Declining Human Pressure and Opportunities for Rewilding in the Steppes of Eurasia

Total Page:16

File Type:pdf, Size:1020Kb

Declining Human Pressure and Opportunities for Rewilding in the Steppes of Eurasia A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Baumann, Matthias et al. Article — Published Version Declining human pressure and opportunities for rewilding in the steppes of Eurasia Diversity and Distributions Provided in Cooperation with: Leibniz Institute of Agricultural Development in Transition Economies (IAMO), Halle (Saale) Suggested Citation: Baumann, Matthias et al. (2020) : Declining human pressure and opportunities for rewilding in the steppes of Eurasia, Diversity and Distributions, ISSN 1472-4642, Wiley, Oxford [u.a.], Vol. 26, Iss. 9, pp. 1058-1070, http://dx.doi.org/10.1111/ddi.13110 , https://onlinelibrary.wiley.com/doi/full/10.1111/ddi.13110 This Version is available at: http://hdl.handle.net/10419/222932 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. https://creativecommons.org/licenses/by/4.0/ www.econstor.eu Received: 9 August 2019 | Revised: 19 May 2020 | Accepted: 26 May 2020 DOI: 10.1111/ddi.13110 BIODIVERSITY RESEARCH Declining human pressure and opportunities for rewilding in the steppes of Eurasia Matthias Baumann1 | Johannes Kamp2 | Florian Pötzschner1 | Benjamin Bleyhl1,3 | Andrey Dara1,4 | Brett Hankerson1,4 | Alexander V. Prishchepov5,6 | Florian Schierhorn4 | Daniel Müller1,3,4 | Norbert Hölzel2 | Roland Krämer1,7,8 | Ruslan Urazaliyev2,9 | Tobias Kuemmerle1,3 1Geography Department, Humboldt- Universität zu Berlin, Berlin, Germany Abstract 2Biodiversity and Ecosystem Research Aim: Large and ecologically functioning steppe complexes have been lost historically Group, Institute of Landscape Ecology, across the globe, but recent land-use changes may allow the reversal of this trend in University of Münster, Münster, Germany 3Integrative Research Institute on some regions. We aimed to develop and map indicators of changing human influence Transformations of Human-Environment using satellite imagery and historical maps, and to use these indicators to identify Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany areas for broad-scale steppe rewilding. 4Leibniz Institute of Agricultural Location: Eurasian steppes of Kazakhstan. Development in Transition Economies Methods: We mapped decreasing human influence indicated by cropland abandon- (IAMO), Halle (Saale), Germany ment, declining grazing pressure and rural outmigration in the steppes of northern 5Department of Geosciences and Natural Resource Management, University of Kazakhstan. We did this by processing ~5,500 Landsat scenes to map changes in Copenhagen, København K, Denmark cropland between 1990 and 2015, and by digitizing Soviet topographic maps and 6Institute of Steppe of the Ural Branch of the Russian Academy of Science (RAS), examining recent high-resolution satellite imagery to assess the degree of abandon- Orenburg, Russia ment of >2,000 settlements and >1,300 livestock stations. We combined this infor- 7 Department of Ecosystem Services, mation into a human influence index (HI), mapped changes in HI to highlight where Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany rewilding might take place and assessed how this affected the connectivity of steppe 8German Centre for Integrative Biodiversity habitat. Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany Results: Across our study area, about 6.2 million ha of cropland were abandoned 9Association for the Conservation of (30.5%), 14% of all settlements were fully and 81% partly abandoned, and 76% of Biodiversity of Kazakhstan (ACBK), Nur- livestock stations were completely dismantled between 1990 and 2015, suggesting Sultan, Kazakhstan substantially decreasing human pressure across vast areas. This resulted in increased Correspondence connectivity of steppe habitat. Matthias Baumann, Conservation Biogeography Lab, Geography Department, Main conclusions: The steppes of Eurasia are experiencing massively declining Humboldt-Universität zu Berlin, Unter den human influence, suggesting large-scale passive rewilding is taking place. Many of Linden 6, 10099 Berlin, Germany. Email: [email protected] these areas are now important for the connectivity of the wider steppe landscape and can provide habitat for endangered megafauna such as the critically endangered Funding information Volkswagen Foundation, Grant/Award saiga antelope. Yet, this window of opportunity may soon close, as recultivation of Number: A112025; German Research abandoned cropland is gaining momentum. Our aggregate human influence index Foundation; Open Access Publication Fund of Humboldt-Universität zu Berlin This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2020 The Authors. Diversity and Distributions published by John Wiley & Sons Ltd. 1058 | wileyonlinelibrary.com/journal/ddi Diversity and Distributions. 