Do Molecular Markers Inform About Pleiotropy?

Total Page:16

File Type:pdf, Size:1020Kb

Do Molecular Markers Inform About Pleiotropy? HIGHLIGHTED ARTICLE GENETICS | COMMUNICATIONS Do Molecular Markers Inform About Pleiotropy? Daniel Gianola,*,†,‡,1 Gustavo de los Campos,§ Miguel A. Toro,** Hugo Naya,†† Chris-Carolin Schön,†,‡ and Daniel Sorensen‡‡ *Departments of Animal Sciences, Dairy Science, and Biostatistics and Medical Informatics, University of Wisconsin–Madison, Wisconsin 53706, †Department of Plant Sciences Technical University of Munich, Center for Life and Food Sciences, D-85354 Freising-Weihenstephan, Germany, ‡Institute of Advanced Study, Technical University of Munich, D-85748 Garching, Germany, §Department of Biostatistics, Michigan State University, East Lansing, Michigan 48824, **Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 20840 Madrid, Spain, ††Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay, and ‡‡Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark ABSTRACT The availability of dense panels of common single-nucleotide polymorphisms and sequence variants has facilitated the study of statistical features of the genetic architecture of complex traits and diseases via whole-genome regressions (WGRs). At the onset, traits were analyzed trait by trait, but recently, WGRs have been extended for analysis of several traits jointly. The expectation is that such an approach would offer insight into mechanisms that cause trait associations, such as pleiotropy. We demonstrate that correlation parameters inferred using markers can give a distorted picture of the genetic correlation between traits. In the absence of knowledge of linkage disequilibrium relationships between quantitative or disease trait loci and markers, speculating about genetic correlation and its causes (e.g., pleiotropy) using genomic data is conjectural. KEYWORDS genetic correlation; genomic correlation; genomic heritability; linkage disequilibrium; pleiotropy HE interindividual differences for a trait or disease risk 1996; Lynch and Ritland 1999). This development has Tthat can be explained by genetic factors, such as trait opened new opportunities for study of the genetic architec- 2 heritability (h ), the genetic correlation (rG), and the coher- ture of complex traits and diseases. For instance, Yang et al. itability between two traits (rGh1h2), are very important pa- (2010) suggested using whole-genome regressions (WGRs) rameters in quantitative genetic studies of animals, humans, (Meuwissen et al. 2001) to assess the proportion of variance and plants. These quantities play a role in the study of evo- of a trait or disease risk that can be explained by a regression lution due to artificial and natural selection, and knowledge of phenotypes on common SNPs or genomic heritability and thereof is required for statistical prediction of outcomes in a related parameter, the “missing heritability.” More recently, animal and plant breeding as well as medicine. Traditionally, WGR models have been extended for the analysis of systems these parameters have been estimated using phenotypes and of multiple traits, so the concept of genomic correlation also pedigrees, e.g., family and twin data in human genetics. The has entered into the picture (Jia and Jannink 2012; Lee et al. availability of dense panels of common single-nucleotide 2012). For instance, Maier et al. (2015) used multivariate polymorphisms (SNPs) and of sequence data more recently WGR models and reported estimates of genetic correlations has made it possible to assess kinship among distantly related between psychiatric disorders, and Furlotte and Eskin (2015) individuals (Morton et al. 1971; Thompson 1975; Ritland presented a methodology that incorporates genetic marker information for the analysis of multiple traits that, according to the authors, “provide fundamental insights into the nature Copyright © 2015 by the Genetics