Why a Chernobyl-Type Accident Cannot Happen in CANDU Reactors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactor Physics Calculations in the Nordic Countries
ESPOO 2003 VTT SYMPOSIUM 230 The eleventh biennial meeting on reactor physics calculations in the Nordic VTT SYMPOSIUM 230 countries was arranged by VTT Processes in Otaniemi, Espoo and on board Tallink´s m/s Romantika on April 9–10, 2003. General reactor physics, calculational methods, a code system adapted for RBMK reactor analyses, and transmutation of nuclear waste were presented by representatives of universities and programme developers. Computer programmes are the most important tools of reactor physics. At the meeting there were presentations of VTT Processes’ new deterministic 3- dimensional radiation transport code MultiTrans and BWR simulator ARES based upon the AFEN model, and also of new features in internationally wellknown codes like CASMO-4E and POLCA (POLCA-T) together with Reactor physics calculations in the Nordic countries results obtained by these programmes. A code for PWR loading pattern search, called LP-fun, is being developed by Westinghouse and others. On the subject of code validation, measurements on SVEA-96+ fuel bundles in the PROTEUS facility had been analyzed with the PHOENIX4 code, reactor scram experiments in the Loviisa and Mochovce VVER reactors using CASMO-4, MCNP4B and HEXTRAN, results of gamma scanning by the PHOENIX4/POLCA7 combination. Some difficulties in predicting the power distribution in the reactor core with sufficiently good accuracy using any of the available code systems were reported by OKG. Heating of non-fuel regions by gamma radiation and neutrons had been investigated using the HELIOS lattice code. Calculational results for heat deposition from gamma radiation in the moderator tank of the Forsmark-1 reactor were reported by Risø. -
Vver and Rbmk Cross Section Libraries for Origen-Arp
VVER AND RBMK CROSS SECTION LIBRARIES FOR ORIGEN-ARP Germina Ilas, Brian D. Murphy, and Ian C. Gauld, Oak Ridge National Laboratory, USA Introduction An accurate treatment of neutron transport and depletion in modern fuel assemblies characterized by heterogeneous, complex designs, such as the VVER or RBMK assembly configurations, requires the use of advanced computational tools capable of simulating multi-dimensional geometries. The depletion module TRITON [1], which is part of the SCALE code system [2] that was developed and is maintained at the Oak Ridge National Laboratory (ORNL), allows the depletion simulation of two- or three-dimensional assembly configurations and the generation of burnup-dependent cross section libraries. These libraries can be saved for subsequent use with the ORIGEN-ARP module in SCALE. This later module is a faster alternative to TRITON for fuel depletion, decay, and source term analyses at an accuracy level comparable to that of a direct TRITON simulation. This paper summarizes the methodology used to generate cross section libraries for VVER and RBMK assembly configurations that can be employed in ORIGEN-ARP depletion and decay simulations. It briefly describes the computational tools and provides details of the steps involved. Results of validation studies for some of the libraries, which were performed using isotopic assay measurement data for spent fuel, are provided and discussed. Cross section libraries for ORIGEN-ARP Methodology The TRITON capability to perform depletion simulations for two-dimensional (2-D) configurations was implemented by coupling of the 2-D transport code NEWT with the point depletion and decay code ORIGEN-S. NEWT solves the transport equation on a 2-D arbitrary geometry grid by using an SN approach, with a treatment of the spatial variable that is based on an extended step characteristic method [3]. -
Nuclear Fuel Optimization and Problem of Xa9953256 Increasing Burnup and Cost Efficiency of Light Water Reactors in Russia