2020;26:1058–1070. BAUMANN ET AL. | 1059 captures key components of rewilding and can help to devise strategies for fostering large, connected networks of protected areas in the steppe. KEYWORDS agricultural abandonment, ecological integrity, human pressure, Landsat, landscape connectivity, passive rewilding, steppe restoration 1 | INTRODUCTION Folke, & Lindborg, 2014; Sieber et al., 2013). Given the current scar- city of natural grasslands in many regions, and the potential multiple Temperate grasslands are among the Earth's most expansive biomes. benefits of restoring them, identifying places where steppe rewild- Rich in biodiversity, they also provide important ecosystem services ing could take place is a conservation priority. such as carbon storage (Dixon, Faber-Langendoen, Josse, Morrison, Both locating candidate areas for grassland rewilding and mea- & Loucks, 2014). Many temperate grasslands are located on the most suring rewilding progress remain challenging. In part, this is because productive soils of the world and have therefore been widely con- rewilding research has often focused on forests (Jepson, 2016), and verted to cropland and—where less productive—to pastures (Wright adequate tools and datasets for steppe regions are often missing. & Wimberly, 2013). As a result, the extent of natural grasslands in the Furthermore, while the restoration potential of temperate grass- temperate zone has declined strongly. In North America, only small lands has repeatedly been assessed, existing work has typically and isolated natural prairie patches remain amid a matrix of cropland focused on small regions or individual sites within agricultural land- (Zilverberg et al., 2018). In Europe, not a single large complex of nat- scapes (Fuhlendorf et al., 2018). We are not aware of any assessment ural grasslands (i.e. grasslands that are subject to little or no deliber- for rewilding opportunities at the broad scales needed to establish ate direct modification by humans (Gibson, 2009)) remains that still connected and self-regulating grassland complexes. Recently, con- exhibits interactions between large herbivores, fire and vegetation siderable progress has been made in framing what such assessments (Wesche et al., 2016). As a result, many grassland species have been could look like. Specifically, two fundamental dimensions need to declining and are now of conservation concern. Identifying grass- be considered when identifying rewilding opportunities and prog- lands of high nature conservation value and restoring natural grass- ress: changes in human influence and changes in ecological integrity lands across larger areas is therefore important (Fuhlendorf, Davis, (Torres et al., 2018), where the latter can be framed to collectively Elmore, Goodman, & Hamilton, 2018). capture changes in disturbance regimes, connectivity and trophic Recent socioeconomic trends may provide opportunities for complexity (Perino et al., 2019). To our knowledge, no study has yet achieving this goal. Following structural changes and intensification applied this framework to any grassland region of the world. in agriculture, marginal lands are being abandoned in many grass- Identifying and mapping indicators capturing different aspects land regions globally (Estel et al., 2015; Mottet, Ladet, Coque, & of rewilding can reveal priorities for conservation planning. For Gibon, 2006). This, in turn, may allow the restoration of the ecologi- instance, protected areas in many grassland regions are typically cal integrity of grasslands, particularly with regard to
Recommended publications
  • Ancient Iranian Nomads in Western Central Asia
