First Detection of Thermal Radio Emission from Solar

Total Page:16

File Type:pdf, Size:1020Kb

First Detection of Thermal Radio Emission from Solar Draft version November 14, 2013 Preprint typeset using LATEX style emulateapj v. 04/17/13 FIRST DETECTION OF THERMAL RADIO EMISSION FROM SOLAR-TYPE STARS WITH THE JANSKY VLA Jackie Villadsen, Gregg Hallinan, Stephen Bourke Astronomy Department, California Institute of Technology, Pasadena, CA 91125 Draft version November 14, 2013 ABSTRACT We present the first detections of thermal radio emission from the atmospheres of solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in calcium H and K lines. We observed these stars with the Jansky VLA with sensitivities of a few µJy at combinations of 10.0, 15.0, and 34.5 GHz. τ Cet, η Cas A, and 40 Eri A are all detected at 34.5 GHz with signal-to-noise ratios of 7.6, 4.6, and 4.2, respectively. 15.0-GHz upper limits imply a rising spectral index greater than 1.0 for τ Cet and 1.7 for η Cas A, at the 99% confidence level. The measured 34.5-GHz fluxes correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically-thick thermal free-free emission from the chromosphere, with possible contributions from coronal gyroresonance emission above active regions and coronal free-free emission. 1. INTRODUCTION a radio luminosity roughly 10 times that of the quiet Efforts to measure radio emission from the Sun started Sun due to its larger surface area and somewhat higher as early as 1896 [Wilsing & Scheiner (1896)]. The first brightness temperature. detections occurred during the boom in radio technology In low-mass main-sequence stars, the only form of development during World War II, when military radio quiescent radio emission as of yet detected is gyrosyn- engineers James Stanley Hey (1946) in Britain, George chrotron emission from a persistent non-thermal corona, Clark Southworth (1945) in the United States, and Bruce a feature which has no analog in the Sun. G¨udelet al. Slee in Australia (Orchiston (2005)) all independently (1994) reported the detection of 8.5-GHz emission from identified solar radio emission as a source of interference solar-type stars, with radio luminosities a few thousand in their radar signals. times that of the Sun. These stars also have X-ray lu- Seventy years later, solar radio observations have con- minosities much higher than the Sun, following an X- tributed significantly to a detailed (although far from ray-radio luminosity relation observed by G¨udel& Benz complete) understanding of the solar atmosphere. So- (1993) in quiescent emission from coronae of active stars lar flares produce transient radio emission from MHz to with spectral type F to M. Benz & G¨udel(1994) ob- GHz frequencies, including gyrosynchrotron storms and served that the X-ray-radio luminosity relation is also coherent bursts, which act as diagnostics of electron den- seen in solar flares, suggesting that non-thermal stellar sity and magnetic field strength in the solar corona (see radio \coronae" may consist of the emission from many Bastian et al. (1998) for a review). small flares, or at least are continuously heated by flares. The microwave emission from the quiet Sun consists Previous to the results reported here, the most sen- of thermal radiation from the chromosphere at ∼ 104 K, sitive microwave observations of solar-type stars with which is optically thick at microwave frequencies due to solar-like X-ray luminosities were performed with the free-free opacity. The quiet-Sun brightness temperature Very Large Array (VLA) by G¨udel (1992), placing a 3- sigma upper limit of 80 µJy on the 8.3-GHz flux of 40 spectrum probes atmospheric temperature and density 1 from the temperature minimum (far-IR) to the upper Eridani A. With the enhanced sensitivity of the Jansky chromosphere (cm wavelengths), as modeled in Louk- VLA, the observations described in this paper reached a itcheva et al. (2004). During periods of heightened solar 3-sigma detection limit of 6 to 12 µJy in a few hours of activity, low-frequency solar radiation (below 10-20 GHz) observation, enabling the first detections of microwave is enhanced by bright spots above active regions, where radio emission from the thermal atmospheres of solar- the ∼ 106-K corona is optically thick to gyroresonant type stars. and/or free-free opacity. For this reason, the 10.7-cm so- In this paper we present the first detections of ther- mal radio emission from three nearby