NUCLEAR FUEL OPTIMIZATION AND PROBLEM OF XA9953256 INCREASING BURNUP AND COST EFFICIENCY OF LIGHT WATER REACTORS IN RUSSIA M.I. SOLONIN, Yu. K. BIBLASHCVLI, F.G. RESHETNIKOV, F.F. SOKOLOV, A.A. BOCHVAR All-Russia Research Institute of Inorganic Materials, Moscow, Russia Abstract Brief analysis is given of the results of WWER-1000 and WWER-440 fuel assembly (FA) and fuel rod operation to the average burn-up of 44 and 34 MW-day/kg U, respectively. The reliable operation of the fuel is noted which made it possible to outline the paths of further improvements in their fuel cycles. Based on a series of improvements reactors are being switched on a 4-year cycle; a 5-year cycle is contemplated for the WWER- 440. The fuel cycle of the boiling RBMK reactors is subjected to essential alterations. Specifically, the use of erbium oxide as an integral burnable absorber allows a higher enrichment of uranium and bum-up. To extend the burn-up a new zirconium alloy E-635 is assumed to be used as fuel rod claddings and other FA components; the alloy has higher corrosion and irradiation resistance. INTRODUCTION The current technical level of the PWR and BWR fuel production and the perfected system of the reactor management have allowed to provide the successful operation of PWR NPP to the average burn-up of ~45 MW* day/kg U in all countries of developed nuclear power. The differences in the reliability and FA serviceability as well as in the number of leaky fuel rods are rather small and the attention is usually not focused on this issue. -
Decommissioning Study of Forsmark NPP
R-13-03 Decommissioning study of Forsmark NPP Åke Anunti, Helena Larsson, Mathias Edelborg Westinghouse Electric Sweden AB June 2013 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 ISSN 1402-3091 Tänd ett lager: SKB R-13-03 P, R eller TR. ID 1400307 Decommissioning study of Forsmark NPP Åke Anunti, Helena Larsson, Mathias Edelborg Westinghouse Electric Sweden AB June 2013 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions. A pdf version of this document can be downloaded from www.skb.se. SKB R-13-03 3 Abstract By Swedish law it is the obligation of the nuclear power utilities to satisfactorily demonstrate how a nuclear power plant can be safely decommissioned and dismantled when it is no longer in service as well as calculate the estimated cost of decommissioning of the nuclear power plant. Svensk Kärnbränslehantering AB (SKB) has been commissioned by the Swedish nuclear power utilities to meet the requirements of current legislation by studying and reporting on suitable technologies and by estimating the costs of decommissioning and dismantling of the Swedish nuclear power plants. The present report is an overview, containing the necessary information to meet the above needs, for the Forsmark NPP. Information is given for the plant about the inventory of materials and radioactivity at the time for final shutdown. A feasible technique for dismantling is presented and the waste manage ment is described and the resulting waste quantities are estimated. -
Chapter 2 Design and Operation of a Pressurised Water Reactor
Chapter 2 Design and Operation of a Pressurised Water Reactor 2.1. General information about reactor operation The nuclei of some isotopes contained in nuclear fuel, such as 235U and 239Pu, can split up (fission) into two1 smaller fragments called “fission products”. These fragments have large amounts of kinetic energy that is mainly released as kinetic thermal energy in the surrounding fuel material. This release of energy is used to generate electricity in power reactors. Fission into two fragments can either be induced by neutrons (induced fission) or occur spontaneously in the case of heavy isotopes (spontaneous fission). Fission is accompanied by the release of two to three neutrons. Some of these neutrons may in turn initiate other fissions (the principle behind a nuclear chain reaction), be absorbed into the fuel without initiating any nuclear fission, or escape from the fuel. Neutrons produced by fission from the neutrons of one generation form the neu- trons of the next generation. The effective neutron multiplication factor, k, is the aver- age number of neutrons from one fission that cause another fission. The value of k determines how a nuclear chain reaction proceeds: – where k < 1, the system is said to be “subcritical”. The system cannot sustain a chain reaction and ends up dying out; 1. In about 0.4%-0.6% of cases the fission can be into three fission products, this is termed “ternary fission”. 12 Nuclear Power Reactor Core Melt Accidents – where k = 1, the system is “critical”, i.e., as many neutrons are generated as are lost. The reaction is just maintained. -