Society of America of co-expressed genes.” In a similar spirit, Korte et al. (2012) doi: 10.1534/genetics.115.179978 Manuscript received June 26, 2015; accepted for publication July 21, 2015; published argued that multitrait-marker-enabled regressions can be useful Early Online July 23, 2015. for understanding pleiotropy. More recently, Bulik-Sullivan et al. 1Corresponding author: Department of Animal Sciences, University of Wisconsin– “ Madison, 1675 Observatory Drive, Madison, WI 53706. (2015) proposed a methodology for estimating genetic corre- E-mail: [email protected] lation” using statistics derived from single-marker genome-wide Genetics, Vol. 201, 23–29 September 2015 23 2 ¼ð 2 r2 Þ 2 association studies (GWAS) and reported estimates of such missing heritability is hmissing 1 QX h .Hence,missing correlations among 25 human traits. heritability is a function of the LD between the marker and de los Campos et al. (2015) discussed potential problems the QTL. Genomic heritability has h2 as an upper bound (de that emerge when trying to infer genetic parameters using los Campos et al. 2015). molecular markers that are imperfectly associated with the gen- The regression model just described can be extended to the otypes at the causal loci. In this paper, the framework described analysis of multiple traits affected by multiple QTL. For in de los Campos et al. (2015) is extended for the analysis of simplicity, we consider only two markers (X1 and X2) and systems of traits, and it is demonstrated that correlation param- two QTL (Q1 and Q2). A multivariate representation of the eters inferred using markers can give a distorted picture of the model with an arbitrary number of QTL and markers is pro- genetic correlation between traits. For instance, it is shown that vided in the Appendix. Figure 1 depicts a system with two an analysis based on markers may suggest a genetic correlation traits, two QTL, and two markers. The left panel represents when none exists or may fail to detect a genetic correlation the regression of the phenotypes on the two QTL, with blue when one does exist. It is concluded that in the absence of arrows denoting effects from QTL on traits and green arcs knowledge about linkage disequilibrium (LD) relationships be- denoting LD between QTL. In the QTL model of Figure 1, the tween quantitative trait loci (QTL) and markers, speculating genetic correlation is (see Appendix) about genetic correlations, and even more about their causes a9S a 1 Q 2 (e.g., pleiotropy), using genomic data is conjectural. rG ¼ qÀffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÁÀ Á (3) a9S a a9S a 1 Q 1 2 Q 2 Theory a9 ¼ða a Þ where 1 11 12 contains the effects of QTL 1 and 2 To set the stage, consider a single-locus model. In an additive- a9 ¼ða a Þ on trait 1, and 2 21 22 contains the effects of QTL 1 inheritance framework, a phenotype (y) is regressed on a QTL and 2 on trait 2. The variance-covariance matrix between genotype code Q (0, 1, and 2 for genotypes aa, Aa, and AA, QTL genotypes is given by SQ. If genotypes are standardized, respectively) according to the linear model 1 r Q12 SQ ¼ y ¼ a0 þ a1Q þ E (1) r Q21 1 where a0 and a1 are fixed parameters, and Q and E are in- r with Q12 being the correlation between genotypes at QTL 1 dependent random variables, the latter representing a model and 2. In the QTL model of Figure 1, there are two sources of residual. The proportion of phenotypic variance explained by genetic correlation: pleiotropy (i.e., the same QTL affects the linear regression on Q, or narrow-sense heritability, is more than one trait) and LD between QTL, in this case rep- resented by r 6¼ 0. This is well known in quantitative ge- a2S Q12 h2 ¼ 1 Q netics (Falconer and Mackay 1996; Knott and Haley 2000). a2S þ s2 1 Q E We now bring the two markers into the picture, as shown in therightpanelofFigure1;heregrayarrowsareregressionson where S ¼ varðQÞ is the variance