solar-type stars lar flux F10:7 is a traditional measure of solar activity, varying by a factor of 2 to 3 during the solar cycle. with solar-like levels of magnetic activity: τ Ceti, η Cas- Radio luminosities at the level of the quiet Sun have yet siopeiae A, and 40 Eridani A. In Section 2, we review to be detected in other cool main-sequence stars because basic stellar parameters and activity indicators of our of the low fluxes: a few tens of µJy or less for stars at a sample, describe the observing program, and discuss the few parsecs. Just beyond the main sequence, Drake et al. (1993) detected 8.3-GHz thermal chromospheric emission 1 In contrast, these stars are easily detected at sub-mm wave- lengths, where the optically-thick thermal emission from the low from Procyon, a slightly-evolved F5 subgiant, which has chromosphere is of order a few mJy, and which must be accounted for in sub-mm observations of debris disks, as for τ Cet in Greaves [email protected] et al. (2004). 2 Name HD Distance (pc) Spectral Type Mass (M ) Radius (R ) Teff (K) [Fe/H] Known Stellar Companions τ Cet 10700 3.65 a G8.5V b 0.783 c 0.790 d 5400 b -0.40 b none η Cas A 4614 5.95 a F9V e 0.972 f 1.039 f 6000 f -0.25 g K7V @ 70 AU (12") h 40 Eri A 26965 4.98 a K0.5V b 0.84 i 0.77 j 5100 b -0.28 b DA3 & M5Ve @ 400 AU (80") k Sun | 4.8e-6 G2V 1 1 5700 0 none aBased on stellar parallaxes from van Leeuwen (2007). bGray et al. (2006). cTeixeira et al. (2009). ddi Folco et al. (2007). eGray et al. (2001b). fBoyajian et al. (2012). gGray et al. (2001a). hMason et al. (2013). The distances of stellar companions are reported as the orbital semi-major axis. iHolmberg et al. (2007). jDemory et al. (2009). kHeintz (1974). TABLE 1 Basic stellar properties. probability of chance alignment of extragalactic sources. from the National Radio Astronomy Observatory's Very Section 3 presents the source detections at various fre- Large Array (VLA) at latitude 34.1◦ N: τ Cet, η Cas A, quencies, draws a comparison to the solar spectrum, and 40 Eri A. Tables 1 and 2 compare these stars' prop- and considers possible causes for a discrepancy in ra- erties, including a number of measures of stellar activity, dio and optical source coordinates. Section 4 discusses to those of the Sun. All three stars are a good match for the various possible radio emission mechanisms for the the Sun in age and activity level. detected sources: chromospheric disk emission, gyrores- onance emission above active regions, free-free emission 2.2. List of Observations from the corona and stellar wind, gyrosynchrotron emis- Table 3 summarizes the observations of all stars in the sion from a non-thermal corona, or flare emission. In sample. Each star in the sample was observed with some Section 5, we conclude with a review of the detected subset of X band (8.0 - 12.0 GHz), Ku band (12.0 - 18.0 sources and most likely emission mechanisms, and dis- GHz), and Ka band (tuned to 30.5 - 38.5 GHz). The cuss the potential for future observations with the VLA, VLA WIDAR correlator's 3-bit observing mode enabled ALMA, and the SKA. up to 8-GHz bandwidth. Observations were performed between March and September 2013, with the VLA in 2. OBSERVATIONS D array and C array as well as intermediate configura- 2.1. Sample tions. Observations alternated between a nearby phase Our sample consists of three of the nearest stars of calibrator and the target source with cycle times of 7.5 spectral type F9V through K0.5V that are observable minutes in Ka band and 17 minutes in X and Ku band. Typical sensitivities obtained with the full bandwidth in Name log L P (days) log R0 Age (Gyr) 10 X rot 10 HK one hour were 4, 5, and 9 µJy in X, Ku, and Ka bands, (erg/s) respectively. τ Cet 26.5 a 34 b -5.01 c 5.8 d η Cas A 27.4 a 14.96 e -4.93 c 2.9 d 2.3. Source Motion 40 Eri A 27.2 a 43 b -4.872 b 5.6 d The expected positions of the sources were determined Sun 27.35 f 26.1 g -4.906 d 4.6 h using Hipparcos coordinates and proper motions (van Leeuwen (2007)), with an additional correction for par- TABLE 2 allactic motion based on the distances in Table 1. In Measures of stellar magnetic activity. addition, the position of η Cas A was corrected for dis- placement due to orbital acceleration, which resulted in aStellar X-ray luminosities are from pointed observations by the a 0.3" displacement northwest of the position expected ROSAT High-Resolution Imager (HRI) as reported by Schmitt & Liefke (2004) in the NEXXUS catalog.
