Tropenstation La Gamba

Total Page:16

File Type:pdf, Size:1020Kb

Tropenstation La Gamba Dragonflies of the Golfo Dulce Region, Costa Rica Piedras Blancas National Park “Regenwald der Österreicher” Printed with generous support from the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management 1 Authors Stefan Schneeweihs Department of Population Ecology University of Vienna Rennweg 14, 1030 Vienna, Austria [email protected] Roland Albert Werner Huber Anton Weissenhofer Department of Chemical Ecology Department of Ultrastructure Department of Ultrastructure and Ecosystem Research Research and Palynology Research and Palynology University of Vienna University of Vienna University of Vienna Rennweg 14, 1030, Vienna, Rennweg 14, 1030, Vienna, Rennweg 14, 1030, Vienna, Austria Austria Austria [email protected] [email protected] [email protected] 2 Contents The “Tropical Research Station La Gamba” . 4 The rainforests of the Golfo Dulce region . 6 Introduction . 8 History and diversity of dragonflies . 8 Adults and larvae . 8 Life cycle . 9 Morphology of the adult . 10 Identification . 11 Tropical dragonflies . 11 Odonatological field trips around La Gamba . 12 Forests . 12 Cultivated landscapes . 13 Forest margins . 13 Zygoptera . 14 Polythoridae . 14 Calopterygidae . 16 Megapodagrionidae . 18 Pseudostigmatidae . 20 Protoneuridae . 21 Coenagrionidae . 23 Anisoptera . 28 Gomphidae . 28 Libellulidae . 29 Diversity of dragonflies in La Gamba . 50 Acknowledgements . 50 References . 51 Dragonflies on the web . 51 Picture credits . 52 3 Introduction Visitors to the La Gamba Research ecosystem. Today the order Odonata (drag - Station will find a rich array of tropical life. onflies) is divided into three suborders, the As well as an overwhelming diversity of most common being the smaller Zygoptera plants, they will see birds and butterflies, (also known as damselflies) and the larger two of the most popular and conspicuous Anisoptera. A third suborder, the groups of animals. Hummingbirds, noisy Anisozygoptera, which combines character - toucans, and brilliant butterflies like the iri - istics of the other two groups, is represented descent Morpho or the spectacular Heliconius by two species in Nepal and Japan. are well known throughout the world. But Approximately 5700 species have been there are many other groups which are just described so far, with almost equal numbers as recognisable yet not as widely known. in Zygoptera and Anisoptera. Because larval Unfortunately there is often a dearth of growth responds positively to temperature, knowledge about such organisms, and access dragonflies are assumed to have developed to the relevant literature is difficult. in a warm climate. Today the greatest diver - Sometimes, however, we just need a little sity is found in tropical regions, declining help to find them. Dragonflies are skilled towards higher latitudes. Areas of the high - fliers, fearless predators, and passionate est diversty are found in South America and lovers, and once you notice them, you will South East Asia, especially in montane find them fascinating. regions where examples of previously The ecology and behaviour of the Central unknown species are often reported. American dragonfly fauna has been laid out in detail in the specialist literature (see refer - Adults and larvae ences), and more interested readers are invit - Zygoptera and Anisoptera can be easily ed to consult these sources. This booklet is identified as adults and larvae. Adult designed as a pocket guide to the identifica - Zygoptera are usually finely built insects tion of the most frequently observed species with slender abdomens. The eyes are sepa - around La Gamba. The descriptions of char - rated and situated laterally on the head. acteristics and differences between the Their fore wings and hind wings are fairly species are limited to essential information. similar in shape and venation, and are held Although identification can be difficult, and over the abdomen when resting. In flight for some species beyond the scope of this they are less acrobatic than Anisoptera, and booklet, it should be possible to recognise are often found patrolling in dense vegeta - most of the common species present in the tion near the water’s edge. The larvae of region. For the interested observer, this Zygoptera are small and slender, this shape booklet will serve as an introduction to the often appearing pronounced by the presence diversity of a fascinating group of animals. of three flattened, elongated and highly tra - We hope it will raise awareness of the diver - cheate caudal appendages that serve as res - sity of dragonflies, but also of how urgently piratory organs. Three tropical families form we need to work for their conservation. the exception, showing either lateral gills on the abdomen (Euphaeidae and History and diversity of dragonflies Polythoridae), or gill tufts at the end of the The first fossil records of a group called abdomen (Amphipterygidae). Protodonata, closely resembling today’s Adult Anisoptera are built robustly, with dragonflies