuvering » Fuselage pointing » Velocity vector rolls » Supermaneuverability » etc. • Transports – Control/prevention of pitchup and deep stall (the DC-9 case study) Slide 2 4/19/18 High Angle of Attack • Aerodynamics are nonlinear - A lot of flow separation - Complicated component interactions (vortices) - Depends heavily on WT data for analysis - This means critical conditions outside linear aero range • Motion is highly dynamic - often need unsteady aero • Keys issues (from a fighter designer’s perspective): - adequate nose down pitching moment to recover - roll rate at high alpha - departure avoidance - adequate yaw control power - the role of thrust vectoring Slide 3 4/19/18 The Hi-α Story Longitudinal Typical unstable modern fighter – the envelope is the key thing to look at + Max nose up moment Pinch often around α ~ 30°-40° Cm 0° Cm* α 90° Max nose down moment - Minimum Cm* allowable is an open question Issue of including credit for thrust vectoring Suggested nose down req’t: Pitch accel in 1st sec: -0.25 rad/sec2 Slide 4 4/19/18 Example: F-16 An α-limiter was Found in flight, and put in the control also in tests at the system to prevent NASA Full Scale pilots from going Tunnel, other above 28° tunnels didn’t find this, and so the design was made with this “issue” NASA TP-1538, Dec.
    [Show full text]
  • Large-Scale Wind-Tunnel Investigation to Improve the Low-Speed Longitudinal Stability at High Lift of a Supersonic Transport with Variable-Sweep Wings
    B NASA TECHNICAL NOTE NASA TN D-5005 i L.- c --_ e.. m 0 0 d z c 4 r/) 4 z LOAN CCli'Y: RETURN I- AFWL (WLIL-2) KIRTLAND AFB, N MEX j LARGE-SCALE WIND-TUNNEL INVESTIGATION lj TO IMPROVE THE LOW-SPEED LONGITUDINAL i STABILITY AT HIGH LIFT OF A SUPERSONIC TRANSPORT WITH VARIABLE-SWEEP WINGS Pi.. lay Anthony M. Cook und Dale G.Jones Ames Research Center Moffett Field, Gal$ I NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JANUARY 1969- . i E i TECH LIBRARY KAFB, NM 1lIllIIIIIIIIllIIllIIIlllllllllllllllI1IllIII 0L 3L B 7L IYXSX 'l.l\ u-3uu3 LARGE-SCALE WIND-TUNNEL INVESTIGATION TO IMPROVE THE LOW-SPEED LONGITUDINAL STABILITY AT HIGH LIFT OF A SUPERSONIC TRANSPORT WITH VARIABLE-SWEEP WINGS By Anthony M. Cook and Dale G. Jones Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Far sale by the Clearinghouse for Federal Scientific and Technical lnformotion Springfield, Virginia 22151 - CFSTl price $3.00 LARGE-SCALE WIND-TUNNEL INVESTIGATION TO IMPROVE THE LOW-SPEED LONGITUDINAL STABILITY AT HIGH LIFT OF A SUPERSONIC TRANSPORT WITH VARIABLE-SWEEP WINGS By Anthony M. Cook and Dale G. Jones Ames Research Center SUMMARY An investigation has been made in the Ames 40- by 80-Foot Wind Tunnel to develop techniques to improve the longitudinal stability for a supersonic transport. The model had a wing pivot outboard of the fuselage, a high aspect-ratio movable wing panel, and a highly swept, fixed, inboard wing portion (strake). Special efforts were made to minimize the adverse effects of the vortex flow from the highly swept strake leading edge.
    [Show full text]