The Geochemistry and Petrology of the Rodrigues Ridge (Western Indian Ocean)

Total Page:16

File Type:pdf, Size:1020Kb

The Geochemistry and Petrology of the Rodrigues Ridge (Western Indian Ocean) The Geochemistry and Petrology of the Rodrigues Ridge (Western Indian Ocean). By Susan H. Mellor BSc. MSc. F.G.S. A thesis submitted in partial fulfilment of the requirements of the University of Greenwich for a Doctorate in Philosophy December 1998 \ Gravity Anomaly Map of the West Central Indian Ocean This false colour map covers 56° 00' E - 74° 00' E and 6° 00' S - 24° 00' S. False colour scale (red) +90 - -90 mgal (purple), colour bands are 15 mgal wide. Green - yellow boundary = 0 mgal. The map clearly shows the fracture zones of the Central Indian Ridge (CIR), the Mascarene Plateau (MP), Seychelles Bank (SB) and the Rodrigues Ridge(RR). Source: Scharroo R., No Date. Gravity Anomaly Atlas of the Indian Ocean [on line] Netherlands: DEOS. Available from: http://dutlru8.1r.tudelft.nl/img/indian.map?232,205.p.l5. [Accessed 21 March 1997]. The Geochemistry, Petrology and Petrogenesis of the Rodrigues Ridge (Western Indian Ocean). by Susan H. Mellor BSc. MSc. F.G.S. Abstract The Rodrigues Ridge is a linear east-west trending volcanic ridge, located between 18°S and 20°S in the western Indian Ocean. The trend of the Rodrigues Ridge is contrary to the ocean floor fabric of the underlying crust, which formed on the Central Indian Ridge (CIR) between ca. 48 My and 10 My. Dating of dredged basalts from the Rodrigues Ridge showed them to be 8-10 My, with no systematic variations with longitude. All samples recovered from the Rodrigues Ridge were olivine and plagioclase phyric with traces of chrome spinel. Only the most western site contained any phenocryst clinopyroxene. Phenocryst olivine was in the range Fo88.79 and plagioclase was in the range An?,^. Where present the clinopyroxene was titaniferous (2.0-3.7% TiO2) in the range Ca48.52Mg30.19Fe19.33. The Rodrigues Ridge lavas are transitional alkali basalts which display systematic geochemical variations with longitude. Most notably the trace elements Ba, Nb, Rb, Sr, Th, Y, Zr and the LREE increase from east to west, while Sc decreases. These variations may be described as ranging from depleted (in incompatible elements) MORB-like compositions in the east, to enriched OIB-like compositions in the west. This is manifested by at least a three-fold increase in the concentration of the incompatible elements. In accordance with the model presented by Ellam (1992) it is proposed that this behaviour is controlled by the depth to the base of the lithosphere, which acts as an upper limit to melting. In this model the upper limit on the melting is much deeper under the older thicker lithosphere than it is under the young lithosphere. Thus melt composition will increasingly be influenced by the presence of residual garnet under older ocean crust. Even in the absence of residual garnet clinopyroxene in the upper mantle may be capable of retaining the HREE and some trace elements such as Y and Zr. Furthermore shallow mantle is more likely to have been subjected to one or more previous melting episodes beneath spreading ridges, leading to melts depleted in incompatible elements being derived from beneath young ocean crust. Rayleigh-type modelling for most sites along the Rodrigues Ridge produced only a poor correlation with the observed data. At several sites, notably RR3, some incompatible elements (eg.. Zr, Y, REE) show buffered or decreasing trends with decreasing MgO. Although the causes of this behaviour remain ambiguous, it is possible that these melts have not experienced significant high-level fractionation, and