and thought to represent their a long or stout abdomen. Their large eyes ancestral form, date from the Upper cover almost the whole head and meet on Carboniferous period 325 million years ago. top of the head, or they can be slightly sepa - With a wingspan of 70 cm, Meganeura monyi rated as in the family Gomphidae. The wings was one of the largest insects ever to have differ in shape and venation and are held lived on the planet. Today’s dragonflies are open when resting. Anisoptera can be considerably smaller, but these ancient observed perching on exposed structures insects still have a valuable place in the along banks, or patrolling for hours over the 8 water surface. The larvae are stout and have ronmental factors like the reflection of the three strong spines instead of lamellate aquatic surface, and the vegetation structure. appendages. They breathe by ‘rectal ventila - After one or more weeks the embryo will tion’, pumping water through the rectum, have completely developed, and the first where a tracheate organ serves for gas larva (prolarva) will be ready to hatch from exchange. Water can be expelled from the the egg. Subsequently, having reached the rectum very forcefully, so that the larva water (in the case of endophytic eggs), the swims forward. This ‘jet propulsion’ is also prolarva starts to moult (i.e. to leave the old used to escape predators. cuticula), in a process called ‘ecdysis’. Larvae and adults are predators and fair - During the larval phase, which can last from ly opportunistic in their choice for prey, a few weeks up to several years, up to 15 although specialisation does occur (see ecdyses are completed, separated by periods Pseudostigmatidae). Both developmental of foraging behaviour and growth. In tem - stages are perfectly adapted to this lifestyle. perate regions, eggs or larvae can display a Larvae actively search out or ambush their diapause, a reduction of metabolism and prey, detecting it visually or by touch, and growth during winter. capture it by the rapid protraction of the The final larval stage, at which an adult modified lower lip (or ‘labium’) which forms is contained within the larval skin, sees the the so-called ‘mask’. Adults detect prey with larva leaving the water for emergence. This their large eyes. In flight, they can turn spectacular scene usually takes place shortly quickly, hover, and even fly backwards, before dawn. The larva climbs up a suitable since the flight muscles insert directly on the structure, often a piece of aquatic vegetation, wing base, allowing them to move each pair and searches for a firm grip with its legs. The of wings independently. Even fast-flying larval skin then bursts at pre-formed points, prey such as other dragonflies can be cap - and the young adult leaves the skin. After a tured by their acrobatic manoeuvres, held by short rest the adult unfolds its wings and their legs, and then manipulated with their abdomen by pumping in haemolymph. After sharp mandibles. emergence, the smooth and shimmering skin first has to harden. Then the dragonfly sets Life cycle off on its maiden flight, leaving the site of Dragonflies are hemimetabolic insects, emergence. exhibiting incomplete metamorphosis and Young adults spend their first days on lacking a pupal stage like that in butterflies; the side of the water in order to build up fat the adult develops during the last larval reserves, and to avoid interference from stage. Their life cycle comprises three phases: mature and territorial dragonflies. The sexu - egg, several larval stages, and adult. The lar - al organs are not yet fully developed, and vae live predominantly in fresh water, inhab - they start to mature during this period. In iting lakes, streams, bogs, and ephemeral some tropical species, when breeding habi - water bodies. Only a handful of species are tats have dried out, this pre-reproductive known to develop in the brackish water of time can be prolonged for months until the marine marshes, or to have terrestrial larvae. beginning of the next wet season. When the Many species are generalists, capable of sexual organs have fully developed, the inhabiting a wide spectrum of freshwater adults turn to suitable water bodies for systems. Some species, however, have nar - reproduction. row breeding site requirements and are thus Males spend many days at reproductive sensitive to disturbances and habitat destruc - sites, where they establish temporary territo - tion. Many of these specialists are rare, but ries that are defended against other males. they can be used for the assessment of eco - Females are often dispersed around other logical freshwater status. habitats and only visit the water bodies for After mating, the female lays fertilised copulation and oviposition. When a female eggs either on the water (exophytic), or into enters a territory, the male flies up and tries (sometimes submerged) plants (endophytic). to grasp her with the caudal appendages, on Before oviposition, suitable habitats for the female’s thorax in the case of Zygoptera, development are selected by the adults.