Recommended publications
  • High-Frequency Waves in Solar and Stellar Coronae
    A&A 463, 1165–1170 (2007) Astronomy DOI: 10.1051/0004-6361:20065956 & c ESO 2007 Astrophysics High-frequency waves in solar and stellar coronae V. G. Ledenev1,V.V.Tirsky2,andV.M.Tomozov1 1 Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, PO Box 4026, Irkutsk, Russia e-mail: [email protected] 2 Institute of Laser Physics, Russian Academy of Sciences, Irkutsk Branch, Russia Received 3 July 2006 / Accepted 15 November 2006 ABSTRACT On the basis of a numerical solution of dispersion equation we analyze characteristics of low-damping high-frequency waves in hot magnetized solar and stellar coronal plasmas in conditions when the electron gyrofrequency is equal or higher than the electron plasma frequency. It is shown that branches that correspond to Z-mode and ordinary waves approach each other when the magnetic field increases and become practically indistinguishable in a broad region of frequencies at all angles between the wave vector and the magnetic field. At angles between the wave vector and the magnetic field close to 90◦, a wave branch with an anomalous dispersion may occur. On the basis of the obtained results we suggest a new interpretation of such events in solar and stellar radio emission as broadband pulsations and spikes. Key words. plasmas – turbulence – radiation mechanisms: non-thermal – Sun: flares – Sun: radio radiation – stars: flare 1. Introduction in the magnetic field and, consequently, for determining solar coronal parameters in the flare region. Magnetic field estima- It has been widely accepted that numerous flare processes with tions give values of the ratio ωHe/ωpe < 1 (Ledenev et al.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Coronal Structure of Pre-Main Sequence Stars
    **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Coronal Structure of Pre-Main Sequence Stars Moira Jardine SUPA, School of Physics and Astronomy, North Haugh, St Andrews, Fife, KY16 9SS, UK Abstract. The study of pre-main sequence stellar coronae is undertaken in many different wavelength regimes, with apparently conflicting results. X-ray studies of T Tauri stars suggest the presence of loops with a range of sizes ranging from less than a stellar radius to 10 stellar radii. Some of these stars show a clear rotational modulation in X-rays, but many do not and indeed the nature of this emission and its dependence on stellar mass and rotation rate is still a matter of debate. Some component of it may come from the accretion shock, but the location and extent of the accretion funnels (inferred from optical and UV observations) is as much of a puzzle as the mass accretion rate that they carry. Mass and angular momentum are not only gained by the star in the process of accretion, but also lost in either jets or winds. Linking all these different features is the magnetic field. Recent observations suggest the presence of structure on many scales, with a complex, multipolar field on small scales near the surface co-existing with a much simpler field structure on the larger scales at which the stellar field may be linking onto a surrounding disk. Some recent models suggest that the open field lines which are responsible for carrying gas escaping in winds and jets may also be responsible for much of the infalling accretion flow.