    ISBN 978-92-3-102846-5 ANCIENT IRANIAN NOMADS IN. 1 ANCIENT IRANIAN NOMADS IN WESTERN CENTRAL ASIA* A. Abetekov and H. Yusupov Contents Literary sources on the ancient Iranian nomads of Central Asia ............ 25 Society and economy of the Iranian nomads of Central Asia .............. 26 Culture of the Iranian nomads of Central Asia ..................... 29 The territory of Central Asia, which consists of vast expanses of steppe-land, desert and semi-desert with fine seasonal pastures, was destined by nature for the development of nomadic cattle-breeding. Between the seventh and third centuries b.c. it was inhabited by a large number of tribes, called Scythians by the Greeks, and Sakas by the Persians. The history of the Central Asian nomads is inseparable from that of the nomadic and semi-nomadic peoples of the Eurasian steppe zone. Their political and economic life was closely linked, and their material culture had much in common. It should also be noted that, despite their distinctive qualities, the nomadic tribes were closely connected with the agricultural population of Central Asia. In fact, the history and movements of these nomadic tribes and the settled population cannot be considered in isolation; each had its impact on the other, and this interdependence must be properly understood. * See Map 1. 24 ISBN 978-92-3-102846-5 Literary sources on the ancient Iranian. Literary sources on the ancient Iranian nomads of Central Asia The term ‘Tura’¯ 1 is the name by which the Central Asian nomadic tribes were in one of the earliest parts of the Avesta. The Turas¯ are portrayed as enemies of the sedentary Iranians and described, in Yašt XVII (prayer to the goddess Aši), 55–6, as possessing fleet-footed horses.2 As early as 641 or 640 b.c.
    [Show full text]
  • Russia's Boreal Forests
    Forest Area Key Facts & Carbon Emissions Russia’s Boreal Forests from Deforestation Forest location and brief description Russia is home to more than one-fifth of the world’s forest areas (approximately 763.5 million hectares). The Russian landscape is highly diverse, including polar deserts, arctic and sub-arctic tundra, boreal and semi-tundra larch forests, boreal and temperate coniferous forests, temperate broadleaf and mixed forests, forest-steppe and steppe (temperate grasslands, savannahs, and shrub-lands), semi-deserts and deserts. Russian boreal forests (known in Russia as the taiga) represent the largest forested region on Earth (approximately 12 million km2), larger than the Amazon. These forests have relatively few tree species, and are composed mainly of birch, pine, spruce, fir, with some deciduous species. Mixed in among the forests are bogs, fens, marshes, shallow lakes, rivers and wetlands, which hold vast amounts of water. They contain more than 55 per cent of the world’s conifers, and 11 per cent of the world’s biomass. Unique qualities of forest area Russia’s boreal region includes several important Global 200 ecoregions - a science-based global ranking of the Earth’s most biologically outstanding habitats. Among these is the Eastern-Siberian Taiga, which contains the largest expanse of untouched boreal forest in the world. Russia’s largest populations of brown bear, moose, wolf, red fox, reindeer, and wolverine can be found in this region. Bird species include: the Golden eagle, Black- billed capercaillie, Siberian Spruce grouse, Siberian accentor, Great gray owl, and Naumann’s thrush. Russia’s forests are also home to the Siberian tiger and Far Eastern leopard.
    [Show full text]
  • THE KAZAKH STEPPE Conserving the World's Largest Dry
    THE KAZAKH STEPPE Conserving the world’s largest dry steppe region Photo: Chris Magin, IUCN Saryarka is an internationally significant mosaic of steppe and wetlands The Dry Steppe Region The steppe grasslands of Eurasia were once among the most extensive in the world, stretching from eastern Romania, Moldova and Ukraine in eastern Europe (often referred to as the Pontic steppe) east through Kazakhstan and western Russia). Together, the Pontic and Kazakh steppes, often collectively referred to as the Pontian steppe, comprise about 24% of the world’s temperate grasslands. They eventually link to the vast grasslands of eastern Asia extending to Mongolia, China and Siberian Russia, together creating the largest complex of temperate grasslands on earth. The remaining extent and ecological condition of these grasslands varies considerably by region. Today in eastern Europe, for example, only 3–5 % remain in a natural or near natural state, with only 0.2% protected. In contrast, the eastward extension of these steppes into Kazakhstan reveals lower levels of disturbance, where as much as 36% remain in a semi-natural or natural state. Although current levels of protection in this region are also very low, the steppes of Kazakhstan have the potential to offer significant opportunities for increased conservation and protection. The Kazakh steppe, also known as the Kirghiz steppe, is itself one of the largest dry steppe regions on the planet, covering approximately 804,500 square kilometres and extending more than 2,200 kilometres from north of the Caspian Sea east to the Altai Mountains. These grasslands lie at the southern end of the Ural Mountains, the traditional dividing line between Europe and Asia.