this unusual behaviour has its origin in melt-rock reactions within the upper mantle. At these depths the partition coefficients for Zr, Y and the mid-HREE in clinopyroxene have been shown to be greater than unity (Blundy et al., 1998 and Vannucci et al., 1998). Thus the reaction between the melt and coexisting clinopyroxene within the upper mantle, in conjunction with the crystallisation of olivine, may explain how these buffered and declining trends (with declining MgO) have developed. To characterise their isotopic signature a subset of samples were analysed for Sr, Nd and Pb. Like the trace elements, the isotopes display clear linear trends with longitude. On paired isotope plots the Rodrigues Ridge lavas form similar linear trends between samples from the CIR (the Marie Celeste Fracture Zone) and the Reunion hotspot (notably Mauritius), suggesting that they are products of mixing between the mantle sources of the CIR and Reunion. It is proposed that the upper mantle has been passively contaminated by the Reunion plume (with circa 87Sr/*6Sr = 0.7042, 143Nd/144Nd = 0.51284, ^Pb/^Pb = 18.788, ^Ph/^Pb = 15.585 and a"Pb/204Pb =38.849). At shallow levels, immediately below the lithosphere, the upper mantle is made up predominantly of a depleted MORB- like source, with circa 87Sr/"6Sr = 0.7031, 143Nd/144Nd = 0.51305, MePb/204Pb = 18.354, 207pb/204pb = 15.517 j^ pb/204pb =38 214, while at greater depths more Reunion plume material is available. The observed linear array, on paired isotope plots, reflects the differing contributions made by these deep and shallow sources to the Rodrigues Ridge lavas. It is proposed that the Rodrigues Ridge was formed due to a build up of stress, possibly resulting from its proximity to the Ridge-Ridge-Ridge triple junction (see Patriat &S6goufin 1988), causing the rigid African plate to rupture parallel to the principal stress direction. This would have resulted in decompression melting in the upper mantle, so facilitating rapid but short-lived volcanism. Although volcanism has ceased, there is still elevated heat-flow within this area, suggesting that the upper mantle is still anomalously hot (von Herzen &Vacquier 1966). Isostatic readjustment could account for the magmatic reactivation at 1.5 My which formed Rodrigues island. 11 Acknowledgements I would like to express my gratitude towards the following individuals for the help they have provided without which this work could not have been completed; Dr. lan Flatten, Dr. Matthew Thirlwall, Dr. Dodie James, Prof. Brian Upton, Dr. Lindsay Parsons, The Captain and crew of the RRS. Charles Darwin, Mrs. Mildred Hall, Mr. Barry Saunderson, Mr. Pat Brown, Mr. John Maddocks, Mr. & Mrs. Donald Draper. I would particularly like to thank the library staff at the University of Greenwich especially Mr. Nick Dobson and my supervisors Prof. Alistair Baxter and Dr. Andy Bussell. Lastly I would like to thank my husband Mr. Andrew Mellor for his patience while I have been working on this project. ill Contents Abstract P- i Acknowledgements P- "i Disclaimer P- iv Contents P v List of Figures p. ix List of Tables p. xvii List of Plates p. xx List of Appendices p. xx Abbreviations Used in this Work p. xxi Chapter 1 Introduction p. 1 1.1 Introduction p. 1 1.2 The Evolution of the Indian Ocean p. 3 1.3 The Physiography of the Rodrigues Ridge p. 4 1.4 Rodrigues Island p. 8 1.5 The Mascarene Plateau p. 10 1.6 Reunion and Mauritius p. 13 1.7 The Central Indian Ridge p. 23 1.8 Previous Studies of the Rodrigues Ridge p. 32 19 Outline of Present Work p. 35 Chapter 2 Bathymetry and Seismic Sections p. 36 2.1 Introduction p. 36 2.2 Bathymetry p. 36 2.3 Seismic Sections p. 38 Line 1 p. 38 