Timing of Optical Maturation of Recently Exposed Material on Ceres
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fracture Geometry and Statistics of Ceres' Floor Fractures
1 Fracture Geometry and Statistics of Ceres’ Floor Fractures 2 3 K. Krohn1, D. L. Buczkowski2, I. von der Gathen1, R. Jaumann1,3, F. Schulzeck1, K. Stephan1, R. 4 Wagner1, J. E. C. Scully4, C. A. Raymond4, C. T. Russell5 5 6 1Institute of Planetary Research, German Aerospace Center, Berlin, Germany; 2Johns Hopkins 7 University Applied Physics Laboratory, Laurel, MD, USA; 3Freie Universiät Berlin, Germany; 8 4NASA JPL, California Institute of Technology, Pasadena, California, USA; 5UCLA, Institute of 9 Geophysics, Los Angeles, CA, USA 10 11 Corresponding author: Katrin Krohn, [email protected], Rutherfordstraße 2, 12489 Berlin, Germany 12 13 Keywords: Ceres, dwarf planet, floor fractured craters 14 15 16 Highlights: 17 18 We measured 2336 fractures in thirteen floor-fractured craters (FFC) on Ceres. 19 20 Floor-fractured craters on Ceres share similarities with FFCs on other planetary bodies 21 especially those on the Moon and Mars. 22 23 On Ceres some floor-fractured craters are impact-driven; other appear to be related to cooling- 24 melting processes, outgassing and/or tectonics such as doming of the subsurface. 25 26 Fracture studies point out brittle surface materials. 27 28 29 30 Abstract 31 32 Floor-fractured craters are one of the most distinct features on Ceres. Most of the fractures are located 33 on the crater floors. The floor-fractures are concentric, radial or polygonal and share similarities with 34 Class 1 and 4 floor-fractured craters (FFC) on the Moon (e.g., Buczkowski et al., 2018; Schultz, 1976) 35 In total we measured 2336 fractures in thirteen craters. -
Geologic Mapping of the Ac-H-11 Sintana Quadrangle of Ceres from Nasa’S Dawn Mission
47th Lunar and Planetary Science Conference (2016) 1955.pdf GEOLOGIC MAPPING OF THE AC-H-11 SINTANA QUADRANGLE OF CERES FROM NASA’S DAWN MISSION. F. Schulzeck1, K. Krohn1, R. Jaumann1, D. A. Williams2, D. L. Buczkowski3, S. C. Mest4, J. E. C. Scully5, I. v. d. Gathen1, E. Kersten1, K.-D. Matz1, A. Naß1, K. Otto1, C. M. Pieters6, F. Preusker1, T. Roatsch1, M. C. De Sanctis7, P. Schenk8, S. Schröder1, K. Stephan1, R. Wagner1, C. A. Raymond5, C. T. Russell9, 1DLR, Berlin, Germany; 2School of Earth & Space Exploration, Arizona State University, Tempe, AZ, USA; 3JHU-APL, Laurel, MD, USA; 4Planetary Science Institute, Tucson, AZ, USA; 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; 6Department of Earth, Environmental, and Planetary Sciences Brown University, Providence, RI, USA; 7National Institute of Astrophysics, Rome, Italy; 8Lunar and Planetary Institute, Houston, TX, USA; 9UCLA, Los Angeles, CA, USA Introduction: NASA’s Dawn spacecraft arrived at cratering on the primary crater rim. Annona crater Ceres on March 5, 2015, and has been studying the features both characteristics. Whereas collapse dwarf planet through a series of successively lower structures are mostly blocky, Annona’s landslide, orbits, obtaining morphological & topographical triggered by a younger crater on its rim, is image, mineralogical, elemental, and gravity data. The characterized by lobate margins. The occurrence of Dawn Science Team is conducting a geologic mapping mass movements and the type of mass wasting feature campaign for Ceres similar to that done for Vesta [1, might therefore hint to compositional differences. For 2], including production of a Survey- and High complex craters, such as Darzamat and Mondamin, we Altitude Mapping Orbit (HAMO)-based global map, observe many different inner crater structures, like relaxed crater floors, ridges, central peaks, mounds and and a series of 15 Low Altitude Mapping Orbit smooth plains. -
Features Named After 07/15/2015) and the 2018 IAU GA (Features Named Before 01/24/2018)