    [Show full text]
  • 15 Stellar Winds
    15 Stellar Winds Stan Owocki Bartol Research Institute, Department of Physics and Astronomy, University of Colorado, Newark, DE, USA 1IntroductionandBackground....................................... 737 2ObservationalDiagnosticsandInferredProperties....................... 740 2.1 Solar Corona and Wind ................................................ 740 2.2 Spectral Signatures of Dense Winds from Hot and Cool Stars ................. 742 2.2.1 Opacity and Optical Depth ............................................. 742 2.2.2 Doppler-Shi!ed Line Absorption ........................................ 744 2.2.3 Asymmetric P-Cygni Pro"les from Scattering Lines ......................... 745 2.2.4 Wind-Emission Lines .................................................. 748 2.2.5 Continuum Emission in Radio and Infrared ................................ 750 3GeneralEquationsandFormalismforStellarWindMassLoss.............. 751 3.1 Hydrostatic Equilibrium in the Atmospheric Base of Any Wind ............... 751 3.2 General Flow Conservation Equations .................................... 752 3.3 Steady, Spherically Symmetric Wind Expansion ............................ 753 3.4 Energy Requirements of a Spherical Wind Out#ow .......................... 753 4CoronalExpansionandSolarWind................................... 754 4.1 Reasons for Hot, Extended Corona ....................................... 754 4.1.1 $ermal Runaway from Density and Temperature Decline of Line-Cooling ...... 754 4.1.2 Coronal Heating with a Conductive $ermostat ...........................
    [Show full text]
  • • Classifying Stars: HR Diagram • Luminosity, Radius, and Temperature • “Vogt-Russell” Theorem • Main Sequence • Evolution on the HR Diagram
    Stars • Classifying stars: HR diagram • Luminosity, radius, and temperature • “Vogt-Russell” theorem • Main sequence • Evolution on the HR diagram Classifying stars • We now have two properties of stars that we can measure: – Luminosity – Color/surface temperature • Using these two characteristics has proved extraordinarily effective in understanding the properties of stars – the Hertzsprung- Russell (HR) diagram If we plot lots of stars on the HR diagram, they fall into groups These groups indicate types of stars, or stages in the evolution of stars Luminosity classes • Class Ia,b : Supergiant • Class II: Bright giant • Class III: Giant • Class IV: Sub-giant • Class V: Dwarf The Sun is a G2 V star Luminosity versus radius and temperature A B R = R R = 2 RSun Sun T = T T = TSun Sun Which star is more luminous? Luminosity versus radius and temperature A B R = R R = 2 RSun Sun T = T T = TSun Sun • Each cm2 of each surface emits the same amount of radiation. • The larger stars emits more radiation because it has a larger surface. It emits 4 times as much radiation. Luminosity versus radius and temperature A1 B R = RSun R = RSun T = TSun T = 2TSun Which star is more luminous? The hotter star is more luminous. Luminosity varies as T4 (Stefan-Boltzmann Law) Luminosity Law 2 4 LA = RATA 2 4 LB RBTB 1 2 If star A is 2 times as hot as star B, and the same radius, then it will be 24 = 16 times as luminous. From a star's luminosity and temperature, we can calculate the radius.
    [Show full text]
  • The Metallicity-Luminosity Relationship of Dwarf Irregular Galaxies
    A&A 399, 63–76 (2003) Astronomy DOI: 10.1051/0004-6361:20021748 & c ESO 2003 Astrophysics The metallicity-luminosity relationship of dwarf irregular galaxies II. A new approach A. M. Hidalgo-G´amez1,,F.J.S´anchez-Salcedo2, and K. Olofsson1 1 Astronomiska observatoriet, Box 515, 751 20 Uppsala, Sweden e-mail: [email protected], [email protected] 2 Instituto de Astronom´ıa-UNAM, Ciudad Universitaria, Apt. Postal 70 264, C.P. 04510, Mexico City, Mexico e-mail: [email protected] Received 21 June 2001 / Accepted 21 November 2002 Abstract. The nature of a possible correlation between metallicity and luminosity for dwarf irregular galaxies, including those with the highest luminosities, has been explored using simple chemical evolutionary models. Our models depend on a set of free parameters in order to include infall and outflows of gas and covering a broad variety of physical situations. Given a fixed set of parameters, a non-linear correlation between the oxygen abundance and the luminosity may be established. This would be the case if an effective self–regulating mechanism between the accretion of mass and the wind energized by the star formation could lead to the same parameters for all the dwarf irregular galaxies. In the case that these parameters were distributed in a random manner from galaxy to galaxy, a significant scatter in the metallicity–luminosity diagram is expected. Comparing with observations, we show that only variations of the stellar mass–to–light ratio are sufficient to explain the observed scattering and, therefore, the action of a mechanism of self–regulation cannot be ruled out.