Line 2 p. 41 Line 3 p. 41 Line 4 p. 43 Line 5 p. 43 Line 6 p. 43 Line 7 p. 43 Line 8 p. 46 Line 9 p. 46 Line 10 p. 46 2.4 Location of Dredge Sites P-48 2.5 Discussion p. 49 Chapter 3 Mineralogy P- 51 3.1 Introduction p. 51 3.2 Mineralogy P- 52 3.3 Phenocrysts P- 56 Olivine P- 56 Plagioclase P- 56 Chrome Spinel p. 65 3.4 Chemical Zoning P- 65 3.5 Matrix Mineralogy P- 72 3.6 Vesicles and Alteration p. 73 3.7 Discussion P- 75 Chapter 4 Geochemistry p. 82 4.1 Introduction p. 82 4.2 Geochemistry p. 82 4.3 General Characteristics p. 82 4.4 Alteration p. 102 4.5 Site Characteristics p. 108 RR2 p. 108 RR3 p. 115 RR4 p. 120 RR8 p. 125 RR9c p. 130 RR10 p. 136 RR12d p. 141 4.6 The C-M-A-S Quaternary System p. 146 4.7 Discussion p. 154 Along Ridge Variation p. 154 Chapters Radiogenic Isotopes p. 158 5.1 Introduction p. 158 5.2 Isotope Geochemistry p. 158 5.3 "WSr p. 158 Alteration p. 160 5.4 143Nd/I44Nd p. 160 VI 5.5 Pb Isotope Ratios p. 163 5.6 Radiogenic Isotopes-Discussion p. 165 5.7 Conclusions p. 175 Chapter 6 Petrogenesis p. 176 6.1 Introduction p. 176 6.2 Major Element Modelling p. 177 RR2 p. 177 RR3 p. 180 RR4 p. 181 RR8 p. 182 RR9c p. 183 RR10 p. 184 RR12d p. 184 6.3 Conclusion p. 185 6.4 Trace Element Modelling p. 185 RR2 p. 187 High MgO Group p. 190 Low MgO Group p. 191 RR3 p. 192 RR4 p. 197 RR8 p. 199 RR9c p. 200 RR12d p. 202 6.5 Conclusion p. 202 6.6 Incompatible Element Ratios p. 204 6.7 Isotope-Trace Element Ratios p. 213 6.8 Melting Models p. 220 6.9 Rodrigues p. 228 6.10 Conclusion p. 229 Chapter 7 Conclusion p. 232 7.1 Introduction p. 232 7.2 The Petrology, Geochemistry and Petrogenesis p. 232 7.3 The Relationship between the Lavas Recovered from Different Sites p. 234 7.4 The Temporal and Spatial Relationship Between the Rodrigues Ridge and the Surrounding Area p.
Recommended publications
  • The Deccan-Reunion Hotspot History: Hotspot-Ridge Interaction for the Last 60 Ma J
    Geophysical Research Abstracts, Vol. 9, 06353, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06353 © European Geosciences Union 2007 The Deccan-Reunion hotspot history: hotspot-ridge interaction for the last 60 Ma J. Dyment (IPG Paris, France), IFCPAR Project 1911-1 Scientific Team*, Cruise Magofond 2 Scientific Party*, & Cruise Gimnaut Scientific Party* Institut de Physique du Globe de Paris, CNRS UMR 7154, Paris, France ([email protected]) The history of the Deccan-Reunion hotspot is often described as the smooth and con- tinuous building of the Deccan traps, Laccadives, Maldives, Chagos, Nazareth, Car- gados Carajos, and Soudan Banks, and finally Mauritius and Reunion Islands, as the Indian and African plates were moving northward. The Deccan-Reunion hotspot is therefore envisioned as a typical intraplate hotspot during most of its history, except when the Central Indian Ridge (CIR) crossed the hotspot track at about 35 Ma - with- out much consequence on both of them. Conversely, the geochemical enrichment, peculiar morphology and geophysics of the CIR at 19◦S support some kind of recent hotspot-ridge interaction. Ar-Ar dating of dredged samples from Rodrigues Ridge, a 600-km long volcanic structure, suggests a rapid emplacement of this ridge at 7-11 Ma, whereas Sr, Nd and Pb isotopes show gradual fading of the Reunion hotspot influence with distance. Signs of a more re- cent activity are Rodrigues Island, dated about 1 Ma, and a set of recently discovered en-echelon volcanic ridges, Three Magi and Gasitao Ridges, which extend Rodrigues Ridge up to the CIR axis. These sigmoid ridges, aligned along an E-W direction, pro- vided K-Ar ages of 0.4 and 1.8 Ma, and their isotopic compositions are intermediate between those of Rodrigues Ridge and the CIR axis.
