Dissertation Amer Inayat Final

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Amer Inayat Final Open-cell Foams as Catalyst Support: A Description of Morphology, Fluid Dynamics and Catalytic Performance Offenzellige Schäume als Katalysatorträger: Beschreibung von Morphologie, Fluiddynamik und katalytischer Performance Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr.-Ing. vorgelegt von Amer Inayat aus Lahore Als Dissertation genehmigt von der Technische Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 31.10.2013 Vorsitzende des Promotionsorgans: Prof. Dr.-Ing. Marion Merklein Gutachter/in: Prof. Dr. rer. nat. Wilhelm Schwieger Prof. Dr.-Ing. Carolin Körner Parts of this work were already published or submitted to Chemical Engineering Science, Advanced Materials, Advanced Engineering Materials and Chemie Ingenieur Technik: A. Inayat, H. Freund, T. Zeiser, W. Schwieger, Determining the specific surface area of ceramic foams: The tetrakaidecahedra model revisited, Chemical Engineering Science, 66 (2011) 1179–1188 A. Inayat, J. Schwerdtfeger, H. Freund, C. Körner, R.F. Singer, W. Schwieger, Periodic open-cell foams: Pressure drop measurements and modeling of an ideal tetrakaidecahedra packing, Chemical Engineering Science, 66 (2011) 2758–2763 A. Inayat, H. Freund, A. Schwab, T. Zeiser, W. Schwieger, Predicting the Specific Surface Area and Pressure Drop of Reticulated Ceramic Foams Used as Catalyst Support, Advanced Engineering Materials, 13 (2011) 990–995. S. Lopez-Orozco, A. Inayat, A. Schwab, T. Selvam, W. Schwieger, Zeolitic Materials with Hierarchical Porous Structures, Advanced Materials, 23 (2011) 2602–2615 W. Schwieger, S. Lopez, A. Inayat, H. Freund, T. Selvam, Zeolite-Containing Materials with Hierarchical Porous Structures, Chemie Ingenieur Technik, 84 (2012) 1427-1427 Additional journal publications: G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, M.A. Klatt, F.M. Schaller, M.J.F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, K. Mecke, Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures, Advanced Materials, 23 (2011) 2535-2553 I. Paramasivam, A. Avhale, A. Inayat, A. Bosmann, P. Schmuki, W. Schwieger: MFI-type (ZSM-5) zeolite-filled TiO2 nanotubes for enhanced photocatalytic activity. Nanotechnology 20 (2009) 225607 (5pp) A. Avhale, G.T.P. Mabande, A. Inayat, W. Schwieger, T. Stief, R. Dittmeyer, Defect-free zeolite membranes of the type BEA for membrane reactor applications, Chemie Ingenieur Technik, 81 (2009) 1090-1090 Für meine Eltern und Alexandra Acknowledgements The present work was carried out between February 2007 and February 2012 in the Institute of Chemical Reaction Engineering at the Friedrich-Alexander-University Erlangen- Nuremberg, Germany. At this point, I would like to express my gratitude and thanks to all who contributed to this work. • My first and foremost gratitude goes to my supervisor Prof. Dr. Wilhelm Schwieger (head of the research group “Heterogeneous Catalysis and Porous Materials”) for accepting me as a researcher and giving me the chance of conducting my PhD work in his group. I am grateful for his continuous guidance and keen interest in my work. Under his supervision not only I learned to carry out research independently, but also to perform collaborative research in an effective manner. I am truly thankful for all his help, support and encouragement in both professional and personal matters. • My special thanks go to Prof. Dr. Hannsjörg Freund (head of the research group “Catalytic Reactors and Process Technology”) for his help, useful advice and insightful discussions during this work. • I would like to thank Prof. Dr. Peter Wasserscheid (head of the institute), Prof. Dr. Bastian Etzold (head of the research group “Chemical Vapor Processes and Catalytic Materials”), Prof. Dr. Nadejda Popovska-Leipertz and Prof. Dr. Martin Hartmann (director of ECRC, Erlangen) for their acceptance, encouragement and facilitation. • Collaborative work with the other departments and institutes as well technical assistance from their personnel was an important element towards the successful completion of the present work. In this regard, I would like to thank Prof. Dr. Carolin Körner and Prof. Dr. Robert F. Singer (WTM Erlangen) for accepting the idea of a collaborative work on the EBM structures and I would like to express my gratitude to Dr. Jan Schwerdtfeger (ZMP, Fürth) and Peter Heinl (WTM, Erlangen) for manufacturing the SEBM structures (periodic cellular structures) for this work. I further take the opportunity to thank Dr. Herald Wiehler and Johannes Hartmann (WTM, Erlangen) for performing the computed tomography measurements. I am grateful to Tobias Heidig and Dr. Enrico Bianchi (Prof. Dr. Hannsjörg Freund’s group) for their useful inputs also during the time when they were at