Power Management Circuits

Jeongjin Roh, Ph.D. [email protected] Hanyang University

1 Outline and References

• Introduction • Linear Voltage Regulators • Charge Pumps • Inductor-type Switching Converters

References 1. Power Management Techniques for Design, K.-H. Chen. 2. CMOS VLSI Design, fourth edition, Weste & Harris. 3. Fundamentals of Power Electronics, second edition, Erickson & Maksimovic.

2 Introduction

3 PMIC (Power Management IC)

LCD Bias Smart Phone PMIC PMIC

LED Battery PMIC PMIC

 Provide stable output voltage for electronic equipment with high power efficiency

 Great increase in market

4 General Structure of Power Management ICs

5 PMIC – Display Applications

 LED backlight driver

- Thin and light - Simple circuit - Mercury free - Low voltage driving - Low power consumption - Low temperature operation - Fast response: wide dimming range - Easy channel balancing

[ LED backlight driver ]

6 Electric Vehicles

 Vehicle is not mechanical product anymore - It is becoming electric/electronic product

[ LED backlight driver ]

7 PMIC – Mobile Applications

 Mobile system includes various functions even if its battery-based power system.

 Multi-output voltages are necessary for various function blocks.

[ Mobile system block diagram ] [ Smart PMIC block diagram ]

8 PMIC– Mobile Applications, cont’d

 “A highly integrated power management IC for advanced mobile applications”, IEEE JSSC 2007. by Qualcomm

9 Power Management Units

 Linear Voltage Regulators

• Typical Linear Voltage Regulators

• Low Drop-Out Regulators

 Switching Power Converters

• Switched-Capacitor (or Charge Pump) Converters

• Inductor-Type Switching Converters

10 Linear Voltage Regulators

11 Linear Regulators

VIN _ VG VREF M0 + A0 VOUT

C IBIAS ILOAD

VSS

(a) Regulator with source follower output stage (c) Common-source output stage

12 Linear Regulators

Output capacitor with equivalent series resistance (ESR)

13 Linear Regulators

Pass transistor types. (a) NPN Darlington, (b) NPN, (c) PNP, (d) NMOS, (e) PMOS, (f) NMOS with charge pump

14 Linear Regulators

각 pass transistor type 별 장단점

15 Linear Regulators

(a) 기본적인 LDO regulator 의 회로도

(b) pole-splitting with Miller capacitance CGD. (no output capacitor)

16 Linear Regulators

(a) Large output capacitor for sudden load current variation (b) Root locus of poles due to the output capacitor

17 Linear Regulators

주파수 특성을 좋게 하기 위한 buffer stage 추가 (Buffer 추가로 pass transistor 의 gate 단에서의 저항성분 감소 목적)

18 Linear Regulators

Buffer stage 의구현예(기본적인 source follower 회로)

19 Linear Regulators

향상된 buffer 회로 예 (feedback 을통한buffer 의 output resistance 감소)

20 Charge Pumps

21 Charge Pump 응용 예 – Flash Memory 1

NAND Flash Memory (Toshiba 1989) 64Gb NAND Flash Memory (Toshiba 2009)

22 Charge Pump 응용 예 – Flash Memory 2

Floating gate NMOS transistor, NAND Flash string. & Erase and Program operations (ssl: string select line, gsl: ground select line) • word 신호들은 active low 신호임. • 총 16개 word 신호들 중 선택된 한 개만 low, 나머지는 모두 high. • 각 bit line 들은 pull-up 되어 있음.

23 Charge Pump 회로 예

Diode 를 사용한 회로 예 CMOS 회로 구현 예

24 Charge Pump 설계 예

(잘못된 설계 예 임. 수업시간 토론 목적.)

25 Inductor-Type Switching Converters

26 Inductor and Capacitor

Current: 1 dt i iL  v L L L  Energy: 1 v W  Li 2 (J) 2 L Current: iC 1 v  i dt  C C v C Energy: 1 W  C v 2 (J) 2

27 Converter

V  SPDT and a load

+ + g(t)

vs(t) R v(t)

- - Vs(t)

 DutyVg Cycle Ton On Off Duty Cycle  Ton  Toff T 1 s 1  v s  Ts   v s (t)dt  (DT sV g )  DV g Ts 0 Ts DTs Ts t