in allelic content, and Q markers (these are distinct from regressions on QTL genotypes), s2 ¼ varðEÞ is the residual variance. If Q is standardized to E and arcs denote correlations between genotypes due to LD. In a unit variance, the Appendix, we show that the genomic correlation is 2 a 2 S ¼ 1 and h2 ¼ 1 a9S S 1S a Q a2 þ s2 ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1 QX X XQ 2 1 E rG;marked a9S S21S a a9S S21S a 1 QX X XQ 1 2 QX X XQ 2 In quantitative genomic analysis, marker genotypes (X) are (4) used in lieu of the QTL genotypes Q because the latter are unknown or unobserved. The marker-based or instrumental In this expression, SQX is the covariance matrix between QTL model, assuming a single marker, is a linear regression on and marker genotypes (reflecting marker-QTL LD), and SX is marker genotype X with form the covariance matrix between marker genotypes, reflecting mutual LD relationships among markers. If markers and gen- ¼ a þ b þ 9 y 0 1X E (2) otypes are in standard deviation units, where E9 is a regression residual. Assuming without loss of r r r S ¼ 1 X12 S ¼ Q1X1 Q1X2 X r and QX r r generality that both X and Q are in standard deviation units, X 1 Q X Q X b ¼ r a r 21 2 1 2 2 the marker effect can be shown to be 1 QX 1, where QX is the correlation between the marker and the QTL genotypes, Comparison of the genomic correlation (4) with the genetic S S21S which depends on their LD. In this setting, the proportion of correlation (3) indicates that in rrG;marked , QX X XQ replaces variance of phenotypes explained by the linear regression on SQ: Inspection of (4) reveals that the sources of the genomic 2 ¼ r2 2 a a the marker, or genomic heritability, is hmarked QX h ,and correlation are (1) pleiotropic QTL effects via 1 and 2, (2) 24 D. Gianola et al. Figure 1 Two-trait system. A system of two traits (Y) involving two QTL and two markers (X). Single-pointed blue arrows denote causal effects, green double-pointed arrows denote LD, and single-pointed gray arrows represent regression coefficients.
Recommended publications
  • A Comprehensive Study of Metabolite Genetics Reveals Strong Pleiotropy and Heterogeneity Across Time and Context
    ARTICLE https://doi.org/10.1038/s41467-019-12703-7 OPEN A comprehensive study of metabolite genetics reveals strong pleiotropy and heterogeneity across time and context Apolline Gallois1,12, Joel Mefford2,12, Arthur Ko 3, Amaury Vaysse 1, Hanna Julienne1, Mika Ala-Korpela4,5,6,7,8,9, Markku Laakso 10, Noah Zaitlen2,12*, Päivi Pajukanta 3,12*& Hugues Aschard 1,11,12* 1234567890():,; Genetic studies of metabolites have identified thousands of variants, many of which are associated with downstream metabolic and obesogenic disorders. However, these studies have relied on univariate analyses, reducing power and limiting context-specific under- standing. Here we aim to provide an integrated perspective of the genetic basis of meta- bolites by leveraging the Finnish Metabolic Syndrome In Men (METSIM) cohort, a unique genetic resource which contains metabolic measurements, mostly lipids, across distinct time points as well as information on statin usage. We increase effective sample size by an average of two-fold by applying the Covariates for Multi-phenotype Studies (CMS) approach, identifying 588 significant SNP-metabolite associations, including 228 new associations. Our analysis pinpoints a small number of master metabolic regulator genes, balancing the relative proportion of dozens of metabolite levels. We further identify associations to changes in metabolic levels across time as well as genetic interactions with statin at both the master metabolic regulator and genome-wide level. 1 Department of Computational Biology - USR 3756 CNRS, Institut Pasteur, Paris, France. 2 Department of Medicine, University of California, San Francisco, CA, USA. 3 Department of Human Genetics, University of California, Los Angeles, CA, USA.