    [Show full text]
  • Ile Cocos & Ile Aux Sables Restoration Project
    TITLE OF PROGRAMME: ILE COCOS & ILE AUX SABLES RESTORATION PROJECT By Mauritian Wildlife Foundation [NCSR Reg No: NCSRF/2017/0158] PROJECT TECHNICAL SHEET Project Type Ecosystems Restoration . Support ecotourism development on Ile Cocos Start of Project Mid-1980s PROJECT BENEFICIARIES Ile Cocos, Ile aux Sables, . Native wildlife of Rodrigues and ecosystems of Location Rodrigues, Republic of Rodrigues, Rodriguan Biodiversity. Mauritius . Village of Rodrigues (West), Rodriguan population Environmental & Sustainable Priority Area development - Biodiversity and its future generations, school children, tourists Status Ongoing and the world at large. Republic of Mauritius, regarding meeting national biodiversity targets (e.g. the National Biodiversity OBJECTIVES and Strategy Action Plan 2017-25) and fulfilling To improve native habitat for the breeding seabirds obligations towards international biodiversity and protect the seabirds on Ile Cocos and Ile aux conventions (e.g. Rio Conventions, Aichi Targets, Sables, while improving ecotourism on Ile Cocos. Millennium Development Goals). ACTIVITIES BEING IMPLEMENTED . Conduct quarterly seabird monitoring censuses . Continue with the removal of invasive alien species . Propagate and plant endemic and native seedlings in selected plots . Advise for the conservation of the native biodiversity PROJECT DESCRIPTION Ile Cocos and Ile aux Sables, two sandbar islets to the West of Rodrigues, 15 and 8 ha respectively, are renowned for breeding seabirds (Common Noddy, Lesser Noddy, Sooty Tern, Fairy Tern, Roseate Tern) and water birds (Green Heron), as well as migratory birds (Ruddy Turnstone, Curlew Sandpiper, Crab Plover and Whimbrel) and occasional prospecting seabirds (White-tailed Tropicbird and Lesser Frigate bird). The islets are also the last place on Rodrigues where there is natural vegetation succession (from coastal strand to shrub to tree), and despite their small size hold several ecotypes (strand, grasses, marshes, forest).
    [Show full text]
  • The Portuguese Art of War in Northern Morocco During the 15 Century
    Athens Journal of History - Volume 3, Issue 4 – Pages 321-336 The Portuguese Art of War in Northern Morocco during the 15th Century By Vitor Luís Gaspar Rodrigues This paper not only reviews the motives underlying the Portuguese expansionist project in Morocco in the 15th century, but also the political, economic, and particularly the social reasons that were in the basis of the Portuguese art of war in Morocco in that period. During the Iberian Reconquest (Reconquista), warfare was usually practiced by means of cavalcades, raids (razias) and ambushes, alongside with some siege actions. We will try to demonstrate that the Portuguese were forced to adopt a model of restricted territorial occupation and repeat the same technics and tactics of combat in Morocco, chiefly based on guerrilla war (guerra guerreada), as well as on siege and privateering actions, either offshore or onshore, by means of amphibian landings (saltos). We will also approach some of the changes that occurred in the defence systems of the Portuguese strongholds in North Africa, particularly at the turn of the 15th to the 16th centuries, as a result of the need to respond to the new challenges by the Moroccan armies equipped with fire weaponry. Keywords: Guerrilla war; maritime war; Northern Morocco; strongholds; siege war; fire weaponry. Portuguese Expansion in Morocco in the 15th Century: Main Causes The expansion project to Morocco by the Christian kingdoms from Iberia goes back to late 13th century, as attested by the Treaty of Soria, of 1291, signed by the monarchs of Castile and Aragon, which defined the areas to be occupied in the future by both kingdoms in North Africa, leaving the territorial stripe in the west of Ceuta to Portugal.