The following is a list of names of features that were approved between the 2015 Report to the IAU GA (features named after 07/15/2015) and the 2018 IAU GA (features named before 01/24/2018). Mercury (31) Craters (20) Akutagawa Ryunosuke; Japanese writer (1892-1927). Anguissola SofonisBa; Italian painter (1532-1625) Anyte Anyte of Tegea, Greek poet (early 3rd centrury BC). Bagryana Elisaveta; Bulgarian poet (1893-1991). Baranauskas Antanas; Lithuanian poet (1835-1902). Boznańska Olga; Polish painter (1865-1940). Brooks Gwendolyn; American poet and novelist (1917-2000). Burke Mary William EthelBert Appleton “Billieâ€; American performing artist (1884- 1970). Castiglione Giuseppe; Italian painter in the court of the Emperor of China (1688-1766). Driscoll Clara; American stained glass artist (1861-1944). Du Fu Tu Fu; Chinese poet (712-770). Heaney Seamus Justin; Irish poet and playwright (1939 - 2013). JoBim Antonio Carlos; Brazilian composer and musician (1927-1994). Kerouac Jack, American poet and author (1922-1969). Namatjira Albert; Australian Aboriginal artist, pioneer of contemporary Indigenous Australian art (1902-1959). Plath Sylvia; American poet (1932-1963). Sapkota Mahananda; Nepalese poet (1896-1977). Villa-LoBos Heitor; Brazilian composer (1887-1959). Vonnegut Kurt; American writer (1922-2007). Yamada Kosaku; Japanese composer and conductor (1886-1965). Planitiae (9) Apārangi Planitia Māori word for the planet Mercury. Lugus Planitia Gaulish equivalent of the Roman god Mercury. Mearcair Planitia Irish word for the planet Mercury. Otaared Planitia Arabic word for the planet Mercury. Papsukkal Planitia Akkadian messenger god. Sihtu Planitia Babylonian word for the planet Mercury. StilBon Planitia Ancient Greek word for the planet Mercury. -
Influence of Volatiles on Mass Wasting Processes on Vesta and Ceres”.7Z (
RESEARCH ARTICLE Influence of Volatiles on Mass Wasting Processes on 10.1029/2020JE006573 Vesta and Ceres Key Points: R. Parekh1,2 , K. A. Otto1 , R. Jaumann2 , K. D. Matz1 , T. Roatsch1 , E. Kersten1 , H L • We classified and estimated the / S. Elgner1 , and C. Raymond3 of mass movements to investigate the mechanisms of deposition on 1DLR Institute of Planetary Research, Berlin, Germany, 2Institute of Geological Science Germany, Freie University of Vesta and Ceres 3 • Vesta has dry, granular-like slides Berlin, Berlin, Germany, Jet Propulsion Laboratory, Pasadena, CA, USA as dominant mass wasting feature, whereas Ceres has abundant features of flow-like mass movements Abstract We have analyzed mass wasting features, their distribution and deposit geometry on • The mass wasting deposit mobility the two largest main asteroid belt objects—protoplanet Vesta and dwarf planet Ceres—and compared is influenced by the material composition and volatile content on their geomorphology and mobility. Both asteroids have similar surface accelerations, but different Vesta and Ceres surface compositions. Based on our observations and previous studies, we categorized three distinct morphological mass wasting classes: slumps, slides, and flow-like movements. We conclude that Ceres Supporting Information: has abundant features of flow-like mass movements. Further, sliding and flow-like characteristics are • Supporting Information S1 identified in craters within mid-latitudes which supports the possibility of the presence of water ice in the near subsurface of Ceres. Vesta predominantly shows characteristics of dry granular-like slide features Correspondence to: which are distributed homogenously across the surface. By plotting the ratio between fall height (H) and R. -
Ceres• Impact Craters
Icarus 318 (2019) 56–74 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ceres’ impact craters – Relationships between surface composition and geology ∗ K. Stephan a, , R. Jaumann a,b, F. Zambon c, F.G. Carrozzo c, R. Wagner a, A. Longobardo c, E. Palomba c, M.C. De Sanctis c, F. Tosi c, E. Ammannito d, J.-P. Combe e, L.A. Mc Fadden f, K. Krohn a, F. Schulzeck a, I. von der Gathen a, D.A. Williams g, J.E.C. Scully h, N. Schmedemann b, A. Neesemann b, T. Roatsch a, K.-D. Matz a, F. Preusker a, C.A. Raymond h, C.T. Russell d a DLR, Institute of Planetary Research, Berlin, Germany b Free University of Berlin, Germany c INAF-IAPS, Rome, Italy d UCLA, Institute of Geophysics and Planetary Physics, Los Angeles, CA, USA e Bear Fight Institute, Winthrop, WA, USA f NASA Goddard Space Flight Center, Greenbelt, MD, USA g Arizona State University, Tempe, AZ, USA h NASA-JPL Pasadena, CA, USA a r t i c l e i n f o a b s t r a c t Article history: Impact craters of different geological ages, sizes and morphologies are not only the most obvious sur- Received 27 April 2017 face features on Ceres’ surface. The investigation of their spectral properties in combination with Ceres’ Revised 25 September 2017 geology and topography reveals not only lateral compositional variations in Ceres’ surface material but Accepted 11 October 2017 also possible stratigraphic differences within Ceres’ crust. Spectral properties of impact craters with dif- Available online 14 November 2017 ferent ages do show distinct trends implying variations with increasing exposure duration of the im- pact material onto Ceres’ surface. -
