The Phylogeny of Crested Newts (Triturus Cristatus Superspecies)

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogeny of Crested Newts (Triturus Cristatus Superspecies) Contributions to Zoology, 76 (4) 261-278 (2007) The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the centre of origin J.W. Arntzen1, G. Espregueira Themudo1,2, B. Wielstra1,3 1 National Museum of Natural History, P. O. Box 9517, 2300 RA Leiden, The Netherlands, [email protected] 2 CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal, [email protected] 3 Institute of Biology Leiden, Leiden University, P.O. Box 9516, 2300 RA Leiden, The Netherlands, wielstra@natu- ralis.nl Key words: allozymes, historical biogeography, mitochondrial DNA-sequences, Triturus macedonicus, Triturus marmoratus, vicariance Abstract tionary lineage and we propose to elevate its taxonomic status to that of a species, i.e., from Triturus c. macedonicus (Karaman, Newts of the genus Triturus (Amphibia, Caudata, Salamandri- 1922) to Triturus macedonicus (Karaman, 1922). dae) are distributed across Europe and adjacent Asia. In spite of its prominence as a model system for evolutionary research, the phylogeny of Triturus has remained incompletely solved. Our Contents aim was to rectify this situation, to which we employed nuclear encoded proteins (40 loci) and mitochondrial DNA-sequence Introduction .................................................................................... 261 data (mtDNA, 642 bp of the ND4 gene). We sampled up to four Materials and methods ................................................................. 263 populations per species covering large parts of their ranges. Al- Sampling strategy ................................................................... 263 lozyme and mtDNA data were analyzed separately with parsi- Allozyme data .......................................................................... 263 mony, distance, likelihood and Bayesian methods of phyloge- Mitochondrial DNA-sequence data .................................... 268 netic inference. Existing knowledge on taxonomic relationships Phylogenetic analysis ............................................................. 268 was confi rmed, including the monophyly of the genus and the Results ............................................................................................. 269 groups of crested newts (four species) and marbled newts (two Allozymes ................................................................................. 269 species). The genetic coherence of species and subspecies was Mitochondrial DNA-sequences ........................................... 270 also confi rmed, but not always with high statistical support (de- Discussion ...................................................................................... 272 pending on taxon, characters under consideration, and method Genetic coherence of species and subspecies ................... 272 of inference). In spite of our efforts we did not obtain suffi cient Phylogeny ................................................................................. 272 phylogenetic signal to prefer one out of twelve potential topolo- Historical biogeography ........................................................ 273 gies representing crested newts relationships. We hypothesize Taxonomic considerations .................................................... 275 that the lack of phylogenetic resolution refl ects a hard polytomy Acknowledgements ...................................................................... 276 and represents the (near)-simultaneous origin of crested newt References ...................................................................................... 276 species. Using a calibration point of 24 Ma (million years before Appendix I ...................................................................................... 278 present) for the most recent common ancestor of Triturus-spe- Appendix II .................................................................................... 278 cies, the crested newt radiation event is dated at 7-6 Ma (sce- nario 1) or at 11-10 Ma (scenario 2), depending on the applica- tion of an allozyme versus mtDNA molecular clock. The fi rst biogeographical scenario involves the spread of crested newts Introduction from the central Balkans into four compass directions. This sce- nario cannot be brought into line with potential vicariance events The newt genus Triturus Rafi nesque, 1815 (Amphibia, for south-eastern Europe. The second scenario involves the Caudata, Salamandridae) is a model group for various more or less simultaneous origin of four species of crested newts lines of evolutionary research, on e.g. locomotion through large-scale vicariance events and is supported by the (Gvozdik and van Damme, 2006), cranial ontogeny paleogeographical reconstruction for the region at the end of the Middle Miocene. The subspecies Triturus carnifex macedonicus (Ivanović et al., 2007), reproductive behaviour (Stein- carries in one large area the mtDNA that is typical for the neigh- fartz et al., 2007) and sexual size dimorphism (A. bouring species T. karelinii, which is attributed to introgression Ivanović, K. Sotiropoulos, M. Furtula, G. Džukić and and a recent range shift. It is nevertheless a long distinct evolu- M.L. Kalezić, submitted). Considering the effi cient use 262 J.W. Arntzen et al. – Phylogeny of crested newts of the ‘comparative method’ that aims to account for (Laurenti, 1768), that is distributed over central, west- non-independence among characters due to