Of the Cayman Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Local and Regional Influences on Arthropod Community
LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network. -
Generic Reassignments of New World Species in the Carpelimus Group of Genera (Coleoptera: Staphylinidae: Oxytelinae)
Koleopterologische Rundschau 88 75–102 Wien, September 2018 Monographs on Coleoptera Generic reassignments of New World species in the Carpelimus group of genera (Coleoptera: Staphylinidae: Oxytelinae) Gy. MAKRANCZY Abstract A forthcoming type revision of Carpelimus LEACH, 1819 species described from the New World necessitates moving nine nominal taxa to Thinodromus KRAATZ, 1857. Lectotypes are designated for Trogophloeus ferrugineus ERICHSON, 1840, T. hilaris SHARP, 1876, T. latifrons SHARP, 1876, T. opacellus BERNHAUER, 1941 and T. subdenticulatus BERNHAUER, 1908, and the following are new combinations: Thinodromus breviceps (SHARP, 1876) comb.n., T. darlingtoni (BLACKWELDER, 1943) comb.n., T. ferrugineus (ERICHSON, 1840) comb.n., T. forsteri (SCHEERPELTZ, 1960) comb.n., T. hilaris (SHARP, 1876) comb.n., T. latifrons (SHARP, 1876) comb.n., T. phloeoporinus (LECONTE, 1877) comb.n., T. subdenticulatus (BERNHAUER, 1908) comb.n. and T. vicinus (SHARP, 1876) comb.n. New synonyms are proposed: Thinodromus ferrugineus (ERICHSON, 1840) = Trogophloeus strandi BERNHAUER, 1934, syn.n. and T. velutinus (SHARP, 1887) = Trogophloeus opacellus BERNHAUER, 1841, syn.n. One species is described as new to science: Thinodromus hermani sp.n. (Nicaragua: Matagalpa). All type material is studied, documented and the species discussed are illustrated. The generic limits are discussed with particular attention to the species groups involved. Key words: Coleoptera, Staphylinidae, Oxytelinae, Carpelimus, Thinodromus, Mendaxinus, Buce- phalinus, Trogophloeus, Thinodromus -
The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al. -
The First Fossil Rove Beetle from the Middle Eocene Kishenehn Formation
TJSP_A_1266402.3d (TJSP) (215£280mm) 28-12-2016 20:43 Queries are marked in the margins of the proofs, and you can also click the hyperlinks below. AUTHOR QUERIES General points: 1. Permissions: You have warranted that you have secured the necessary written permission from the appropriate copyright owner for the reproduction of any text, illustration, or other material in your article. Please see http://journalauthors.tandf.co.uk/ permissions/usingThirdPartyMaterial.asp. 2. Third-party content: If there is third-party content in your article, please check that the rightsholder details for re-use are shown correctly. 3. Affiliation: The corresponding author is responsible for ensuring that address and email details are correct for all the co-authors. Affiliations given in the article should be the affiliation at the time the research was conducted. Please see http://journalauthors. tandf.co.uk/preparation/writing.asp. 4. Funding: Was your research for this article funded by a funding agency? If so, please insert ‘This work was supported by <insert the name of the funding agency in full>’, followed by the grant number in square brackets ‘[grant number xxxx]’. 5. Supplemental data and underlying research materials: Do you wish to include the location of the underlying research materials (e.g. data, samples or models) for your article? If so, please insert this sentence before the reference section: ‘The underlying research materials for this article can be accessed at <full link>/ description of location [author to complete]’. If your article includes supplemental data, the link will also be provided in this paragraph. See <http://journalauthors.tandf.co.uk/preparation/multimedia.asp> for further explanation of supplemen- tal data and underlying research materials. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2764, pp. 1-18, figs. 1-49, tables 1-3 June 23, 1983 Eppelsheimius: Revision, Distribution, Sister Group Relationship (Staphylinidae, Oxytelinae) LEE H. HERMAN' ABSTRACT Eppelsheimius is a small genus of beetles that pirazzolii and E. miricollis, that are distinguished occurs in arid regions from northern Africa to by many characters. Both species are variable. The southwestern Asia. The species share characters genus and species are described and illustrated and with Planeustomus, Manda, and Bledius. Evi- their distributions described. One species, E. per- dence is presented that Bledius and Eppelsheimius sicus, is newly synonymized with E. pirazzolii. are sister groups. The genus has two species, E. INTRODUCTION The present paper was stimulated by a in a forthcoming paper on Bledius (Herman, search for the sister group ofBledius. Earlier, in prep.). Ultimately, several