Recommended publications
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Behavior of the Amazonian Damselfly Chalcopteryx Scintillans Mclachlan
    International Journal of Odonatology, 2014 Vol. 17, No. 4, 251–258, http://dx.doi.org/10.1080/13887890.2014.983189 Behavior of the Amazonian damselfly Chalcopteryx scintillans McLachlan (Zygoptera: Polythoridae) and comments on its morphological distinction from C. rutilans (Rambur) Rhainer Guillermo-Ferreiraa,b∗, Ulisses Gaspar Neissc, Neusa Hamadad and Pitágoras C. Bispob aFaculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados/UFGD, Dourados, Mato Grosso do Sul, Brazil; bDepartamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista/UNESP, Assis, São Paulo, Brazil; cInstituto de Natureza e Cultura - INC/BC, Universidade Federal do Amazonas/UFAM, Benjamin Constant, Amazonas, Brazil; d Instituto Nacional de Pesquisas da Amazônia/INPA, Coordenação de Biodiversidade/CBio, Manaus, Amazonas, Brazil (Received 26 June 2014; accepted 28 October 2014) Polythorid damselflies are Neotropical stream dwellers, whose behavior has rarely been recorded. Here we describe the territorial and courtship behavior of Chalcopteryx scintillans McLachlan, an Amazonian damselfly with shiny copper-colored hind wings. Territorial behavior consists of aerial contests, when males engage in threat displays and mutual pursuits in ascending and rocking flights. During courtship, males hold their coppery hind wings still while hovering with their forewings, showing the hind wings to females, which hover in front of the male in response. After copulation, the male exhibits the courtship flight again by hovering over the oviposition resource (i.e. fallen tree trunk) on the stream. The females oviposit on the trunk while the males guard them by perching near and hovering around them con- stantly. We also present behavioral notes on reproductive and oviposition behavior, and comments on the differentiation between C.
    [Show full text]
  • Odonata: Polythoridae) Melissa Sánchez-Herrera1,2* , Christopher D
    Sánchez-Herrera et al. BMC Evolutionary Biology (2020) 20:74 https://doi.org/10.1186/s12862-020-01638-z RESEARCH ARTICLE Open Access An exploration of the complex biogeographical history of the Neotropical banner-wing damselflies (Odonata: Polythoridae) Melissa Sánchez-Herrera1,2* , Christopher D. Beatty3, Renato Nunes2,4, Camilo Salazar1 and Jessica L. Ware2,5 Abstract Background: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. Results: Our time-calibrated phylogeny for 48 species suggests that this family radiated during the late Eocene (~ 33 Ma), diversifying during the Miocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one—Polythore—where a significant increase in the late Pliocene (~ 3 mya) may have been influenced by recent Andean uplift.