Masterarbeit / Master's Thesis
MASTERARBEIT / MASTER’S THESIS Titel der Masterarbeit / Title of the Master‘s Thesis „Polygonal Impact Craters (PICs) on Rhea, Dione, Tethys, Ceres and Vesta“ verfasst von / submitted by Tanja Neidhart, BSc angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Master of Science (MSc) Wien, 2018 / Vienna 2018 Studienkennzahl lt. Studienblatt / A 066 861 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt / Astronomie degree programme as it appears on the student record sheet: Betreut von / Supervisor: Univ.-Prof. Dr. Maria Gertrude Firneis Contents Acknowledgements I List of Abbreviations IX 1 Introduction 1 1.1 Definition of a Polygonal Impact Crater (PIC) . 1 1.2 Overview ......................................... 2 1.3 Formation of Polygonal Impact Craters (PICs) . 3 2 Previous studies on Polygonal Impact Craters (PICs) 9 2.1 PICsonMercury..................................... 9 2.2 PICsonVenus ....................................... 12 2.3 PICsontheMoon ...................................... 15 2.4 PICsonMars......................................... 20 2.5 PICs on other Solar System bodies . 23 3 Data and Methods 29 4 Saturnian Satellites 33 4.1 Rhea............................................. 33 4.2 Dione ............................................. 35 4.3 Tethys........................................... 38 5 Asteroid Belt Objects 43 5.1 Ceres............................................ 43 5.2 Vesta............................................ 46 6 -
Crater Morphologies and the Distribution of Ejecta Deposits on the Dwarf Planet Ceres
Dissertation zur Erlangung des akademischen Grades „doctor rerum naturalium“ (Dr. rer. nat.) Crater Morphologies and the Distribution of Ejecta Deposits on the Dwarf Planet Ceres vorgelegt von Dipl.-Geophysikerin Franziska Schulzeck im Fachbereich Geowissenschaften der Freien Universität Berlin Berlin, 2018 Erstgutachter: Prof. Dr. Ralf Jaumann Freie Universität Berlin Institut für Geologische Wissenschaften Fachrichtung Planetologie und Fernerkundung sowie Deutsches Zentrum für Luft- und Raumfahrt Institut für Planetenforschung, Abt. Planetengeologie Zweitgutachter: Prof. Dr. Lena Noack Freie Universität Berlin Institut für Geologische Wissenschaften Fachrichtung Geochemie, Hydrogeologie, Mineralogie Tag der Disputation: 19. November 2018 V EIDESSTATTLICHE ERKLÄRUNG Hiermit erkläre ich, dass ich die beigefügte Dissertation selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel genutzt habe. Alle wörtlich oder inhaltlich übernommenen Stellen habe ich als solche gekennzeichnet. Ich versichere außerdem, dass ich die beigefügte Dissertation nur in diesem und keinem anderen Promotionsverfahren eingereicht habe und, dass diesem Promotionsverfahren keine endgültig gescheiterten Promotionsverfahren vorausgegangen sind. Berlin, 07. Dezember 2018 Franziska Schulzeck VII DANKSAGUNG Ich danke Herrn Prof. Dr. Ralf Jaumann und Frau Dr. Katrin Stephan für die Betreuung meiner Doktorarbeit und Frau Prof. Dr. Lena Noack für die Übernahme des Zweitgutachtens. Darüber hinaus danke ich allen Mitarbeitern der Abteilung Planetengeologie -
Geologic Mapping of the Ac-11 Sintana Quadrangle: Assessing Diverse Crater Morphologies