Magnox Corrosion
Department Of Materials Science & Engineering From Magnox to Chernobyl: A report on clearing-up problematic nuclear wastes Sean T. Barlow BSc (Hons) AMInstP Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, UK IOP Nuclear Industry Group, September 28 | Warrington, Cheshire, UK Department Of Materials Science & Engineering About me… 2010-2013: Graduated from University of Salford - BSc Physics (Hons) Department Of Materials Science & Engineering About me… 2013-2018: Started on Nuclear Fission Research Science and Technology (FiRST) at the University of Sheffield Member of the Immobilisation Science Laboratory (ISL) group • Wasteforms cement, glass & ceramic • Characterisation of materials (Trinitite/Chernobylite) • Corrosion science (steels) Department Of Materials Science & Engineering Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Department Of Materials Science & Engineering 2017: Junior Project Manager at DavyMarkham Department Of Materials Science & Engineering PhD projects… 4 main projects 1. Magnox waste immobilisation in glass 2. -
Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report
NUREG-1251 Vol. I Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report Main Report U.S. Nuclear Regulatory Commission p. o AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investi- gation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceed- ings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. -
Fundamentals of Nuclear Reactor Physics
Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ELSEVIER Academie Press is an imprint of Elsevier Contents Preface xiii 1 Nuclear Reactions 1 1.1 Introduction 1 1.2 Nuclear Reaction Fundamentals 2 Reaction Equations 3 Notation 5 Energetics 5 1.3 The Curve of Binding Energy 7 1.4 Fusion Reactions 8 1.5 Fission Reactions 9 Energy Release and Dissipation 10 Neutron Multiplication 12 Fission Products 13 1.6 Fissile and Fertile Materials 16 1.7 Radioactive Decay 18 Saturation Activity 20 Decay Chains 21 2 Neutron Interactions 29 2.1 Introduction 29 2.2 Neutron Cross Sections 29 Microscopic and Macroscopic Cross Sections 30 Uncollided Flux 32 Nuclide Densities 33 Enriched Uranium 35 Cross Section Calculation Example 36 Reaction Types 36 2.3 Neutron Energy Range 38 2.4 Cross Section Energy Dependence 40 Compound Nucleus Formation 41 Resonance Cross Sections 42 Threshold Cross Sections 46 Fissionable Materials 47 vii viii Contents 2.5 Neutron Scattering 48 Elastic Scattering 49 Slowing Down Decrement 50 Inelastic Scattering 52 3 Neutron Distributions in Energy 57 3.1 Introduction 57 3.2 Nuclear Fuel Properties 58 3.3 Neutron Moderators 61 3.4 Neutron Energy Spectra 63 Fast Neutrons 65 Neutron Slowing Down 66 Thermal Neutrons 70 Fast and Thermal Reactor Spectra 72 3.5 -
Pressurized Water Reactor (PWR) Systems
Reactor Concepts Manual Pressurized Water Reactor Systems Pressurized Water Reactor (PWR) Systems For a nuclear power plant to perform the function of generating electricity, many different systems must perform their functions. These functions may range from the monitoring of a plant parameter to the controlling of the main turbine or the reactor. This chapter will discuss the purposes of some of the major systems and components associated with a pressurized water reactor. USNRC Technical Training Center 4-1 0603 Reactor Concepts Manual Pressurized Water Reactor Systems CONTAINMENT BUILDING REACTOR COOLANT SYSTEM MSR S/G ELECTRIC P GENERATOR Z HP LP R MAIN COOLING TOWER TURBINE MAIN CONDENSER RHR CORE HX RCP FW RHR HTR PUMP MAIN FEED CONDENSATE PUMP PUMP CIRC. WATER PUMP CONTAINMENT AUXILIARY BUILDING SUMP TURBINE BUILDING There are two major systems utilized to convert the heat generated in the fuel into electrical power for industrial and residential use. The primary system transfers the heat from the fuel to the steam generator, where the secondary system begins. The steam formed in the steam generator is transferred by the secondary system to the main turbine generator, where it is converted into electricity. After passing through the low pressure turbine, the steam is routed to the main condenser. Cool water, flowing through the tubes in the condenser, removes excess heat from the steam, which allows the steam to condense. The water is then pumped back to the steam generator for reuse. In order for the primary and secondary systems to perform their functions, there are approximately one hundred support systems. -