    [Show full text]
  • A Middle Holocene Steppe Bison and Paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D
    1138 ARTICLE A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D. Zazula, Elizabeth Hall, P. Gregory Hare, Christian Thomas, Rolf Mathewes, Catherine La Farge, André L. Martel, Peter D. Heintzman, and Beth Shapiro Abstract: A partial skeleton of a bison was recovered during residential house construction in Whitehorse, Yukon, Canada. The specimen represents a young (estimated 6 year old) bison individual that died, was partially scavenged by carnivores, and subsequently buried by calcareous silt sediment in a pond or small lake during the middle Holocene, ϳ5400 years ago. Palaeoenvironmental data, including molluscs, pollen, vascular plant, and bryophyte macrofossils demonstrate that the small waterbody was surrounded by white spruce dominated boreal forest. Morphometric analysis of the skeleton reveals that its taxonomic affinity is ambiguous, likely owing to it representing an ontogenetically young individual, though it does share some cranial and horn core characteristics of named species such as Bison occidentalis or Bison priscus. Mitochondrial genomic data confirm that this bison belongs to Clade 2A (northern clade), which represents Pleistocene steppe bison (B. cf. priscus) in Beringia through the Holocene and is not represented in living bison species. These data further demonstrate that northern steppe bison population survived the late Pleistocene extinction event, persisted locally in southern Yukon into the Holocene, and are best characterized as a species with a high degree of morphological variability and ecological flexibility. Résumé : Le squelette partiel d’un bison a été récupéré durant la construction d’immeubles résidentiels a` Whitehorse (Yukon, Canada). Le spécimen représente un unique jeune bison (d’âge estimé a` 6 ans) qui est mort, a été partiellement dévoré par des carnivores pour ensuite être enseveli sous du silt calcareux dans un étang ou un petit lac durant l’Holocène moyen, il y a ϳ5400 ans.
    [Show full text]
  • North and Central Asia FAO-Unesco Soil Tnap of the World 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil Map of the World
    FAO-Unesco S oilmap of the 'world 1:5 000 000 Volume VII North and Central Asia FAO-Unesco Soil tnap of the world 1 : 5 000 000 Volume VIII North and Central Asia FAO - Unesco Soil map of the world Volume I Legend Volume II North America Volume III Mexico and Central America Volume IV South America Volume V Europe Volume VI Africa Volume VII South Asia Volume VIIINorth and Central Asia Volume IX Southeast Asia Volume X Australasia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION FAO-Unesco Soilmap of the world 1: 5 000 000 Volume VIII North and Central Asia Prepared by the Food and Agriculture Organization of the United Nations Unesco-Paris 1978 The designations employed and the presentation of material in this publication do not irnply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations or of the United Nations Educa- tional, Scientific and Cultural Organization con- cerning the legal status of any country, territory, city or area or of its authorities, or concerning the delirnitation of its frontiers or boundaries. Printed by Tipolitografia F. Failli, Rome, for the Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization Published in 1978 by the United Nations Educational, Scientific and Cultural Organization Place de Fontenoy, 75700 Paris C) FAO/Unesco 1978 ISBN 92-3-101345-9 Printed in Italy PREFACE The project for a joint FAO/Unesco Soil Map of vested with the responsibility of compiling the techni- the World was undertaken following a recommenda- cal information, correlating the studies and drafting tion of the International Society of Soil Science.