    [Show full text]
  • Heritability in the Era of Molecular Genetics: Some Thoughts for Understanding Genetic Influences on Behavioural Traits
    European Journal of Personality, Eur. J. Pers. 25: 254–266 (2011) Published online (wileyonlinelibrary.com) DOI: 10.1002/per.836 Heritability in the Era of Molecular Genetics: Some Thoughts for Understanding Genetic Influences on Behavioural Traits WENDY JOHNSON1,2*, LARS PENKE1 and FRANK M. SPINATH3 1Centre for Cognitive Ageing and Cognitive Epidemiology and Department of Psychology, University of Edinburgh, Edinburgh, UK 2Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA 3Department of Psychology, Saarland University, Saarbruecken, Germany Abstract: Genetic influences on behavioural traits are ubiquitous. When behaviourism was the dominant paradigm in psychology, demonstrations of heritability of behavioural and psychological constructs provided important evidence of its limitations. Now that genetic influences on behavioural traits are generally accepted, we need to recognise the limitations of heritability as an indicator of both the aetiology and likelihood of discovering molecular genetic associations with behavioural traits. We review those limitations and conclude that quantitative genetics and genetically informative research designs are still critical to understanding the roles of gene‐environment interplay in developmental processes, though not necessarily in the ways commonly discussed. Copyright © 2011 John Wiley & Sons, Ltd. Key words: genetic influences; twin study; heritability Much is often made of new findings of the presence of environmental influences but emphasised that these genetic influences
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Evolution by Natural Selection, Formulated Independently by Charles Darwin and Alfred Russel Wallace
    UNIT 4 EVOLUTIONARY PATT EVOLUTIONARY E RNS AND PROC E SS E Evolution by Natural S 22 Selection Natural selection In this chapter you will learn that explains how Evolution is one of the most populations become important ideas in modern biology well suited to their environments over time. The shape and by reviewing by asking by applying coloration of leafy sea The rise of What is the evidence for evolution? Evolution in action: dragons (a fish closely evolutionary thought two case studies related to seahorses) 22.1 22.4 are heritable traits that with regard to help them to hide from predators. The pattern of evolution: The process of species have changed evolution by natural and are related 22.2 selection 22.3 keeping in mind Common myths about natural selection and adaptation 22.5 his chapter is about one of the great ideas in science: the theory of evolution by natural selection, formulated independently by Charles Darwin and Alfred Russel Wallace. The theory explains how T populations—individuals of the same species that live in the same area at the same time—have come to be adapted to environments ranging from arctic tundra to tropical wet forest. It revealed one of the five key attributes of life: Populations of organisms evolve. In other words, the heritable characteris- This chapter is part of the tics of populations change over time (Chapter 1). Big Picture. See how on Evolution by natural selection is one of the best supported and most important theories in the history pages 516–517. of scientific research.
    [Show full text]
  • Cognitive Ability and Education: How Behavioural Genetic Research Has Advanced Our Knowledge and Understanding of Their Association
    Cognitive ability and education: how behavioural genetic research has advanced our knowledge and understanding of their association Margherita Malanchini1,2,3, Kaili Rimfeld2, Andrea G. Allegrini2, Stuart J. Ritchie2, & Robert Plomin2 1 Department of Biological and Experimental Psychology, Queen Mary University of London, United Kingdom. 2 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, United Kingdom. 3 Population Research Center, The University of Texas at Austin, United States. Correspondence: Margherita Malanchini, Department of Biological and Experimental Psychology, Queen Mary University of London, Office 2.02, G.E. Fogg Building, Mile End Road, London E1 4NS. E-mail: [email protected] Abstract Cognitive ability and educational success predict positive outcomes across the lifespan, from higher earnings to better health and longevity. The shared positive outcomes associated with cognitive ability and education are emblematic of the strong interconnections between them. Part of the observed associations between cognitive ability and education, as well as their links with wealth, morbidity and mortality, are rooted in genetic variation. The current review evaluates the contribution of decades of behavioural genetic research to our knowledge and understanding of the biological and environmental basis of the association between cognitive ability and education. The evidence reviewed points to a strong genetic basis in their association, observed from middle childhood to old age, which is amplified by environmental experiences. In addition, the strong stability and heritability of educational success are not driven entirely by cognitive ability. This highlights the contribution of other educationally relevant noncognitive characteristics. Considering both cognitive and noncognitive skills as well as their biological and environmental underpinnings will be fundamental in moving towards a comprehensive, evidence-based model of education.