MPI, Magdeburg, Germany. I would also like to thank Prof. Dr. Peter Greil and Dr. Tobias Fey (Institute of Glass and Ceramics, Erlangen), Prof. Dr. Delgado and Tobias Horneber (LSTM, Erlangen), Prof. Dr. Cornelia Rauh (TU Berlin) and Dr. Thomas Zeiser (RRZE, Erlangen) for their cooperation. Acknowledgements • A valuable contribution to this work was made by the students who wrote their bachelor/master thesis for the topic as well as who worked as student research assistant. In this respect, I would like to express my thanks and appreciation to Stephanie Reuss, Markus Probst and Matthias Kick for their worthwhile roles. • My sincere gratitude is rendered to all members of Schwieger research group for providing a friendly and enjoyable working atmosphere. I am especially thankful to Dr. Abhijeet Avhale, Dr. Saiprasath Gopalakrishna and Dr. Jürgen Bauer for their help and support during the very initial phase of my PhD work. I owe thanks to Alexandra Inayat, Sofia Lopez-Orozco, Stephanie Reuss, Marcelle Fankam, Elena Pleissner, Yingxue Zhang, Michael Klumpp, Jimmi Ofili, Andreas Schwab, Dr. Thangaraj Selvam, Hasan Baser, Dr. Ayyappan Ramakrishnan, Hendryk Partsch and Regine Mueller for being friendly and supportive colleagues. I am also thankful to the colleagues in other research groups at CRT as well as at ECRC. • I would like to acknowledge the vital contribution of friendly, capable and competent CRT staff. Sincere thanks go to Mr. Michael Schmacks, Mr. Achim Mannke and Mr. Julian Karl (mechanical workshop), Mr. Gerhard Dommer and Mr. Karl-Heinz Ksoll (electrical workshop and IT), Mr. Walter Fischer and Mr. Hendryk Partsch (IT) and Mr. Helmut Gerhard. I am truly thankful to Mrs. Michelle Menuet, Mrs. Petra Singer, Mrs. Petra Weber and Mrs. Monika Bittan for the enduring support in administrative issues. • To all my family members and friends goes my deepest gratitude without whose unwavering support, continuous encouragement and unconditional love I would never have made it this far. Here, I am especially grateful to my wife Alexandra and daughter Karla for their patience, perseverance and understanding during this busy time of my life. • Finally, I gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its `Excellence Initiative´ supports the Cluster of Excellence `Engineering of Advanced Materials´ at the University of Erlangen-Nuremberg. Erlangen, October 2013 Amer Inayat ii Kurzbeschreibung In der chemischen Prozessindustrie kann die Verwendung von strukturierten Reaktoren (z.B. Wabenkörper und Schäume) verschiedene Nachteile, wie z.B. hohen Druckverlust und Hotspots herkömmlicher gepackter Festbettreaktoren vermeiden. Deswegen wurden strukturierte Reaktoren (oder strukturierte Katalysatoren) in den vergangenen Jahrzehnten intensiv als Alternative zur Festbettreaktor-Technologie untersucht. Die bekanntesten und erfolgreichsten Beispiele für den technischen Einsatz strukturierter Reaktoren sind wabenförmige monolithische Katalysatoren, die aufgrund ihrer hervorragenden Eigenschaften (wie z.B. besonders geringes Verhältnis zwischen Druckverlust und geometrischer spezifischer Oberfläche) in den meisten Anwendungen im Umweltbereich die Standard- Katalysatorform geworden sind. Allerdings fehlen den Wabenkörpern aufgrund ihrer geraden Kanäle ohne Vernetzung einige andere reaktionstechnisch wichtige Eigenschaften, wie z.B. Strömungstortuosität und radiale Vermischung. Offenzellige Schäume hingegen vereinen aufgrund ihrer hohen Porosität und dreidimensionalen zellulären Struktur die Vorteile von Festbetten (z.B. radiale Vermischung und Strömungstortuosität) und Wabenkörpern (hohe geometrische spezifische Oberfläche und geringer Druckverlust). Allerdings sind Schäume trotz ihrer hervorragenden Eigenschaften noch nicht in großen kommerziellen Operationen als Ersatz für konventionelle Festbetten angewendet worden. Dies kann mit ihren hohen Herstellungskosten, dem Mangel an ausreichenden Kenntnissen über Transportprozesse in derartigen Strukturen, sowie mit mangelnden Erfahrungen im Umgang mit Schäumen begründet werden. Das Hauptziel dieser Arbeit war es, die Probleme im Zusammenhang mit der Bestimmung der Transporteigenschaften von offenzelligen Schäumen anzugehen. In dieser Hinsicht wurde zunächst eine umfassende Charakterisierung der offenzelligen Schäume hinsichtlich ihrer morphologischen Kenngrößen durchgeführt. Zudem wurde für offenzellige Schäume eine Gleichung zur theoretischen Vorhersage ihrer geometrischen spezifischen Oberfläche, die relevant für Wärme und Stofftransport ist entwickelt. Zu diesem Zweck wurde die Tetrakaidecahedron-Geometrie verwendet, bei der es sich um eine effizient
Recommended publications
  • Transport Properties of Solid Foams Having Circular Strut Cross Section