    [Show full text]
  • Ocean Drilling Program Initial Reports Volume
    Backman, J., Duncan, R. A., et al., 1988 Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 115 1. INTRODUCTION1 Shipboard Scientific Party2 Leg 115 is the first of a nine-leg program of exploration of these volcanic islands and submarine (presumed volcanic) ridges the Indian Ocean. Previous drilling by the Deep Sea Drilling is consistent with northward motion of the Indian plate, fol- Program (DSDP), Legs 22 through 29 (1972-73), resulted in the lowed by northeastward motion of the African plate, over a first detailed information about the geologic and Oceanographic fixed melting anomaly at the location of Reunion during Ter- history of this major region of the oceans. Compared with the tiary time (Morgan, 1981; Duncan, 1981). In addition, this vol- Atlantic and Pacific Ocean Basins, however, the Indian Ocean is canic trail is parallel with the Ninetyeast Ridge, another subma- still relatively unexplored. During this multifaceted investiga- rine lineament linked to hotspot activity (now centered near the tion, we hoped to examine many fundamental questions. The Kerguelen Islands, Antarctic plate), and the two may record the scientific objectives of this leg fell into two main subject areas: northward motion of India during the opening of the Indian hotspot volcanism and paleoceanography. Ocean. Until Leg 115, however, the only accessible sampling loca- HOTSPOTS AND PLATE TECTONICS tions along the proposed Reunion hotspot track were the young An extraordinary feature of the Indian Ocean is the large volcanic islands at the southern end and the Deccan flood ba- number of elevated plateaus and ridges scattered throughout the salts at the northern end.
    [Show full text]
  • Petrological Characteristics and Genesis of the Central Indian Ocean Basin Basalts
    Page | 1 Author version: Acta Geol. Sin., vol.86(5); 2012; 1154-1170 Petrological characteristics and genesis of the Central Indian Ocean Basin basalts PRANAB DAS1, SRIDHAR D. IYER1 AND SUGATA HAZRA2 1NATIONAL INSTITUTE OF OCEANOGRAPHY (COUNCIL OF SCIENTIFIC AND INDUSTRIAL RESEARCH) DONA PAULA, GOA – 403004 INDIA 2SCHOOL OF OCEANOGRAPHIC STUDIES, JADAVPUR UNIVERSITY KOLKATA – 700 032 INDIA ABSTRACT The Central Indian Ocean Basin (CIOB) basalts are plagioclase rich while olivine and pyroxene T are very few. The analyses of forty five samples reveal high FeO (~10-18 wt%) and TiO2 (~1.4-2.7 wt%) indicating these a ferrobasaltic affinity. The basalts have typically high incompatible elements (Zr 63-228 ppm; Nb ~1-5 ppm; Ba ~15-78 ppm; La ~3-16 ppm), a similar U/Pb (0.02-0.4) ratio as the N- MORB (0.16±0.07) but the Ba/Nb (12.5-53) ratio is much higher than that of the normal mid-oceanic ridge basalt (N-MORB) (~5.7) and Primitive Mantle (9.56). Interestingly almost all of the basalts have negative Eu anomaly (Eu/Eu* = 0.78-1.00) that may have resulted by the removal of feldspar and pyroxene during crystal fractionation. These compositional variations suggest that the basalts were derived through fractional crystallisation together with low partial melting of a shallow seated magma. Key words: Basalts; CIOB; genesis Page | 2 1. INTRODUCTION The Indian Ocean is exemplified by the Central Indian Ridge (CIR), Southwest Indian Ridge (SWIR) and Southeast Indian Ridge (SEIR). The Central Indian Ocean Basin (CIOB) extends from the Ninetyeast Ridge in the east to the south of the Chagos–Lacaddive Ridge and the CIR in the west and is bounded in the south by the Rodriguez Triple Junction and the northern part of the SEIR and in the north by India and Sri Lanka.