    [Show full text]
  • High Heritability of Telomere Length, but Low Evolvability, and No Significant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 High heritability of telomere length, but low evolvability, and no significant 2 heritability of telomere shortening in wild jackdaws 3 4 Christina Bauch1*, Jelle J. Boonekamp1,2, Peter Korsten3, Ellis Mulder1, Simon Verhulst1 5 6 Affiliations: 7 1 Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 8 9747AG Groningen, The Netherlands 9 2 present address: Institute of Biodiversity Animal Health & Comparative Medicine, College 10 of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United 11 Kingdom 12 3 Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, 13 Germany 14 15 16 * Correspondence to: 17 [email protected] 18 19 Running head: High heritability of telomere length bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423128; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Abstract 21 Telomere length (TL) and shortening rate predict survival in many organisms. Evolutionary 22 dynamics of TL in response to survival selection depend on the presence of genetic variation 23 that selection can act upon. However, the amount of standing genetic variation is poorly known 24 for both TL and TL shortening rate, and has not been studied for both traits in combination in 25 a wild vertebrate.
    [Show full text]
  • Environment-Sensitive Epigenetics and the Heritability of Complex Diseases
    INVESTIGATION Environment-Sensitive Epigenetics and the Heritability of Complex Diseases Robert E. Furrow,*,1 Freddy B. Christiansen,† and Marcus W. Feldman* *Department of Biology, Stanford University, Stanford, California 94305, and †Department of Bioscience and Bioinformatics Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark ABSTRACT Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This is referred to as the “missing heritability” problem. However, these analyses have usually neglected to consider a role for epigenetic variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing heritability. HE challenges of identifying the common or rare genes a change in DNA sequence. Such modifications include Tthat contribute to the transmission of heritable human methylation of cytosine nucleotides at CpG sites and histone diseases and other complex phenotypes have been discussed protein modification. Such epigenetic modifications may be for some time (Moran 1973; Layzer 1974; Feldman and transmissible across generations or arise de novo each gen- Lewontin 1975; Kamin and Goldberger 2002).
    [Show full text]
  • Investigations Into Roles for Endocytosis in LIN-12/Notch
    Investigations into roles for endocytosis in LIN-12/Notch signaling and its regulation Jessica Chan Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2020 © 2020 Jessica Chan All Rights Reserved Abstract The LIN-12/Notch signaling pathway is highly conserved in all animals, and is crucial for proper development. It is a key pathway in specifying cell fate in many cellular contexts, and dysregulation of the pathway can have deleterious consequences. Therefore, understanding how LIN-12/Notch signaling is regulated in different contexts has been a main area of interest in the field. Previous studies in different model organisms have identified many modes of regulation of the signaling pathway, one of which is endocytosis of the ligand and receptor. Here, I further investigated the role of endocytosis in LIN-12/Notch signaling in multiple developmental contexts in Caenorhabditis elegans. Work in Drosophila and vertebrates had previously established that ligand-mediated activation of Notch requires ubiquitination of the intracellular domain of the transmembrane ligand and the activity of the endocytic adaptor Epsin in the signaling cell. The consensus in the field is that Epsin-mediated endocytosis of mono-ubiquitinated ligand generates a pulling force that exposes a cleavage site in Notch for an ADAM protease, a critical step in signal transduction. In contrast, in this thesis, I examined two different transmembrane ligands in several different cell contexts and found that activation of LIN-12/Notch and the paralogous GLP-1/Notch in C.
    [Show full text]
  • Nicotinic Receptor Alpha7 Expression During Tooth Morphogenesis Reveals Functional Pleiotropy
    Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy Scott W. Rogers1,2*, Lorise C. Gahring1,3 1 Geriatric Research, Education and Clinical Center, Veteran’s Administration, Salt Lake City, Utah, United States of America, 2 Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America, 3 Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America Abstract The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre6ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process.
    [Show full text]
  • Is There a Genetic Correlation Between General Factors of Intelligence and Personality?