Icarus 316 (2018) 154–166 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Geologic mapping of the Ac-11 Sintana quadrangle: Assessing diverse crater morphologies ∗ F. Schulzeck a, , K. Krohn a, I. v.d. Gathen a, N. Schmedemann b, K. Stephan a, R. Jaumann a, D.A. Williams c, R. Wagner a, D.L. Buczkowski d, S.C. Mest e, J.E.C. Scully f, E. Kersten a, K.-D. Matz a, A. Naß a, F. Preusker a, T. Roatsch a, C.A. Raymond f, C.T. Russell g a German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany b Freie Universität Berlin, Berlin, Germany c School of Earth & Space Exploration, Arizona State University, Tempe, AZ, USA d JHU-APL, Laurel, MD, USA e Planetary Science Institute, Tucson, AZ, USA f Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA g UCLA, Los Angeles, CA, USA a r t i c l e i n f o a b s t r a c t Article history: A geologic map at a scale of 1:1,0 0 0,0 0 0 of the Ac-11 Sintana quadrangle (21–66 °S and 0–90 °E) from the Received 8 August 2016 dwarf planet Ceres and based on data from NASA’s Dawn spacecraft, was produced as part of a geologic Revised 22 November 2017 mapping campaign in order to investigate the surface structure, stratigraphy, composition and surface Accepted 7 December 2017 modifying processes. The Sintana quadrangle is geologically dominated by cratered terrain with mor- Available online 11 December 2017 phologically distinct crater types. -
Ac-H-11 Sintana and Ac-H-12 Toharu Quadrangles: Assessing the Large and Small Scale Heterogeneities of Ceres’ Surface
Icarus 318 (2019) 230–240 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Ac-H-11 Sintana and Ac-H-12 Toharu quadrangles: Assessing the large and small scale heterogeneities of Ceres’ surface ∗ M.C. De Sanctis a, , A. Frigeri a, E. Ammannito b, F.G. Carrozzo a, M. Ciarniello a, F. Zambon a, F. Tosi a, A. Raponi a, A. Longobardo a, J.P. Combe c, E. Palomba a, F. Schulzeck d, C.A. Raymond e, C.T. Russell f a Istituto di Astrofisica e Planetologia Spaziali, INAF, via del fosso del Cavaliere, 100, 00133, Rome, Italy b Agenzia Spaziale Italiana, Rome, via del Politecnico, 00133 Rome, Italy c Bearfight Institute, 22 Fiddler’s Road, P.O. Box 667, Winthrop, WA 98862, USA d DLR, Institute of Planetary Research, Berlin, Germany e Jet Propulsion Laboratory, Pasadena, CA 91109, USA f Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA a r t i c l e i n f o a b s t r a c t Article history: Mineralogical maps of the Ac-H-11 Sintana and the Ac-H-12 Toharu quadrangles of the dwarf planet Ceres Received 27 April 2017 were produced in order to access the composition of this planetary body. We used data from NASA’s Revised 25 July 2017 Dawn spacecraft, in particular the spectra returned by VIR, the imaging spectrometer on board. Different Accepted 9 August 2017 spectral parameters in the infrared range have been computed to study the composition of this portion Available online 12 August 2017 of Ceres’ surface and its large and small scale variability. -
Timing of Optical Maturation of Recently Exposed Material on Ceres
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Timing of optical maturation of recently exposed 10.1002/2016GL071143 material on Ceres Key Points: Nico Schmedemann1 , T. Kneissl1 , A. Neesemann1, K. Stephan2 , R. Jaumann1,2 , • On Ceres recently exposed materials 2 1 2 2 3 4 such as proximal crater ejecta show K. Krohn , G. G. Michael , K. D. Matz , K. A. Otto , C. A. Raymond , and C. T. Russell spectrally bluish characteristic 1 2 • Crater ejecta can be dated by Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany, Institute of Planetary Research, German 3 measurement of crater size-frequency Aerospace Center, Berlin, Germany, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, distributions USA, 4Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA • Correlation of color ratios and ejecta formation ages are used to derive a functional relationship for the optical Abstract On Ceres, multispectral imaging data from the Dawn spacecraft show a distinct bluish maturation process characteristic for recently exposed material from the subsurface in, for example, crater ejecta. Ejecta blankets of presumably old craters show a more reddish spectrum. We selected areas in which fresh material Supporting Information: fi • Supporting Information S1 from the Cerean subsurface was exposed at a speci c time in the past, and no later geologic process is expected to have changed its surface composition or its cratering record. For each area, we determined two Correspondence to: color ratios and the crater retention age. The measured color ratios show an exponential diminishment of the N. Schmedemann, bluish characteristic over time. Although the cause of the color change remains uncertain, the [email protected] time-dependent change in spectral properties is evident, which could help identify the process.