shared evo- ern and northern Europe and eastwards deep into Rus- lutionary histories (Harvey and Pagel, 1991), it would sia, T. carnifex (Laurenti, 1768), that occurs on the Ap- seem important that the phylogenetic relationships penine Peninsula and part of the Balkans, T. dobrogi- within the group are well resolved. Despite considera- cus (Kiritzescu, 1903), that is confi ned to the Pannon- ble efforts, starting with the osteological study of Bolkay ian and Dobrogean lowlands, and T. karelinii (Strauch, (1928), an unambiguous phylogenetic resolution for 1870), with a range from the southern Balkans to the Triturus has not been obtained (Arntzen, 2003). Caspian Sea. Triturus carnifex has two allopatric sub- The genus Triturus encompasses six species of so- species, the nominotypical subspecies in the western called ‘large bodied’ newts that are organized in two part and T. c. macedonicus (Karaman, 1922) in the east- groups: the marbled newts with two species and the ern part of the species range, separated by the Adriatic crested newts with four species. Marbled newts are Sea and the area approximately coinciding with Bos- characterized by a dorsal green colouration and a fairly nia-Herzegovina. uniform light grey or black underside. Triturus mar- Given their contiguous parapatric ranges with limit- moratus (Latreille, 1800) occurs in central and south- ed hybridization (Wallis and Arntzen, 1989), the four ern France and the northern part of the Iberian Penin- species of crested newt are conveniently referred to as a sula and T. pygmaeus (Wolterstorff, 1905) is confi ned superspecies (or ‘Artenkreis’) sensu Rensch (1929). to the south-western and southern parts of the Iberian Molecular phylogenetic studies corroborate the mono- Peninsula. Crested newts are characterized by an or- phyly of Triturus and the sistergroup relationship of ange and black spotted ventral colouration and a dark crested and marbled newts (e.g. Zajc and Arntzen, 1999; backside and occupy most other parts of Europe and Steinfartz et al., 2007). Approximate geographical dis- adjacent Asia. Four species are recognized: T. cristatus tributions of Triturus species are shown in Figure 1. Fig. 1. Approximate geographical distribution of Triturus species, represented by the following colours: orange - T. carnifex, red - T. crista- tus, blue - T. dobrogicus, yellow - T. karelinii, dark green - T. marmoratus, light green - T. pygmaeus. Numbers indicate the populations sampled in this study as listed in Appendix I. The concave polygon in the Balkans represents the area where karelinii-type mtDNA was observed in T. carnifex macedonicus (Arntzen and Wallis, 1999 and present study). Note the zone of sympatry between T. cristatus and T. marmoratus in western France. Contributions to Zoology, 76 (4) – 2007 263 The monophyly of the genus Triturus is strongly fall within the species for which they are recognized. supported by a number of synapomorphic character The aforementioned ‘NRBV-constraint’ equals to tree states (Arntzen, 2003), including a remarkable genetic number 10. In the present study, we set out to elucidate condition that kills off all embryos that are homomor- the phylogenetic relationships of the genus Triturus phic for either the long or the short copy of chromo- and in particular the Triturus cristatus superspecies. some-1, the so-called ‘chromosome-1 syndrome’ (Rid- For this purpose, we employ the independent datasets ley, 1993). The small- and medium-sized newt species of nuclear encoded protein data and mtDNA-sequence (alpestris, vittatus, vulgaris and allies), traditionally data. included in Triturus have recently been placed in gen- era of their own (García-París et al., 2004; Steinfartz et al., 2007). Material and methods Adult crested newts can be organized in a morpho- logical series from a stocky built with well-developed Sampling strategy appendages in T. karelinii, to a slender built with short appendages in T. dobrogicus, with
Recommended publications
  • <I>Ichthyosaura Alpestris</I>
    Volume 26 (January 2016), 49–56 FULL PAPER Herpetological Journal Published by the British Provenance of Ichthyosaura alpestris (Caudata: Herpetological Society Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis Jan W. Arntzen1, Tania M. King2, Mathieu Denoël3, Iñigo Martínez-Solano4,5 & Graham P. Wallis2 1Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 2Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 3Behavioural Biology Unit, Department of Biology, Ecology and Evolution, University of Liège, Quai van Beneden 22, 4020 Liège, Belgium 4CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, Rua Padre Armando Quintas, s/n 4485-661 Vairão, Portugal 5(present address) Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Americo Vespucio, s/n, 41092, Seville, Spain The last century has seen an unparalleled movement of species around the planet as a direct result of human activity, which has been a major contributor to the biodiversity crisis. Amphibians represent a particularly vulnerable group, exacerbated by the devastating effects of chytrid fungi. We report the malicious translocation and establishment of the alpine newt (Ichthyosaura alpestris) to its virtual antipode in North Island of New Zealand. We use network analysis of mitochondrial DNA haplotypes to identify the original source population as I. a. apuana from Tuscany, Italy. Additionally, a population in southern France, presumed to be introduced, is identified as I. a. alpestris from western Europe. However, the presence of two differentiated haplotypes suggests a mixed origin.