    [Show full text]
  • Guayana RACENIS (1968)
    Odonatologica 17(4): 379-384 December I, 1988 SHORT COMMUNICATIONS Generic characters of Chalcothore De Marmels, 1985, with notes on the male of C. montgomeryi (Racenis, 1968) and a description of the larva (Zygoptera: Polythoridae) J. De Marmels Institute de Zoología Agrícola, Facultad de Agronomía, Universidad Central de Venezuela, Apartado 4579, Maracay 2101-A, Venezuela Received July 11, 1988 / Accepted August 26, 1988 Resum. IX Sait Subsequent to a preliminary description (1985 Congr. venez. Em.. Cristobal, p. 63), the genus Chalcothore De Marmels is here described in detail. It of but combines characters Euthore Selys and Chalcopteryx Selys, also shows a series of original features, viz. short digitiform inferior anal appendages, an ovoid- -shaped (in ventral view) distal penis segment, short petiolationof the wings, broad anal field in all absence of sexual in color wings, dimorphism wing pattern, a It pantepuyan distribution. is suggested that Chalcothore is an ancient monotypic related and genus closely to the common ancestor of both. Euthore Chalcoplervx. The ultimate and instar exuviae of Chalcothore montgomeryi(Racenis) are described figured. Notes on the habitat ofthe sp. and on the associated odon. fauna are added. INTRODUCTION his first the of In report on dragonflies VenezuelanGuayana RACENIS (1968) describes Euthore montgomeryifrom five females taken at Guayaraca, alt. 1100 first of m, on the terrace the Auyan-Tepuy, a large table-top mountain. The trifurcate anal vein, the proportion of fore and hind wing quadrangles, the less venation and the of dense presence the primary antenodals led him to place the new species in Eulhore. He emphasizes, however, that the small size ofthe insect and the broadened anal field ofthe features shared with wings are not any of of the other members that genus.
    [Show full text]
  • An Overview of Molecular Odonate Studies, and Our Evolutionary Understanding of Dragonfly and Damselfly (Insecta: Odonata) Behavior
    International Journal of Odonatology Vol. 14, No. 2, June 2011, 137–147 Dragons fly, biologists classify: an overview of molecular odonate studies, and our evolutionary understanding of dragonfly and damselfly (Insecta: Odonata) behavior Elizabeth F. Ballare* and Jessica L. Ware Department of Biological Sciences, Rutgers, The State University of New Jersey, 195 University Ave., Boyden Hall, Newark, NJ, 07102, USA (Received 18 November 2010; final version received 3 April 2011) Among insects, perhaps the most appreciated are those that are esthetically pleasing: few capture the interest of the public as much as vibrantly colored dragonflies and damselflies (Insecta: Odonata). These remarkable insects are also extensively studied. Here, we review the history of odonate systematics, with an emphasis on discrepancies among studies. Over the past century, relationships among Odonata have been reinterpreted many times, using a variety of data from wing vein morphology to DNA. Despite years of study, there has been little consensus about odonate taxonomy. In this review, we compare odonate molecular phylogenetic studies with respect to gene and model selection, optimality criterion, and dataset completeness. These differences are discussed in relation to the evolution of dragonfly behavior. Keywords: Odonata; mitochondrion; nuclear; phylogeny; systematic; dragonfly; damselfly Introduction Why study Odonata? The order Odonata comprises three suborders: Anisozygoptera, Anisoptera, and Zygoptera. There are approximately 6000 species of Odonata described worldwide (Ardila-Garcia & Gregory, 2009). Of the three suborders Anisoptera and Zygoptera are by far the most commonly observed and collected, because there are only two known species of Anisozygoptera under the genus Epiophlebia. All odonate nymphs are aquatic, with a few rare exceptions such as the semi-aquatic Pseudocordulia (Watson, 1983), and adults are usually found near freshwater ponds, marshes, rivers (von Ellenrieder, 2010), streams, and lakes (although some species occur in areas of mild salinity; Corbet, 1999).