    [Show full text]
  • Chapter 11 SOLAR RADIO EMISSION W
    Chapter 11 SOLAR RADIO EMISSION W. R. Barron E. W. Cliver J. P. Cronin D. A. Guidice Since the first detection of solar radio noise in 1942, If the frequency f is in cycles per second, the wavelength radio observations of the sun have contributed significantly X in meters, the temperature T in degrees Kelvin, the ve- to our evolving understanding of solar structure and pro- locity of light c in meters per second, and Boltzmann's cesses. The now classic texts of Zheleznyakov [1964] and constant k in joules per degree Kelvin, then Bf is in W Kundu [1965] summarized the first two decades of solar m 2Hz 1sr1. Values of temperatures Tb calculated from radio observations. Recent monographs have been presented Equation (1 1. 1)are referred to as equivalent blackbody tem- by Kruger [1979] and Kundu and Gergely [1980]. perature or as brightness temperature defined as the tem- In Chapter I the basic phenomenological aspects of the perature of a blackbody that would produce the observed sun, its active regions, and solar flares are presented. This radiance at the specified frequency. chapter will focus on the three components of solar radio The radiant power received per unit area in a given emission: the basic (or minimum) component, the slowly frequency band is called the power flux density (irradiance varying component from active regions, and the transient per bandwidth) and is strictly defined as the integral of Bf,d component from flare bursts. between the limits f and f + Af, where Qs is the solid angle Different regions of the sun are observed at different subtended by the source.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • The High Resolution Camera
    CXC Newsletter The High Resolution Camera To create a source catalog of the M31 center and search for time variability of the sources, we includ- Ralph Kraft, Hans Moritz Guenther (SAO), and ed 23 observations from November 1999 to February Wolfgang Pietsch (MPE) 2005 (adding about 250 ks exposure time). We detected 318 X-ray sources and created long term light curves It has been another quiet, but successful year for for all of them. We classified sources as highly variable HRC operations. The instrument performs well with or outbursting (with subclasses short vs. long outbursts no significant anomalies or instrumental issues. The and activity periods). 129 sources could be classified as HRC continues to be used for a wide variety of astro- X-ray binaries due to their position in globular clusters physical investigations. In this chapter, we briefly de- or their strong time variability (see Fig. 2). We detected scribe two such science studies. First, a collaboration seven supernova remnants, one of which is a new can- led by Dr. Wolfgang Pietsch of MPE used the HRC to didate, and also resolved the first X-rays from a known study the X-ray state of the nova population in M31 radio supernova remnant (see Hofmann et al. 2013). in conjunction with XMM-Newton and optical studies. In a second study, Guenther et al. used the HRC to They found that there is a strong correlation between determine the origin of the X-ray emission from β Pic, the optical and X-ray properties of these novae. Sec- a nearby star with a dusty disk.
    [Show full text]
  • Tures in the Chromosphere, Whereas at Meter Wavelengths It Is of the Order of 1.5 X 106 Degrees, the Temperature of the Corona
    1260 ASTRONOMY: MAXWELL PROC. N. A. S. obtained directly from the physical process, shows that the functions rt and d are nonnegative for x,y > 0. It follows from standard arguments that as A 0 these functions approach the solutions of (2). 4. Solution of Oriqinal Problem.-The solution of the problem posed in (2.1) can be carried out in two ways, once the functions r(y,x) and t(y,x) have been deter- mined. In the first place, since u(x) = r(y,x), a determination of r(y,x) reduces the problem in (2.1) to an initial value process. Secondly, as indicated in reference 1, the internal fluxes, u(z) and v(z) can be expressed in terms of the reflection and transmission functions. Computational results will be presented subsequently. I Bellman, R., R. Kalaba, and G. M. Wing, "Invariant imbedding and mathematical physics- I: Particle processes," J. Math. Physics, 1, 270-308 (1960). 2 Ibid., "Invariant imbedding and dissipation functions," these PROCEEDINGS, 46, 1145-1147 (1960). 3Courant, R., and P. Lax, "On nonlinear partial dyperential equations with two independent variables," Comm. Pure Appl. Math., 2, 255-273 (1949). RECENT DEVELOPMENTS IN SOLAR RADIO ASTRONOJIY* BY A. MAXWELL HARVARD UNIVERSITYt This paper deals briefly with present radio models of the solar atmosphere, and with three particular types of experimental programs in solar radio astronomy: radio heliographs, spectrum analyzers, and a sweep-frequency interferometer. The radio emissions from the sun, the only star from which radio waves have as yet been detected, consist of (i) a background thermal emission from the solar atmosphere, (ii) a slowly varying component, also believed to be thermal in origin, and (iii) nonthermal transient disturbances, sometimes of great intensity, which originate in localized active areas.