    [Show full text]
  • What Really Hampers Taxonomy and Conservation? a Riposte to Garnett and Christidis (2017)
    Zootaxa 4317 (1): 179–184 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4317.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:88FA0944-D3CF-4A7D-B8FB-BAA6A3A76744 What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017) MARCOS A. RAPOSO1,2, RENATA STOPIGLIA3,4, GUILHERME RENZO R. BRITO1,5, FLÁVIO A. BOCKMANN3,6, GUY M. KIRWAN1,7, JEAN GAYON2 & ALAIN DUBOIS4 1 Setor de Ornitologia, Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940–040 Rio de Janeiro, RJ, Brazil. [email protected] (MAR), [email protected] (GRRB), [email protected] (GMK) 2 UMR 8590, IHPST–Institut d'Histoire et de Philosophie des Sciences et des Techniques, UMR 8590, Université Paris 1 Panthéon- Sorbonne & CNRS, 13 rue du Four, 75006 Paris, France. [email protected] (JG) 3 Laboratório de Ictiologia de Ribeirão Preto, Departamento de Biologia, FFCLRP, Universidade de São Paulo, Av. dos Bandeirantes 3900, 14040–901 Ribeirão Preto, SP, Brazil. [email protected] (RS), [email protected] (FAB) 4 Institut de Systématique, Évolution, Biodiversité, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 25 rue Cuvier, CP 30, 75005, Paris, France. [email protected] (AD). 5 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941- 902, Rio de Janeiro, RJ, Brazil. 6 Programa de Pós-Graduação em Biologia Comparada, FFCLRP, Universidade de São Paulo, Av.
    [Show full text]
  • Notophthalmus Perstriatus) Version 1.0
    Species Status Assessment for the Striped Newt (Notophthalmus perstriatus) Version 1.0 Striped newt eft. Photo credit Ryan Means (used with permission). May 2018 U.S. Fish and Wildlife Service Region 4 Jacksonville, Florida 1 Acknowledgements This document was prepared by the U.S. Fish and Wildlife Service’s North Florida Field Office with assistance from the Georgia Field Office, and the striped newt Species Status Assessment Team (Sabrina West (USFWS-Region 8), Kaye London (USFWS-Region 4) Christopher Coppola (USFWS-Region 4), and Lourdes Mena (USFWS-Region 4)). Additionally, valuable peer reviews of a draft of this document were provided by Lora Smith (Jones Ecological Research Center) , Dirk Stevenson (Altamaha Consulting), Dr. Eric Hoffman (University of Central Florida), Dr. Susan Walls (USGS), and other partners, including members of the Striped Newt Working Group. We appreciate their comments, which resulted in a more robust status assessment and final report. EXECUTIVE SUMMARY This Species Status Assessment (SSA) is an in-depth review of the striped newt's (Notophthalmus perstriatus) biology and threats, an evaluation of its biological status, and an assessment of the resources and conditions needed to maintain species viability. We begin the SSA with an understanding of the species’ unique life history, and from that we evaluate the biological requirements of individuals, populations, and species using the principles of population resiliency, species redundancy, and species representation. All three concepts (or analogous ones) apply at both the population and species levels, and are explained that way below for simplicity and clarity as we introduce them. The striped newt is a small salamander that uses ephemeral wetlands and the upland habitat (scrub, mesic flatwoods, and sandhills) that surrounds those wetlands.
    [Show full text]
  • 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon
    INFORMATION REPORTS NUMBER 2010-05 FISH DIVISION Oregon Department of Fish and Wildlife 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, or if you desire further information, please contact ADA Coordinator, Oregon Department of Fish and Wildlife, 3406 Cherry Drive NE, Salem, OR, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call 541-757-4263 to request 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon Sharon E. Tippery Brian L. Bangs Kim K. Jones Oregon Department of Fish and Wildlife Corvallis, OR November, 2010 This project was financed with funds administered by the U.S. Fish and Wildlife Service State Wildlife Grants under contract T-17-1 and the Oregon Department of Fish and Wildlife, Oregon Plan for Salmon and Watersheds. Citation: Tippery, S. E., B. L Bangs and K. K. Jones. 2010. 2008 Amphibian Distribution Surveys in Wadeable Streams and Ponds in Western and Southeast Oregon. Information Report 2010-05, Oregon Department of Fish and Wildlife, Corvallis. CONTENTS FIGURES.......................................................................................................................................