    Transport properties of solid foams having circular strut cross section using pore scale numerical simulations Yann Jobic, Prashant Kumar, Frederic Topin, René Occelli To cite this version: Yann Jobic, Prashant Kumar, Frederic Topin, René Occelli. Transport properties of solid foams having circular strut cross section using pore scale numerical simulations. Heat and Mass Transfer, Springer Verlag, 2017, 10.1007/s00231-017-2193-2. hal-01792823 HAL Id: hal-01792823 https://hal.archives-ouvertes.fr/hal-01792823 Submitted on 3 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Heat Mass Transfer https://doi.org/10.1007/s00231-017-2193-2 ORIGINAL Transport properties of solid foams having circular strut cross section using pore scale numerical simulations 1 1 1 1 Yann Jobic & Prashant Kumar & Frédéric Topin & René Occelli Received: 28 April 2017 /Accepted: 8 October 2017 # Springer-Verlag GmbH Germany 2017 Abstract Light cellular materials are increasingly used in many characteristics and friction factor vs. Reynolds number relation- engineering applications as they present several attractive prop- ship. Similarly, heat transfer results were used to derive heat erties including heat transfer enhancement, low pressure drop exchange coefficient between solid and fluid phases of foam compared to packed bed of spheres.
    [Show full text]
  • Thesis Submitted for the Degree of Doctor of Philosophy University of Bath Department of Mechanical Engineering Submitted: April 2009 Revised: August 2009
    University of Bath PHD Foam geometry and structural design of porous material Gabbrielli, Ruggero Award date: 2009 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Foam geometry and structural design of porous material Ruggero Gabbrielli A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Mechanical Engineering Submitted: April 2009 Revised: August 2009 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author.
    [Show full text]
  • Foam Geometry and Structural Design of Porous Material
    Foam geometry and structural design of porous material Ruggero Gabbrielli A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Mechanical Engineering Submitted: April 2009 Revised: August 2009 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with the author and they must not copy it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Contents 1 Introduction 4 2 Porous Materials 10 3 Literature review 15 3.1 Foam geometry . 15 3.1.1 Open-cell foams . 17 3.1.2 Microstructural morphology . 18 3.1.3 Kelvin’s problem . 18 3.1.4 Topology . 25 3.1.5 The structure of random foams . 25 3.2 Tiling theory . 26 3.3 Pattern formation . 29 4 Methods 31 4.1 Method I: Nets and tilings . 33 4.1.1 Delaney symbols . 33 4.2 Method II: The Corona algorithm . 37 4.2.1 A monotypic, non-isohedral simple tiling . 40 4.3 Method III: Pattern formation . 44 4.3.1 A new counter-example to Kelvin’s conjecture . 44 I 5 Periodic Nodal Surfaces 67 5.1 Surfaces . 70 5.1.1 Minimal surfaces . 71 5.1.2 Level surfaces .
    [Show full text]
  • Thermal Applications of Open Cell Metal Foams
    THERMAL APPLICATIONS OF OPEN CELL METAL FOAMS Burhan Ozmat, Bryan Leyda and Burt Benson ERG, Materials and Aerospace Corporation 900 Stanford Avenue, Oakland, CA 94608 Abstract: The key structural and thermo-physical properties of Reticulated Metal Foams (RMF) are reviewed. Analytical expressions relating such properties to basic structural parameters are developed through mathematical modeling and experimental studies. Conductive and convective aspects of thermal energy transfer through RMF based heat exchangers are reviewed. Mathematical model is developed which calculates maximum thermal performance for such heat exchangers .were estimated through a mathematical model. Results of experimental and Finite Element Analysis predicting thermal performance of test module using a thermal base plate, a power device and RMF heat exchanger and off the shelf external cold plate compared. The superior performance of RMF based heat exchangers are shown. 1) Introduction: It is being realized that the thermal aspects of many advancing technologies are in the critical path limiting the performance, size and the cost future products. The Reticulated Metal Foams (RMF), see Figure 1 for their physical structure, developed for structural application more than two decades a go are now becoming effective solutions to the many thermal management problems. The RMF offer a cost effective and ultra high performance thermal management technology that can be integrated with advanced high performance electronic, photonic devices and with many other challenging applications. The metal foam based thermal technology is generic, flexible and scaleable. It is generic in terms of its compatibility with the cooling media ranging from DI water, inert fluoro- carbons, and jet fuel to air He or Ar.
    [Show full text]