    [Show full text]
  • Taxonomy and Conservation Concerns of the Critically Endangered Roppaneura Beckeri, a Phytotelm-Breeding Damselfly in the Southern Brazilian Atlantic Forest
    Bulletin of Insectology 74 (1): 91-101, 2021 ISSN 1721-8861 eISSN 2283-0332 Taxonomy and conservation concerns of the critically endangered Roppaneura beckeri, a phytotelm-breeding damselfly in the southern Brazilian Atlantic Forest Leonardo POLIZELI1,2, Ângelo Parise PINTO2 1Undergraduate course of Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil 2Laboratory of Systematics on Aquatic Insects (LABSIA), Departamento de Zoologia, Universidade Federal do Pa- raná, Curitiba, Paraná, Brazil Abstract Phytotelm-breeding Odonata are rare: from the 6,300 known species of these charismatic freshwater organisms, only a small number of about 50 develop in phytotelmata habitats. Mainly members of the damselflies (suborder Zygoptera) are dependent on this special type of environment. The small coenagrionid Roppaneura beckeri Santos (Odonata Coenagrionidae Protoneurinae), a damselfly endemic to the Brazilian Atlantic Forest, is the only known Odonata breeding in the terrestrial umbellifers of Eryngium floribundum (Cham. et Schltdl.). This is a species-specific association with a hostplant unparalleled in the order. It also is the only species within the subfamily Protoneurinae to occupy phytotelmata habitats. Here, we report on a population of R. beckeri rediscovered after 42 years and recorded for the first time from the southern Atlantic Forest from the state of Paraná. The morphology and the distribution of this species is reviewed and based on these primary data future conservation strategies are discussed. We suggest including R. beckeri as a priority species for dragonfly conservation policies due to its exclusive biological characteristics, evolutionary rele- vance, and occurrence in urban to peri-urban landscapes. Key words: conservation, Plateau Paranaense, Zygoptera, Coenagrionidae, urban insects.
    [Show full text]
  • (Platycnemididae), Zygoptères Sénégal
    Odonalologica II (2): 153-158 June I. 1982 SHORT COMMUNICATIONS Elattoneurapluotae spec. nov. (Protoneuridae) et Mesocnemis dupuyi spec. nov. (Platycnemididae), zygoptères nouveaux du Sénégal J. Legrand 45 de Laboratoire d’Entomologie, Muséum national d’Histoire naturelle, rue Buffon, F-75005 Paris, France Reçu et accepté le 15 février 1982 Elattoneura pluotae spec. nov. (Protoneuridae) and Mesocnemis dupuyi spec. nov. (Platycnemididae), new zygopterans from Senegal E. pluotae sp. n. is described and small the border illustrated from specimens collected on a stream near Guinean (holotype $: Dindefello, Kedougou, 31-V-I981; MNHN, Paris); it is referable to the pruinosa-group. — M. dupuyi sp. n. is also described from the Gambia Riv. (holotype allotype $: Gambia, radier de Samekouta, Kedougou, 2-VI-1981; MNHN, Paris), and it is briefly comparedwith M. robusta (Sel.) and M.singularis Karsch. INTRODUCTION trois semaines Un récent séjour de (mai-juin 1981) passé au Sénégal, sur invitation de mon ami B. Sigwalt, entomologiste de l’O.R.S.T.O.M. à l’époque en poste à Dakar, m’a permis de découvrir deux Zygoptères inédits. dédié Le premier, E. pluotae, à Mme D. Pluot-Sigwalt, fut trouvé sur un ruisseau frontière petit proche de la de la Guinée au Sud-Est du Sénégal: le second, dédié à Directeur M. dupuyi, M.A.R.Dupuy, des parcs nationaux du Sénégal, fut capturé sur la partie sénégalaise de la rivière Gambieen amont national et dans le parc du Niokolo-Koba, au niveau du radier de Bafoulabé. 154 J. Legrand ELATTONEURA PLUOTAE SP. N. Figures 1-5 Matériel. — Holotype $, Sénégal, Kédougou, Dindéfello, 31-V-198I, J.