    [Show full text]
  • Variability of a Stellar Corona on a Time Scale of Days Evidence for Abundance Fractionation in an Emerging Coronal Active Region
    A&A 550, A22 (2013) Astronomy DOI: 10.1051/0004-6361/201220491 & c ESO 2013 Astrophysics Variability of a stellar corona on a time scale of days Evidence for abundance fractionation in an emerging coronal active region R. Nordon1,2,E.Behar3, and S. A. Drake4 1 Max-Planck-Institut für Extraterrestrische Physik (MPE), Postfach 1312 85741 Garching, Germany 2 School of Physics and Astronomy, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, 69978 Tel-Aviv, Israel e-mail: [email protected] 3 Physics Department, Technion Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] 4 NASA/GSFC, Greenbelt, 20771 Maryland, USA e-mail: [email protected] Received 3 October 2012 / Accepted 1 December 2012 ABSTRACT Elemental abundance effects in active coronae have eluded our understanding for almost three decades, since the discovery of the first ionization potential (FIP) effect on the sun. The goal of this paper is to monitor the same coronal structures over a time interval of six days and resolve active regions on a stellar corona through rotational modulation. We report on four iso-phase X-ray spectroscopic observations of the RS CVn binary EI Eri with XMM-Newton, carried out approximately every two days, to match the rotation period of EI Eri. We present an analysis of the thermal and chemical structure of the EI Eri corona as it evolves over the six days. Although the corona is rather steady in its temperature distribution, the emission measure and FIP bias both vary and seem to be correlated.
    [Show full text]
  • Radio Stars: from Khz to Thz Lynn D
    Publications of the Astronomical Society of the Pacific, 131:016001 (32pp), 2019 January https://doi.org/10.1088/1538-3873/aae856 © 2018. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A. Radio Stars: From kHz to THz Lynn D. Matthews MIT Haystack Observatory, 99 Millstone Road, Westford, MA 01886 USA; [email protected] Received 2018 July 20; accepted 2018 October 11; published 2018 December 10 Abstract Advances in technology and instrumentation have now opened up virtually the entire radio spectrum to the study of stars. An international workshop, “Radio Stars: From kHz to THz”, was held at the Massachusetts Institute of Technology Haystack Observatory on 2017 November 1–3 to discuss the progress in solar and stellar astrophysics enabled by radio wavelength observations. Topics covered included the Sun as a radio star; radio emission from hot and cool stars (from the pre- to post-main-sequence); ultracool dwarfs; stellar activity; stellar winds and mass loss; planetary nebulae; cataclysmic variables; classical novae; and the role of radio stars in understanding the Milky Way. This article summarizes meeting highlights along with some contextual background information. Key words: Sun: general – stars: general – stars: winds – outflows – stars: activity – radio continuum: stars – radio lines: stars – (stars:) circumstellar matter – stars: mass-loss Online material: color figures 1. Background and Motivation for the Workshop Recent technological advances have led to dramatic improvements in sensitivity and achievable angular, temporal, Detectable radio emission1 is ubiquitous among stars and spectral resolution for observing stellar radio emission. As spanning virtually every temperature, mass, and evolutionary a result, stars are now being routinely observed over essentially stage.
    [Show full text]