    [Show full text]
  • Is the Danube Crested Newt Triturus Dobrogicus Polytypic? a Review and New Nuclear DNA Data
    This is a repository copy of Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/104514/ Version: Accepted Version Article: Wielstra, B. orcid.org/0000-0002-7112-5965, Voeroes, J. and Arntzen, J.W. (2016) Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data. Amphibia-Reptilia , 37 (2). pp. 167-177. ISSN 0173-5373 https://doi.org/10.1163/15685381-00003041 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Is the Danube crested newt Triturus dobrogicus polytypic? A review and new nuclear DNA data 2 3 Short title: Is the Danube crested newt Triturus dobrogicus polytypic? 4 5 Ben Wielstra1,2,*, Judit Vörös3, Jan W. Arntzen2 6 1Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, UK. 7 2Naturalis Biodiversity Center, P.
    [Show full text]
  • EVER-EARLIER BREEDING MIGRATIONS by ALPINE NEWTS (TRITURUS ALPESTRIS) LIVING WILD in BRITAIN 434 Falmer Road, Woodingdean, Brigh
    Bntish Herpetological Society Bulletin, No. 51, 1995. EVER-EARLIER BREEDING MIGRATIONS BY ALPINE NEWTS (TRITURUS ALPESTRIS) LIVING WILD IN BRITAIN TREVOR J.C. BEEBEE 434 Falmer Road, Woodingdean, Brighton BN2 6LG Alpine Newts have been living and breeding in my garden and its ponds ever since the introduction of just a few individuals nearly 20 years ago, before the Wildlife & Countryside Act rendered such deviant behaviour inadmissable. Triturus alpestris proved very successful, rapidly building up to such numbers as to become the second most abundant of the four species using my ponds every year. One aspect of Alpine Newt behaviour that became apparent very early on, however, was late arrival at the ponds in spring. Over the first five years when the colony was becoming established the average day of first sighting an Alpine Newt was March 17th; this was a good six weeks later than the first Smooth Newts, which arrived around the start of February, and some five weeks later than the Palmates and Crested Newts that share the same pools. One thing I have tried to do over the years is to keep accurate records of the dates upon which newts first enter my ponds. This is not difficult since it involves no more than stepping outside the back door for a few minutes after dark and inspecting the ponds (which are cleared of weed every autumn) with a powerful torch. I am therefore pretty confident that my records are accurate, at least to within a day or two. On the basis of these observations, a dramatic trend is apparent over the 17 years since the newts were first introduced.
    [Show full text]
  • Sexual Dimorphism in a French Population of the Marbled Newt, Triturus Marmoratus (Urodela: Salamandridae)
    SALAMANDRA 51(2) 121–128Sexual dimorphism30 June 2015 in a FrenchISSN 0036–3375 population of Triturus marmoratus Sexual dimorphism in a French population of the marbled newt, Triturus marmoratus (Urodela: Salamandridae) Sandy Reinhard1 & Alexander Kupfer2,3 1) Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich Schiller-Universität Jena, Erbertstr. 1, 07743 Jena, Germany 2) Abteilung Zoologie, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany 3) Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24–25, Haus 26, 14476 Potsdam, Germany Corresponding author: Sandy Reinhard, e-mail: [email protected] Manuscript received: 21 May 2014 Accepted: 6 October 2014 by Stefan Lötters Abstract. Amphibians have developed a large set of life-history strategies and demonstrate an impressive diversity of re- productive patterns compared to other vertebrates. Various selection pressures impact on males and females and see them produce different degrees of sexual dimorphism in order to maximise their reproductive success. In an extended morpho- metric analysis that included 27 body- and head-related characters, we studied the pattern of sexual dimorphism of a French population of the marbled newt, Triturus marmoratus. We analysed the characters by employing GLM methods (ANCOVA) and found 16 of them to be dimorphic between the sexes. In general, females differ in head–body size, such as snout–vent length, but males rather in shape or body proportions (e.g., limb proportions). The various expressions of sex- ual size dimorphism among large-bodied marbled newts and allies demonstrate that more than one evolutionary model works simultaneously on different traits.