System Studies of Fission-Fusion Hybrid Molten Salt Reactors
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D. -
Section IB INL Accident History
Environmental Defense Institute Section I.B. Page | 1 Section I.B. INL Accident History Of the 52 reactors built and operated at INL, forty-two (42) reactors melted downed so far in its history of operations. Sixteen (16) of these meltdowns were accidents. The remaining twenty-six (26) were experimental/intentional meltdowns to test reactor design parameters, fuel design, and radiation releases. These nuclear experiments were conducted with little regard to the radiation exposure to workers and surrounding residents. Below is a partial listing of the more notable meltdowns and criticality releases. (See IX Appendix (A)) for a listing of acknowledged melt-downs, accidents, and experimental radioactive releases. The term accidental, used by DOE, is perhaps not an appropriate term any more than when the term is applied to a hot-rodder who "accidentally" crashes his car while speeding at 100 miles per hour down a road designed for 30 mph. Hot-rodding a nuclear reactor just to see what it will take is no accident and no less irresponsible. According to Boyd Norton, manager of the SPERT tests in the early 1960s notes, "These reactors are, essentially, stripped-down “hot-rodders,” [sic] they had no radiation shielding and no elaborate safety systems. Sitting as they were, in the middle of more than nine hundred square miles of desert, there wasn't much concern over such things. Not back then." [ Norton] See discussion below on SPERT Tests. An ICPP/INTEC criticality accident on October 16, 1959 required evacuation of the facility. "Outside the building and for 130 yards west to the area entrance the radiation field was 5 R/hr or greater." [IDO-10035 @ 4] Thankfully, it was a night shift and less than 10% of the normal work-force was on the site. -
Risks of Operating Candu 6 Nuclear Power Plants: Gentilly Unit 2 Refurbishment and Its Global Implications
Risks of Operating Candu 6 Nuclear Power Plants: Gentilly Unit 2 Refurbishment and its Global Implications November 2008 BY GORDON R. THOMPSON Institute for Resource and Security Studies www.greenpeace.ca RISKS OF OPERATING ABSTRACT Operation of any nuclear power plant creates risks. CANDU 6 plants CANDU 6 NUCLEAR POWER PLANTS: pose additional risks arising from their use of natural uranium as fuel and Gentilly Unit 2 Refurbishment and its heavy water as moderator. A CANDU 6 reactor could experience a violent Global Implications power excursion, potentially leading to containment failure and a release of radioactive material to the environment. Spent fuel discharged from a CANDU 6 could be diverted and used to produce plutonium for nuclear BY GORDON R. THOMPSON weapons. Those risks are examined here with special attention to Hydro- Institute for Resource and Security Studies Quebec’s plan for refurbishment and continued operation of the Gentilly 2 plant. That action would lead to continued radiological risk in Quebec Prepared under the sponsorship of and could promote sales of CANDU 6 plants in other countries, thereby Greenpeace Canada contributing to an enhanced risk of nuclear-weapon proliferation. Hydro- Quebec’s plan also faces regulatory risks. Safety issues could increase the © Copyright November 2008 cost of refurbishing Gentilly 2, weakening an already marginal economic case for refurbishment. This report proposes an approach for systematic, GREENPEACE CANADA public assessment of the risks associated with Gentilly 2. 33 Cecil St. Toronto, Ontario ABOUT THE INSTITUTE FOR RESOURCE AND SECURITY STUDIES M5T 1N1 The Institute for Resource and Security Studies (IRSS) is an independent, www.greenpeace.ca nonprofit, Massachusetts corporation, founded in 1984.