    [Show full text]
  • Cumulative Index of ARGIA and Bulletin of American Odonatology
    Cumulative Index of ARGIA and Bulletin of American Odonatology Compiled by Jim Johnson PDF available at http://odonata.bogfoot.net/docs/Argia-BAO_Cumulative_Index.pdf Last updated: 14 February 2021 Below are titles from all issues of ARGIA and Bulletin of American Odonatology (BAO) published to date by the Dragonfly Society of the Americas. The purpose of this listing is to facilitate the searching of authors and title keywords across all issues in both journals, and to make browsing of the titles more convenient. PDFs of ARGIA and BAO can be downloaded from https://www.dragonflysocietyamericas.org/en/publications. The most recent three years of issues for both publications are only available to current members of the Dragonfly Society of the Americas. Contact Jim Johnson at [email protected] if you find any errors. ARGIA 1 (1–4), 1989 Welcome to the Dragonfly Society of America Cook, C. 1 Society's Name Revised Cook, C. 2 DSA Receives Grant from SIO Cook, C. 2 North and Central American Catalogue of Odonata—A Proposal Donnelly, T.W. 3 US Endangered Species—A Request for Information Donnelly, T.W. 4 Odonate Collecting in the Peruvian Amazon Dunkle, S.W. 5 Collecting in Costa Rica Dunkle, S.W. 6 Research in Progress Garrison, R.W. 8 Season Summary Project Cook, C. 9 Membership List 10 Survey of Ohio Odonata Planned Glotzhober, R.C. 11 Book Review: The Dragonflies of Europe Cook, C. 12 Book Review: Dragonflies of the Florida Peninsula, Bermuda and the Bahamas Cook, C. 12 Constitution of the Dragonfly Society of America 13 Exchanges and Notices 15 General Information About the Dragonfly Society of America (DSA) Cook, C.
    [Show full text]
  • The Classification and Diversity of Dragonflies and Damselflies (Odonata)*
    Zootaxa 3703 (1): 036–045 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9F5D2E03-6ABE-4425-9713-99888C0C8690 The classification and diversity of dragonflies and damselflies (Odonata)* KLAAS-DOUWE B. DIJKSTRA1, GÜNTER BECHLY2, SETH M. BYBEE3, RORY A. DOW1, HENRI J. DUMONT4, GÜNTHER FLECK5, ROSSER W. GARRISON6, MATTI HÄMÄLÄINEN1, VINCENT J. KALKMAN1, HARUKI KARUBE7, MICHAEL L. MAY8, ALBERT G. ORR9, DENNIS R. PAULSON10, ANDREW C. REHN11, GÜNTHER THEISCHINGER12, JOHN W.H. TRUEMAN13, JAN VAN TOL1, NATALIA VON ELLENRIEDER6 & JESSICA WARE14 1Naturalis Biodiversity Centre, PO Box 9517, NL-2300 RA Leiden, The Netherlands. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3Department of Biology, Brigham Young University, 401 WIDB, Provo, UT. 84602 USA. E-mail: [email protected] 4Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium. E-mail: [email protected] 5France. E-mail: [email protected] 6Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832- 1448, USA. E-mail: [email protected]; [email protected] 7Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031 Japan. E-mail: [email protected] 8Department of Entomology, Rutgers University, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901, USA.
    [Show full text]
  • INTRODUCTION to Dragonfly and Damselfly Watching
    Booklet.qxd 11.07.2003 10:59 AM Page 1 TEXAS PARKS AND WILDLIFE INTRODUCTION TO Dragonfly and Damselfly Watching BY MARK KLYM AND MIKE QUINN Booklet.qxd 11.07.2003 10:59 AM Page 2 Cover illustration by Rob Fleming. Booklet.qxd 11.07.2003 10:59 AM Page 3 Introduction to Dragonfly and Damselfly Watching By Mark Klym and Mike Quinn Acknowledgement This work would not have been possible without the input of Bob Behrstock, John Abbott and Sid Dunkle who provided technical information on the Order Odonata in Texas. This is not the first book about this order of insects, and the work of Sid Dunkle in Dragonflies Through Binoculars was a great help in assembling and presenting the material. Pat Morton was a great help in reviewing the material and keeping the work on track. Booklet.qxd 11.07.2003 10:59 AM Page 4 INTRODUCTION Background Dragonflies and Damselflies are members of the insect order Odonata, derived from the Greek word odonto meaning tooth. They are insects meaning that they have three body regions — a head, a thorax to which their four wings and six legs are attached and an abdomen. They are characterized by two pairs of net-veined wings and large compound eyes. Their wings are not linked together, allowing each wing to operate independently of the others. Damselflies have narrowly rectangular heads and eyes separated by more than their own width while dragonfly eyes are never separated by more than their own width. Both are preda- tors throughout their lives and valuable in destroying mosquitoes, gnats and other insects though they can become pests near beehives and may take other beneficial insects like butterflies.
