entropy Article Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics Florio M. Ciaglia 1,*,† , Fabio Di Cosmo 2,3,† , Alberto Ibort 2,3,† and Giuseppe Marmo 4,† 1 Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany 2 ICMAT, Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera, 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain;
[email protected] (F.D.C.);
[email protected] (A.I.) 3 Departemento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain 4 Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, 80126 Napoli, Italy;
[email protected] * Correspondence:
[email protected] † These authors contributed equally to this work. Received: 18 September 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.