    [Show full text]
  • ASSESSING the CLIMATE CHANGE-MIGRATION NEXUS THROUGH the LENS of MIGRANTS: the Case of the Republic of Mauritius
    This project is funded This project is implemented by the by the European Union International Organization for Migration ANOTHER MANAM? The forced migration of the population of Manam Island, Papua New Guinea, due to volcanic eruptions 2004–2005 eruptions volcanic due to Guinea, New of Manam Island, Papua of the population migration MANAM? The forced ANOTHER ASSESSING THE CLIMATE CHANGE-MIGRATION NEXUS THROUGH THE LENS OF MIGRANTS: 17 route des Morillons, P.O. Box 17 1211 Geneva 19, Switzerland The Case of the Republic of Mauritius Tel.: +41 22 717 9111 • Fax: +41 22 798 6150 E-mail: [email protected] • Website: www.iom.int This publication has been produced with the financial assistance of the European Union and of the International Organization for Migration (IOM) Development Fund. The contents of this publication are the sole responsibility of the author and can in no way be taken to reflect the views of the European Union or IOM. The designations employed and the presentation of material throughout the report do not imply the expression of any opinion whatsoever on the part of IOM concerning the legal status of any country, territory, city or area, or of its authorities, or concerning its frontiers or boundaries. IOM is committed to the principle that humane and orderly migration benefits migrants and society. As an intergovernmental organization, IOM acts with its partners in the international community to: assist in meeting the operational challenges of migration; advance understanding of migration issues; encourage social and economic development through migration; and uphold the human dignity and well-being of migrants.
    [Show full text]
  • The Eradication of Alien Mammals from Five Offshore Islands, Mauritius, Indian Ocean
    The eradication of alien mammals from five offshore islands, Mauritius, Indian Ocean B. D. Bell Wildlife Management International Limited, P.O. Box 14-492, Wellington, New Zealand. E-mail: [email protected] Abstract Following the removal of rabbits from Round Island in 1979 and the publication of a management plan in 1989, the Mauritius Government contracted Wildlife Management International Limited in 1993 to fulfil one of the plan’s recommendations to survey the offshore islands of Mauritius and Rodrigues and to prepare an offshore islands management plan. This plan made a number of recommendations and priorities in relation to the removal of alien species. In 1995 work on the priorities began with the removal of Norway rats (Rattus norvegicus) and hares (Lepus nigricollis) from Gunner’s Quoin, ship rats (R. rattus) from Gabriel Island and mice (Mus musculus) from Ile Cocos and Ile aux Sables. In 1998 cats (Felis catus), ship rats and mice were removed from Flat Island and rabbits (Oryctolagus sp.), which had been illegally released following the earlier eradications, from Gunner’s Quoin. These programmes were hand-laid operations. In all cases the main bait was grain-based pellets containing 0.02gm/kg brodifacoum. The bait was set out on at least half of the maximum grid recommended for the rodent species targeted. The exception was cats, which were trapped in leg-hold traps. Plans are being considered for the re-introduction of reptiles and birds. Some planting of native trees has begun. This paper covers the eradication sector of the management plan. Keywords Ship rat; Rattus rattus; Norway rat; Rattus norvegicus; mouse, Mus musculus; black-naped hare; Lepus nigricollis; feral cat; Felis catus; brodifacoum.
    [Show full text]
  • The Saya De Malha Banks March Introduction the Indian Ocean Is the Third Largest of the Earth’S Five Oceans
    Madagascar Marine Programme FACTSHEET The Saya de Malha Banks MARCH Introduction The Indian Ocean is the third largest of the earth’s five oceans. The topography of the sea bed on the high 2011 seas of the Indian Ocean is characterized by large areas of abyssal plane with extensive ridge systems and numerous seamounts, Banks, plateaus and other underwater features. Among the deep-sea ridge systems, the Mascarene Ridge includes the Saya de Malha Banks, which in some areas is less than 20 metres deep and is mostly in international waters between Mauritius and Seychelles. Named by Portuguese sailors more than 500 years ago for the carpets of seagrass that extend across the Banks, the Saya de Malha Banks in the Western Indian Ocean are home to the least explored and what is believed to be the largest seagrass meadow in the world (Hilbertz et al. 2002). Site Description The Mascarene Plateau, including the Saya de Malha Banks is consid- ered to be a remnant of the ancient supercontinent Gondwana, going back to the continental break-up some 120 million years ago and sub- sequent separation and rifting of the African and Indian continental plates. The seafloor of the area is geologically complex and character- ized by a series of plateaus, Banks, shoals and islands, surmounted in the north by the granitic islands of the Republic of Seychelles and in the south by the Mascarene Islands including Mauritius. The Saya de Malha Bankss are located between 8°30 - 12° S and 59°30 - 62.30° E in the western Indian Ocean along the submerged, crescent-shaped Mascarene Ridge that runs between the Republic of Seychelles to the north and the Republic of Mauritius to the south.