28 Buck Converter

V L  Buck Converter

1 L(t) + 2 i g CRv(t)

-

L Switch1 Switch2L V V

+ iL(t) +

g iL(t) CRV(t) g CRV(t)

- -

29 Buck Converter analysis Switch1

Inductor voltage and Capacitor current v  v  v(t) L g ic  iL  v(t)/ R

Small ripple approximation :

vL  Vg V ic  I V / R

Switch2 Inductor voltage and Capacitor current v  v(t) L ic  iL  v(t)/ R Small ripple approximation :

vL  V ic  I V / R

30 Buck Converter analysis

Inductor volt-second balance: applied to inductor over one switching period Ts  vL (t)dt  (Vg V )DTs  (V )D'Ts 0 Equation to zero and collect terms

VggD V (D  D')  0  V  DV

The voltage conversion ratio is therefore V M (D)   D Vg

31 Small Ripple Approximation

 Voltage ripple V Actual waveform v(t)=V+Vripple(t) Actual output voltage DC component V Waveform

v(t)  V  vripple (t) t vripple  V , v(t)V

In a well-designed converter, the output voltage ripple is small. Hence the waveform can be easily approximated by ignoring ripple -> Small ripple approximation

32 Boost Converter

 Boost Converter

L L

V Switch1 Switch2 V i (t) + + L iL (t)

g CRV(t) g CRV

- -

33 V Boost Converter analysis

L(t)

Vg s D`Ts DT t Vg-V

Net volt-seconds applied to inductor over one switching period Ts  vL (t)dt  (Vg )DTs  (Vg V )D'Ts 0 Equation to zero and collect terms Vg V (D  D') VD' 0  V  g D' V 1 1 The voltage conversion ratio is therefore M (D)    Vg D' 1 D

34 Boost Converter analysis

Switch1

Inductor voltage and Capacitor current

vL  vg ic  v / R

Small ripple approximation :

vL  Vg ic  V / R

Switch2 Inductor voltage and Capacitor current

vL  vg  v ic  iL  v / R

Small ripple approximation :

vL  Vg  v ic  I  v / R

35 i Boost Converter analysis

C(t) I - V/R

s D`Ts DT t

Capacitor charge balance -V/R Ts V V ic(t)dt  ( )DTs  (I  )D'Ts 0 R R Collect terms and equate to zero V V  (D  D')  ID' 0  I  D'R R V Eliminate V to express in terms of Vg I  g D'2 R

36 Basic Buck Converter • Basic DC-DC converter without protection circuits

Vg

clock clock S generator Q buffer L Vout S-R and latch deadtime sawtooth reset controller R1 wave R C R generator load R2 comparator

error amp VFB Vc compensator Vref

37 Sawtooth Waveform

• Sawtooth waveform and clock generator

VCC

Vsawtooth Ib Comparator

clock Vb

C M1

38 Buffer and Non-Overlapping Circuit

• Large power transistor requires buffer block • Non-overlapping to reduce shoot-through current in power transistor

VCC

Pdr_b

VSS VCC

Ndr

VSS

39 PI Compensator

• OTA and external R-C components

OTA Vc 

R1 C2

C1

40 OTA Error Amplifier

• Conventional Mirror OTA – Load cap=10pF – Tail current=200uA, quiescent output current=400uA • Cascoded output may be used for higher gain – Drawback: limited output swing

M8 M7 It

Vb M0 Vo

Vn M1 M2 Vp

M3 M4 M6 M5

411 4 Vss

41 High-Performance Error Amp.

• Gain Boosting Technique • Load cap=10pF • Tail current=200uA, quiescent output current=40uA

Vcc

M7 It M8 Vb M0

Vn M11 M12 Vp Vo M1 M2

M9 M10

M5 M3 M13 M14 M4 M6

4 18 1 1 8 1 4 Vss

42 Current Sense Schemes

• Current sense resistor in series with power transistor • Most accurate technique • Additional resistance causes higher power loss • Use turn-on resistance of power transistor for current sense • Turn-on resistance varies too much for , temperature, etc. • Current sense circuits • accurate • Circuit design is complicated • Extra quiescent current loss

43 Current Sense Circuit

• Current sense circuit for Buck converter

VIN

IP2 IP1 MP2 MS2

MP1 VQ

VA VB L1 + _ MS1

Isen VIN VO MR VQ I1 VC I1 Vadd CO IO R 2M1M2 MN1

44 Thank you.

45