    [Show full text]
  • A Chronology of the Scythian Antiquities of Eurasia
    University of Groningen A chronology of the Scythian antiquities of Eurasia based on new archaeological and C-14 data Alekseev, A.Yu.; Bokovenko, N.A.; Boltrik, Yu.; Chugunov, K.A.; Cook, G.; Dergachev, V.A.; Kovalyukh, N.; Possnert, G.; Plicht, J. van der; Scott, E.M. Published in: Radiocarbon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2001 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Alekseev, A. Y., Bokovenko, N. A., Boltrik, Y., Chugunov, K. A., Cook, G., Dergachev, V. A., ... Zaitseva, G. (2001). A chronology of the Scythian antiquities of Eurasia based on new archaeological and C-14 data. Radiocarbon, 43(2B), 1085-1107. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 12-11-2019 A CHRONOLOGY OF THE SCYTHIAN ANTIQUITIES OF EURASIA BASED ON NEW ARCHAEOLOGICAL AND 14C DATA A Yu Alekseev 1 N A Bokovenko 2 Yu Boltrik 3 K A Chugunov 4 G Cook5 V A Dergachev 6 N Kovalyukh 7 G Possnert 8 J van der Plicht 9 E M Scott10 A Sementsov 2 V Skripkin 7 S Vasiliev6 G Zaitseva 2 ABSTRACT.
    [Show full text]
  • Description of the Ecoregions of the United States
    (iii) ~ Agrl~:::~~;~":,c ullur. Description of the ~:::;. Ecoregions of the ==-'Number 1391 United States •• .~ • /..';;\:?;;.. \ United State. (;lAn) Department of Description of the .~ Agriculture Forest Ecoregions of the Service October United States 1980 Compiled by Robert G. Bailey Formerly Regional geographer, Intermountain Region; currently geographer, Rocky Mountain Forest and Range Experiment Station Prepared in cooperation with U.S. Fish and Wildlife Service and originally published as an unnumbered publication by the Intermountain Region, USDA Forest Service, Ogden, Utah In April 1979, the Agency leaders of the Bureau of Land Manage­ ment, Forest Service, Fish and Wildlife Service, Geological Survey, and Soil Conservation Service endorsed the concept of a national classification system developed by the Resources Evaluation Tech­ niques Program at the Rocky Mountain Forest and Range Experiment Station, to be used for renewable resources evaluation. The classifica­ tion system consists of four components (vegetation, soil, landform, and water), a proposed procedure for integrating the components into ecological response units, and a programmed procedure for integrating the ecological response units into ecosystem associations. The classification system described here is the result of literature synthesis and limited field testing and evaluation. It presents one procedure for defining, describing, and displaying ecosystems with respect to geographical distribution. The system and others are undergoing rigorous evaluation to determine the most appropriate procedure for defining and describing ecosystem associations. Bailey, Robert G. 1980. Description of the ecoregions of the United States. U. S. Department of Agriculture, Miscellaneous Publication No. 1391, 77 pp. This publication briefly describes and illustrates the Nation's ecosystem regions as shown in the 1976 map, "Ecoregions of the United States." A copy of this map, described in the Introduction, can be found between the last page and the back cover of this publication.