    [Show full text]
  • Checklist of the Dragonflies and Damselflies (Insecta: Odonata) of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka
    Zootaxa 4849 (1): 001–084 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4849.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:FFD13DF6-A501-4161-B03A-2CD143B32AC6 ZOOTAXA 4849 Checklist of the dragonflies and damselflies (Insecta: Odonata) of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka V.J. KALKMAN1*, R. BABU2,3, M. BEDJANIČ4, K. CONNIFF5, T. GYELTSHEN6, M.K. KHAN7, K.A. SUBRAMANIAN2,8, A. ZIA9 & A.G. ORR10 1Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. [email protected]; https://orcid.org/0000-0002-1484-7865 2Zoological Survey of India, Southern Regional Centre, Santhome High Road, Chennai-600 028, Tamil Nadu, India. 3 [email protected]; https://orcid.org/0000-0001-9147-4540 4National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia. [email protected]; https://orcid.org/0000-0002-1926-0086 5ICIMOD, GPO Box 3226 Kumalthar, Kathmandu, Nepal. [email protected]; https://orcid.org/0000-0002-8465-7127 6Ugyen Wangchuk Institute for Conservation of Environment and Research, Bumthang, Bhutan. [email protected]; https://orcid.org/0000-0002-5906-2922 7Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh. [email protected]; https://orcid.org/0000-0003-1795-1315 8 [email protected]; https://orcid.org/0000-0003-0872-9771 9National Insect Museum, National Agriculture Research Centre, Islamabad, Pakistan. [email protected]; https://orcid.org/0000-0001-6907-3070 10Environmental Futures Research Institute, Griffith University, Nathan, Australia.
    [Show full text]
  • Dragonflies and Damselflies of Peninsular India-A Field Guide. E-Book of Project Lifescape
    K.A.Subramanian (2005) Dragonflies and Damselflies of Peninsular India-A Field Guide. E-Book of Project Lifescape. Centre for Ecological Sciences, Indian Institue of Science and Indian Academy of Sciences, Bangalore, India. 118 pages. Copyright K.A.Subramanian, 2005. 75 K.A.Subramanian (2005) Dragonflies and Damselflies of Peninsular India-A Field Guide. E-Book of Project Lifescape. Centre for Ecological Sciences, Indian Institue of Science and Indian AcademyMARSH of Sciences, Bangalore, DAR India. 118TS pages. Copyright (FAMIL K.A.Subramanian,Y 2005.: COENAGRIONIDAE) MARSH DARTS (FAMILY: COENAGRIONIDAE) Marsh darts are slender and small damselflies with varied colouration. These non-iridescent damselflies rest with wings closed over their body. The wings are transparent and rounded at the tip. The long and slender abdomen is slightly longer than the hind wing. Some of the smallest damselflies like the Golden Dartlet (Ischnura aurora) is from this family. Marsh Darts are found throughout the world. World over, this family is represented by about 1147 species. Within Indian limits, 65 species are known and in peninsular India 25 species are recorded. The marsh darts breed in a variety of aquatic habitats like ponds, marshes, streams and Photo:E.Kunhikrishnan rivers. Though most of the species are closely associated with aquatic habitats, some Golden Dartlets mating species like the Common Marsh Dart (Ceriagrion coromandelianum) can be found far away from any aquatic habitat. Photo:K.A.Subramanian Golden Dartlet- male 76 K.A.Subramanian (2005) Dragonflies and Damselflies of Peninsular India-A Field Guide. E-Book of Project Lifescape. Centre for Ecological Sciences, Indian Institue of Science and Indian Academy of Sciences, Bangalore, India.
    [Show full text]