    [Show full text]
  • In Mauritius.Pdf
    PHYSICAL ALTERATIONS AND DESTRUCTION OF HABITATS IN MAURITIUS M.Bhikajee and S.Bhagwant 2003 TABLE OF CONTENTS 1. Introduction........................................................................................................................................... 4 1.1. Geographic Location ................................................................................................................... 4 1.2. Climate ........................................................................................................................................ 5 1.3. The Coastal Zone......................................................................................................................... 5 2. Relevant National legislation................................................................................................................ 9 3. National Institutional Set-up ............................................................................................................... 10 4. Socio-economic importance of the three main priority areas.............................................................. 11 4.1. Tourism ..................................................................................................................................... 11 4.2. Mangroves................................................................................................................................. 12 4.3. Mining/ Sediment movement, Ports and Land reclamation and damming of rivers.................. 13 4.3.1. Mining.............................................................................................................................
    [Show full text]
  • Study to Confirm the Existence Or Extinction of the Dugong in The
    © C3 Madagascar and Indian Ocean Islands Programme 2010 C3 Madagascar and Indian Ocean Islands Programme is a collaborative initiative between Community Centred Conservation (C3), a non-profit company registered in England no. 5606924 and local partner organizations. The study described in this report was funded by the Convention on Migratory Species of Wild Animals (CMS) Secretariat. Suggested citation: C3 Madagascar and Indian Ocean Islands Programme (2010) STUDY TO CONFIRM THE EXISTENCE OR EXTINCTION OF DUGONGS IN THE WATERS OF MAURITIUS. A Report Submitted to the Convention On Migratory Species Of Wild Animals (CMS) Secretariat, Abu Dhabi.12pp FOR MORE INFORMATION UNEP/CMS Office – Abu Dhabi C3 Madagascar and Indian Ocean c/o Environment Agency – Abu Islands Programme Dhabi 31 Boulevard La Liberté, B.P. 518, United Arab Emirates Antsiranana 201, Madagascar www.cms.int Tel: +261 034 18 372 72 [email protected] Community Centred Conservation (C3) Shoals Rodrigues www.c-3.org.uk www.shoalsrodrigues.net [email protected] Ministry of Agro-Industry and Fisheries (Fisheries Division) University of Mauritius Albion Fisheries Research centre, Reduit Mauritius Albion Mauritius www.uom.ac.mu www.fisheries.gov.mu Cover photo: Dugong at Marsa Alam, Egypt © Luke Atkinson STUDY TO CONFIRM THE EXISTENCE OR EXTINCTION OF DUGONGS IN THE WATERS OF MAURITIUS Edited by Patricia ZR Davis Community Centred Conservation (C3) Mauritius 2010 ACKNOWLEDGEMENTS This report is the culmination of the advice, cooperation, hard work and expertise of many people. In particular, acknowledgments are due to the following for their contributions: COMMUNITY CENTRED CONSERVATION (C3) Patricia ZR Davis, Director and Chris Poonian, International Programme Manager SHOALS RODRIGUES Sabrina Desire, Field Centre Manager and Reshad Jhangeer-Khan, Science Co-ordinator MINISTRY OF AGRO-INDUSTRY AND FISHERIES (FISHERIES DIVISION) for providing necessary permissions and general assistance, particularly V.