    [Show full text]
  • Vegetation at the Taiga Forest–Steppe Borderline in the Western Khentey Mountains, Northern Mongolia
    Ann. Bot. Fennici 42: 411–426 ISSN 0003-3847 Helsinki 19 December 2005 © Finnish Zoological and Botanical Publishing Board 2005 Vegetation at the taiga forest–steppe borderline in the western Khentey Mountains, northern Mongolia Choimaa Dulamsuren1, Markus Hauck2 & Michael Mühlenberg1 1) Center of Nature Conservation, University of Göttingen, Von-Siebold-Straße 2, D-37075 Göttingen, Germany (e-mail: [email protected]) 2) Albrecht von Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany (e-mail: [email protected]) Received 31 Aug. 2004, revised version received 11 Nov. 2004, accepted 7 Jan. 2005 Dulamsuren, C., Hauck, M. & Mühlenberg, M. 2005: Vegetation at the taiga forest–steppe border- line in the western Khentey Mountains, northern Mongolia. — Ann. Bot. Fennici 42: 411–426. Vegetation of an area of 500 km2 in the western Khentey Mountains, northern Mon- golia is phytosociologically classified with the help of 254 relevés. Twenty-one main vegetation units are described. The study area is situated at the interface between the western Siberian dark taiga, the eastern Siberian light taiga and the Mongolian-Daurian forest steppe. A small-scale pattern of these three major vegetation types was found depending on site characteristics. Dark taiga forests of Pinus sibirica, Abies sibirica, Picea obovata, and Larix sibirica grow at the most humid sites. Light taiga forests dominated by Larix sibirica and Betula platyphylla occur on relatively dry northern slopes of the lower montane belt. Sun-exposed, southern slopes of the lower montane belt are covered by montane meadow and mountain steppe. DCA ordination suggests that the distribution of vegetation types depends on water supply and altitude.
    [Show full text]
  • Pollen-Based Quantitative Land-Cover Reconstruction for Northern Asia Covering the Last 40 Ka Cal BP
    Clim. Past, 15, 1503–1536, 2019 https://doi.org/10.5194/cp-15-1503-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP Xianyong Cao1,a, Fang Tian1, Furong Li2, Marie-José Gaillard2, Natalia Rudaya1,3,4, Qinghai Xu5, and Ulrike Herzschuh1,4,6 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A43, Potsdam 14473, Germany 2Department of Biology and Environmental Science, Linnaeus University, Kalmar 39182, Sweden 3Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 17, Novosibirsk 630090, Russia 4Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24, 14476 Potsdam, Germany 5College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050024, China 6Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24, Potsdam 14476, Germany apresent address: Key Laboratory of Alpine Ecology, CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China Correspondence: Xianyong Cao ([email protected]) and Ulrike Herzschuh ([email protected]) Received: 21 August 2018 – Discussion started: 23 October 2018 Revised: 3 July 2019 – Accepted: 8 July 2019 – Published: 8 August 2019 Abstract. We collected the available relative pollen produc- pollen producers. Comparisons with vegetation-independent tivity estimates (PPEs) for 27 major pollen taxa from Eura- climate records show that climate change is the primary fac- sia and applied them to estimate plant abundances during the tor driving land-cover changes at broad spatial and temporal last 40 ka cal BP (calibrated thousand years before present) scales.
    [Show full text]
  • A HOME for the DAURIA's RARE CREATURES Securing Steppe
    A HOME FOR THE DAURIA’S RARE CREATURES Securing steppe fauna in the Daursky Biosphere Reserve Photo: Vadim Kiriliuk Adon-Chelon, ‘The Herd of Stone Horses’ – a site targeted for Argali Sheep reintroduction Torey Lakes - Russian The Dauria Steppe Ecoregion The transboundary Dauria steppe ecoregion occurs across Mongolia, Russia and China. Within Russia, the Dauria steppe spreads across the Zabaikalsky Province in Russia’s Far East. It is renowned for its high diversity of fauna including the Great Bustard, Daurian Crane, Swan Goose, Mongolian Gazelle, Argali Sheep, Siberian Marmot, and Pallas Cat. The high zoological diversity of the region has been attributed to a number of factors including a large range of habitat types and dispersion corridors, the overlap of several zoogeographic zones, and extreme variations in climatic conditions which triggers widespread migrations in many species. Despite the high biodiversity values of the region, Zabaikalsky Province has the lowest protected areas coverage amongst Russia’s eastern provinces. One of the few protected areas in the region is the exceptional Daursky Biosphere Reserve, situated near the Mongolian and China border, which unites a cluster of reserves including the Tasucheisky Wildlife Refuge. Representing the majority of major landscape types of the Dauria, the 45,790 hectare core area of the Daursky consists of wetlands and rocky hills, while the 163,530 hectare buffer zone contains mostly grassland and pine stands. The reserve also includes the significant rocks of Adon-Chelon (‘The Herd of Stone Horses’ in Buryat language), and a stand of the rare Krylov pine which is uniquely adapted to survive the conditions of the dry steppes.