    [Show full text]
  • Calotriton Asper)
    Amphibia-Reptilia (2014) DOI:10.1163/15685381-00002921 Life history trait differences between a lake and a stream-dwelling population of the Pyrenean brook newt (Calotriton asper) Neus Oromi1,∗, Fèlix Amat2, Delfi Sanuy1, Salvador Carranza3 Abstract. The Pyrenean brook newt (Calotriton asper) is a salamandrid that mostly lives in fast running and cold mountain- streams, although some populations are also found in lakes. In the present work, we report in detail on the occurrence of facultative paedomorphosis traits in a population from a Pyrenean high altitude lake. We compare its morphology, life history traits and mitochondrial DNA variation with a nearby lotic metamorphic population. Our results indicate that the lacustrine newts are smaller and present a less developed sexual dimorphism, smooth skin, and that 53% of the adults retain gills at different degrees of development, but not gill slits. Although both populations and sexes have the same age at sexual maturity (four years), the lacustrine population presents higher longevity (12 and 9 years for males and females, respectively) than the one living in the stream (8 and 9 years). The variation on the climatic conditions at altitudinal scale is probably the main cause of the differences in life history traits found between the two populations. The food availability, which could to be limiting in the lacustrine population, is another factor that can potentially affect body size. These results are congruent with the significant mitochondrial DNA genetic isolation between populations, probably a consequence of the lack of juvenile dispersal. We found low cytochrome b variability and significant genetic structuring in the lake population that is very remarkably considering the short distance to the nearby stream population and the whole species’ pattern.
    [Show full text]
  • Life History Account for Red-Bellied Newt
    California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group RED-BELLIED NEWT Taricha rivularis Family: SALAMANDRIDAE Order: CAUDATA Class: AMPHIBIA A008 Written by: M. Marangio Reviewed by: T. Papenfuss Edited by: R. Duke, J. Harris, S. Granholm DISTRIBUTION, ABUNDANCE, AND SEASONALITY The red-bellied newt ranges within Sonoma, Mendocino, Humboldt and Lake cos. Abundant in most of range. Migrates to streams during fall and winter rains. Inhabits primarily redwood forest, but also found within mixed conifer, valley-foothill woodland, montane hardwood and hardwood-conifer habitats. SPECIFIC HABITAT REQUIREMENTS Feeding: Feeds on arthropods, worms and snails in water and on forest floor within ground litter. Cover: Spends dry season underground within root channels. Reproduction: Requires rapid streams with rocky substrate for breeding and egg-laying. Water: Rapid-flowing, permanent streams are required for breeding and larval development. Pattern: Streams in proximity to redwood forest are required. SPECIES LIFE HISTORY Activity Patterns: Primarily active at night. Migrate to streams during autumn rains, returning to terrestrial habitat in the spring. Aestivation in terrestrial habitat takes place during the summer months. Seasonal Movements/Migration: May migrate a mile or more to and from the breeding stream. Migratory movements stimulated primarily by rain, but in heavy amounts rain inhibits movement toward the stream. Home Range: Displaced individuals return to home site (within 50 ft of point previously occupied in stream) (Packer 1963). "Neighborhood size" within a segment of stream was estimated at 0.4-1.0 km (0.2-0.6 mi) (Hedgecock 1978). Home range over land extends only over a small area adjacent to the breeding site (Twitty et al.
    [Show full text]
  • 50 CFR Ch. I (10–1–20 Edition) § 16.14
    § 15.41 50 CFR Ch. I (10–1–20 Edition) Species Common name Serinus canaria ............................................................. Common Canary. 1 Note: Permits are still required for this species under part 17 of this chapter. (b) Non-captive-bred species. The list 16.14 Importation of live or dead amphib- in this paragraph includes species of ians or their eggs. non-captive-bred exotic birds and coun- 16.15 Importation of live reptiles or their tries for which importation into the eggs. United States is not prohibited by sec- Subpart C—Permits tion 15.11. The species are grouped tax- onomically by order, and may only be 16.22 Injurious wildlife permits. imported from the approved country, except as provided under a permit Subpart D—Additional Exemptions issued pursuant to subpart C of this 16.32 Importation by Federal agencies. part. 16.33 Importation of natural-history speci- [59 FR 62262, Dec. 2, 1994, as amended at 61 mens. FR 2093, Jan. 24, 1996; 82 FR 16540, Apr. 5, AUTHORITY: 18 U.S.C. 42. 2017] SOURCE: 39 FR 1169, Jan. 4, 1974, unless oth- erwise noted. Subpart E—Qualifying Facilities Breeding Exotic Birds in Captivity Subpart A—Introduction § 15.41 Criteria for including facilities as qualifying for imports. [Re- § 16.1 Purpose of regulations. served] The regulations contained in this part implement the Lacey Act (18 § 15.42 List of foreign qualifying breed- U.S.C. 42). ing facilities. [Reserved] § 16.2 Scope of regulations. Subpart F—List of Prohibited Spe- The provisions of this part are in ad- cies Not Listed in the Appen- dition to, and are not in lieu of, other dices to the Convention regulations of this subchapter B which may require a permit or prescribe addi- § 15.51 Criteria for including species tional restrictions or conditions for the and countries in the prohibited list.