    [Show full text]
  • CHAPTER 2 Aseismic Ridges of the Northeastern Indian Ocean
    CHAPTER 2 Aseismic ridges of the northeastern Indian Ocean 2.1 Evolution of the Indian Ocean 2.2 Major Aseismic Ridges 2.2.1 The Ninetyeast Ridge 2.2.2 The Chagos-Laccadive Ridge 2.2.3 The 85°E Ridge 2.2.4 The Comorin Ridge 2.2.5 The Broken Ridge 2.3 Other Major Structural Features 2.3.1 The Kerguelen Plateau 2.3.2 The Elan Bank 2.3.3 The Afanasy Nikitin seamount Chapter 2 Aseismic ridges of the northeastern Indian Ocean 2.1 Evolution of the Indian Ocean The initiation of the Indian Ocean commenced with the breakup of the Gondwanaland super-continent into two groups of continental masses during the Mesozoic period (Norton and Sclater, 1979). The first split of the Gondwanaland may possibly have associated with the Karoo mega-plume (Lawver and Gahagan, 1998). Followed by this rifting phase, during the late Jurassic, the Mozambique and Somali basins have formed by seafloor spreading activity of series of east-west trending ridge segments. Thus, the Gondwanaland super-continent divided into western and eastern continental blocks. The Western Gondwanaland consisted of Africa, Arabia and South America, whereas the East Gondwanaland consisted of Antarctica, Australia, New Zeeland, Seychelles, Madagascar and India-Sri Lanka (Figure 2.1). After initial break-up, the East Gondwanaland moved southwards from the West Gondwanaland and led to gradual enlargement of the intervening seaways between them (Bhattacharya and Chaubey, 2001). Both West and East Gondwanaland masses have further sub-divided during the Cretaceous period. Approximate reconstructions of continental masses of the Gondwanaland from Jurassic to Present illustrating the aforesaid rifting events are shown in Figure 2.1 (Royer et al., 1992).
    [Show full text]
  • Historical Biogeography of the Late Cretaceous Vertebrates of India: Comparison of Geophysical and Paleontological Data
    Khosla, A. and Lucas, S.G., eds., 2016, Cretaceous Period: Biotic Diversity and Biogeography. New Mexico Museum of Natural History and Science Bulletin 71. 317 HISTORICAL BIOGEOGRAPHY OF THE LATE CRETACEOUS VERTEBRATES OF INDIA: COMPARISON OF GEOPHYSICAL AND PALEONTOLOGICAL DATA OMKAR VERMA1, ASHU KHOSLA2, FRANCISCO J. GOIN3 AND JASDEEP KAUR2 1Geology Discipline Group, School of Sciences, Indira Gandhi National Open University, New Delhi – 110 068, India, e-mail: omkarverma@ ignou.ac.in; 2Department of Geology, Centre for Advanced Studies, Panjab University, Sector-14, Chandigarh – 160014, India, e-mail: [email protected], e-mail: [email protected]; 3Consejo Nacional de Investigaciones Científicas y Técnicas and División Paleontología Vertebrados, Museo de Ciencias Naturales de La Plata, B1900FWA La Plata, Argentina, e-mail: [email protected] Abstract—The Cretaceous was a special time for the Indian plate as it was separated from Gondwana landmasses and started its northward journey across the Tethys Sea towards the Equator. The northward movement of this plate implied shifting latitudes and climate belts, until it finally collided with Asia during the early Cenozoic. Geophysical data and plate tectonic models show that after splitting from Gondwana, the Indian plate remained as an isolated continent for more than 45 Ma during the Cretaceous; thus, it predicts a remarkable biotic endemism for the continent. Paleontological data on the Cretaceous vertebrates of India is best known for Maastrichtian time; in turn, the pre-Maastrichtian record is very poor—it contains very few fossils of fishes and marine reptiles. The Maastrichtian fossil record comprises vertebrates of Gondwana and Laurasian affinities and some endemic, ancient lineages as well.
    [Show full text]