    Twin Research and Human Genetics Volume 18 Number 3 pp. 234–242 C The Author(s) 2015 doi:10.1017/thg.2015.28 Is There a Genetic Correlation Between General Factors of Intelligence and Personality? John C. Loehlin,1 Meike Bartels,2 Dorret I. Boomsma,2 Denis Bratko,3 Nicholas G. Martin,4 Robert C. Nichols,5 and Margaret J. Wright4 1Psychology Department, University of Texas, Austin, Texas, USA 2Department of Biological Psychology, VU University, Amsterdam, the Netherlands 3Department of Psychology, Faculty of Social Sciences and Humanities, University of Zagreb, Zagreb, Croatia 4QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia 5Jamul, CA, USA We tested a hypothesis that there is no genetic correlation between general factors of intelligence and personality, despite both having been selected for in human evolution. This was done using twin samples from Australia, the United States, the Netherlands, Great Britain, and Croatia, comprising altogether 1,748 monozygotic and 1,329 same-sex dizygotic twin pairs. Although parameters in the model-fitting differed among the twin samples, the genetic correlation between the two general factors could be set to zero, with a better fit if the U.S. sample was excepted. Keywords: general factor of intelligence, general factor of personality, heritability, mutation-selection balance, life history theory, twins The concept of hierarchical structure in the domains of in- artifact (Backstr¨ om¨ et al. 2009; Pettersson et al., 2012)or telligence and personality, featuring a single general factor declared it to be psychometrically weak (Revelle & Wilt, at the top, have been controversial ever since general fac- 2013). However, in one study, partialing out self-esteem or tors were advocated early in the 20th century by Spearman social desirability measures did not greatly reduce a GFP (1904)andWebb(1915).
    [Show full text]
  • Additive Genetic Variability and the Bayesian Alphabet
    Copyright Ó 2009 by the Genetics Society of America DOI: 10.1534/genetics.109.103952 Additive Genetic Variability and the Bayesian Alphabet Daniel Gianola,*,†,‡,1 Gustavo de los Campos,* William G. Hill,§ Eduardo Manfredi‡ and Rohan Fernando** *Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, †Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, N-1432 A˚ s, Norway, ‡Institut National de la Recherche Agronomique, UR631 Station d’Ame´lioration Ge´ne´tique des Animaux, BP 52627, 32326 Castanet-Tolosan, France, §Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom and **Department of Animal Science, Iowa State University, Ames, Iowa 50011 Manuscript received April 14, 2009 Accepted for publication July 16, 2009 ABSTRACT The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic- assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called ‘‘Bayes A’’) with respect to priors is illustrated with a simulation.
    [Show full text]
  • The Importance of Heritability in Psychological Research: the Case of Attitudes
    Psychological Review Copyright 1993 by the American Psychological Association, Inc. 1993, Vol. 100, No. 1,129-142 0033-295X/93/S3.00 The Importance of Heritability in Psychological Research: The Case of Attitudes Abraham Tesser It is argued that differences in response heritability may have important implications for the testing of general psychological theories, that is, responses that differ in heritability may function differ- ently. For example, attitudes higher in heritability are shown to be responded to more quickly, to be more resistant to change, and to be more consequential in the attitude similarity attraction relation- ship. The substantive results are interpreted in terms of attitude strength and niche building. More generally, the implications of heritability for the generality and typicality of treatment effects are also discussed. Although psychologists clearly recognize the impact of genet- heritabilities is both long and surprising. As noted earlier, the ics on behavior, their theories rarely reflect this knowledge. intellectual abilities domain has received the most press, and Most theories assume that behavior is relatively plastic and is the genetic contribution to that domain is well documented shaped almost entirely by situational parameters. The possibil- (e.g., Loehlin, Willerman, & Horn, 1988; Plomin & Rende, ity that a response may have a high heritability is often ignored. 1991). There is also evidence of genetic contributions to spe- I argue here that ignoring this possibility is consequential. The cific cognitive abilities, school achievement, creativity, reading vehicle used in this article is attitudes. This vehicle was chosen disability, and mental retardation (see Plomin, 1989, for a re- because it is a domain with which I have some familiarity; it is a view).
    [Show full text]