    [Show full text]
  • Distribution Mapping of World Grassland Types A
    Journal of Biogeography (J. Biogeogr.) (2014) SYNTHESIS Distribution mapping of world grassland types A. P. Dixon1*, D. Faber-Langendoen2, C. Josse2, J. Morrison1 and C. J. Loucks1 1World Wildlife Fund – United States, 1250 ABSTRACT 24th Street NW, Washington, DC 20037, Aim National and international policy frameworks, such as the European USA, 2NatureServe, 4600 N. Fairfax Drive, Union’s Renewable Energy Directive, increasingly seek to conserve and refer- 7th Floor, Arlington, VA 22203, USA ence ‘highly biodiverse grasslands’. However, to date there is no systematic glo- bal characterization and distribution map for grassland types. To address this gap, we first propose a systematic definition of grassland. We then integrate International Vegetation Classification (IVC) grassland types with the map of Terrestrial Ecoregions of the World (TEOW). Location Global. Methods We developed a broad definition of grassland as a distinct biotic and ecological unit, noting its similarity to savanna and distinguishing it from woodland and wetland. A grassland is defined as a non-wetland type with at least 10% vegetation cover, dominated or co-dominated by graminoid and forb growth forms, and where the trees form a single-layer canopy with either less than 10% cover and 5 m height (temperate) or less than 40% cover and 8 m height (tropical). We used the IVC division level to classify grasslands into major regional types. We developed an ecologically meaningful spatial cata- logue of IVC grassland types by listing IVC grassland formations and divisions where grassland currently occupies, or historically occupied, at least 10% of an ecoregion in the TEOW framework. Results We created a global biogeographical characterization of the Earth’s grassland types, describing approximately 75% of IVC grassland divisions with ecoregions.
    [Show full text]
  • A Middle Holocene Steppe Bison and Paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D
    1138 ARTICLE A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada Grant D. Zazula, Elizabeth Hall, P. Gregory Hare, Christian Thomas, Rolf Mathewes, Catherine La Farge, André L. Martel, Peter D. Heintzman, and Beth Shapiro Abstract: A partial skeleton of a bison was recovered during residential house construction in Whitehorse, Yukon, Canada. The specimen represents a young (estimated 6 year old) bison individual that died, was partially scavenged by carnivores, and subsequently buried by calcareous silt sediment in a pond or small lake during the middle Holocene, ϳ5400 years ago. Palaeoenvironmental data, including molluscs, pollen, vascular plant, and bryophyte macrofossils demonstrate that the small waterbody was surrounded by white spruce dominated boreal forest. Morphometric analysis of the skeleton reveals that its taxonomic affinity is ambiguous, likely owing to it representing an ontogenetically young individual, though it does share some cranial and horn core characteristics of named species such as Bison occidentalis or Bison priscus. Mitochondrial genomic data confirm that this bison belongs to Clade 2A (northern clade), which represents Pleistocene steppe bison (B. cf. priscus) in Beringia through the Holocene and is not represented in living bison species. These data further demonstrate that northern steppe bison population survived the late Pleistocene extinction event, persisted locally in southern Yukon into the Holocene, and are best characterized as a species with a high degree of morphological variability and ecological flexibility. Résumé : Le squelette partiel d’un bison a été récupéré durant la construction d’immeubles résidentiels a` Whitehorse (Yukon, Canada). Le spécimen représente un unique jeune bison (d’âge estimé a` 6 ans) qui est mort, a été partiellement dévoré par des carnivores pour ensuite être enseveli sous du silt calcareux dans un étang ou un petit lac durant l’Holocène moyen, il y a ϳ5400 ans.
    [Show full text]