    [Show full text]
  • The Salamanders of Tennessee
    Salamanders of Tennessee: modified from Lisa Powers tnwildlife.org Follow links to Nongame The Salamanders of Tennessee Photo by John White Salamanders are the group of tailed, vertebrate animals that along with frogs and caecilians make up the class Amphibia. Salamanders are ectothermic (cold-blooded), have smooth glandular skin, lack claws and must have a moist environment in which to live. 1 Amphibian Declines Worldwide, over 200 amphibian species have experienced recent population declines. Scientists have reports of 32 species First discovered in 1967, the golden extinctions, toad, Bufo periglenes, was last seen mainly species of in 1987. frogs. Much attention has been given to the Anurans (frogs) in recent years, however salamander populations have been poorly monitored. Photo by Henk Wallays Fire Salamander - Salamandra salamandra terrestris 2 Why The Concern For Salamanders in Tennessee? Their key role and high densities in many forests The stability in their counts and populations Their vulnerability to air and water pollution Their sensitivity as a measure of change The threatened and endangered status of several species Their inherent beauty and appeal as a creature to study and conserve. *Possible Factors Influencing Declines Around the World Climate Change Habitat Modification Habitat Fragmentation Introduced Species UV-B Radiation Chemical Contaminants Disease Trade in Amphibians as Pets *Often declines are caused by a combination of factors and do not have a single cause. Major Causes for Declines in Tennessee Habitat Modification -The destruction of natural habitats is undoubtedly the biggest threat facing amphibians in Tennessee. Housing, shopping center, industrial and highway construction are all increasing throughout the state and consequently decreasing the amount of available habitat for amphibians.
    [Show full text]
  • A New Species of the Genus Tylototriton (Amphibia: Urodela: Salamandridae) from the Southern Dabie Mountains in Anhui Province
    Asian Herpetological Research 2017, 8(3): 151–164 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.170013 A New Species of the Genus Tylototriton (Amphibia: Urodela: Salamandridae) from the Southern Dabie Mountains in Anhui Province Lifu QIAN1**, Xiaonan SUN1**, Jiaqi LI2, Weibo GUO2, Tao PAN1, Xing KANG1, Hui WANG1, Jianping JIANG3, Jun WU2* and Baowei ZHANG1* 1 Anhui Key Laboratory of Eco-engineering and Bio-technique, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China 2 Nanjing Institute of Environmental Sciences under the Ministry of Environmental Protection, Nanjing 210042, Jiangsu, China 3 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, Sichuan, China Abstract A new species of the genus Tylototriton is described, from Yuexi county, Anhui province, in the south of the Dabie Mountains. It is based on morphological and molecular analysis. The new species is identified as belonging to the Tylototriton asperrimus group and shares a number of similarities with T. wenxianensis, T. broadoridgus and T. dabienicus. The diagnostic characteristics of the new species are as follows: the head length is greater than the width of the head; bony ridges on the head are prominent and necked-in; the distal digit ends, ventral digits, peripheral area of the cloaca and the tail’s lower edge are orange. The result from the molecular analysis of the genus Tylototriton (including the type specimen of the new species) based on three mitochondrial genes (ND1, ND2 and CYTB) indicated that the new species was close to T. wenxianensis, T. dabienicus, and T. broadoridgus, but formed an independent clade. This result was consistent with the morphological analysis above, which supports the theory that the population distributed in the south of the Dabie Mountains, namely in from Yuexi county, Anhui province, represented a distinct species, Tylototriton anhuiensis sp.
    [Show full text]