rearrangements but without supporting characters, Herman in the classification of the Oxytelinae will be (1970, p. 354) presented two groups ofgenera required. as the sister group of Bledius. One of these Eppelsheim (1885) described pirazzolii in groups, the Carpelimus lineage, includes Oncophorus. A second species, miricollis, was Carpelimus, Apocellagria, Trogactus, Thi- added by Fauvel (1898); both were from Tu- nodromus, Xerophygus, Ochthephilus, nisia. In 1915, Oncophorus was discovered Mimopaederus, Teropalpus, Pareiobledius to be a homonym of a genus of Mal- and Blediotrogus; the other, the Thinobius lophaga and a genus of "worms" of indeter- lineage, includes Thinobius, Sciotrogus, and minate placement. Bernhauer (1915) pub- Neoxus. -
Coleoptera, Staphylinidae, Oxytelinae) Living in Floral Bracts of Columnea Medicinalis L
Zootaxa 4394 (4): 559–566 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4394.4.6 http://zoobank.org/urn:lsid:zoobank.org:pub:83AA97F4-AC3F-41AD-A339-5A67A64AF656 Description and notes on natural history of a new species of Parosus Sharp, 1887 (Coleoptera, Staphylinidae, Oxytelinae) living in floral bracts of Columnea medicinalis L. (Gesneriaceae) MARGARITA M. LÓPEZ-GARCÍA1,2 & OSCAR H. MARÍN-GÓMEZ1,2 1Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia. E-mail: [email protected], [email protected] 2 Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico Abstract A new species of the recently revised genus Parosus is described, P. amayae López-García & Marín-Gómez sp. nov., from adult and larval specimens collected in bracts of Columnea medicinalis in the Natural Reserve Río Ñambí (Southwestern Colombia). Observations on the interaction with the plant, subsocial behavior, and population density are presented and discussed. Adults and larvae apparently live together and feed on eggs and larvae of flies that develop inside the decom- posing fruits of C. medicinalis. The new species is illustrated by color habitus photos, as well as its L1 and L3 larvae, male and female genitalia are depicted by line drawings. Key words: Oxytelinae, new species, decomposing fruits, gesneriads, subsocial behavior, cloud forest, Colombia, larvae Introduction Staphylinidae is the largest animal family with more than 61,300 described species (Newton 2015) and is dominant in a great variety of ecosystems, showing several ecological interactions (Thayer 2005). -
Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass As Influenced by Management Practices
HORTICULTURAL ENTOMOLOGY Relative and Seasonal Abundance of Beneficial Arthropods in Centipedegrass as Influenced by Management Practices S. KRISTINE BRAMAN AND ANDREW F. PENDLEY Department of Entomology, University of Georgia, College of Agriculture Experiment Stations, Georgia Station, Griffin, GA 30223 J. Econ. Entomol. 86(2): 494-504 (1993) ABSTRACT Pitfall traps were used to monitor the seasonal activity of arthropod preda tors, parasitoids, and decomposers in replicated plots of centipedegrass turf for 3 yr (1989-1991) at two locations. During 1990 and 1991, the influence of single or combined herbicide, insecticide, and fertilizer applications on these beneficials was assessed. In total, 21 species of carabids in 13 genera and 17 species of staphylinids in 14 genera were represented in pitfall-trap collections. Nonsminthurid collembolans, ants, spiders, and parasitic Hymenoptera were adversely affected in the short term by insecticide applica tions targeting the twolined spittlebug, Prosapia bicincta (Say). Other taxa, notably orib atid Acari, increased over time in response to pesticide or fertilizer applications. Although various taxa were reduced by pesticide application during three of four sample intervals, a lack ofoverall differences in season totals suggests that the disruptive influence ofcertain chemical management practices may be less severe than expected in the landscape. KEY WORDS Arthropoda, centipedegrass, nontarget effects CENTIPEDEGRASS, Eremochloa ophiuroides Potter 1983, Arnold & Potter 1987, Potter et al. (Munro) Hack, a native of China and Southeast 1990b, Vavrek & Niemczyk 1990). Asia introduced into the United States in 1916, Studies characterizing the beneficial arthropod has become widely grown from South Carolina community and assessing effects of management to Florida and westward along the Gulf Coast practices on those invertebrates are especially states to Texas (DubIe 1989). -
An Annotated Bibliography of Archaeoentomology
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 4-2020 An Annotated Bibliography of Archaeoentomology Diana Gallagher Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Thesis is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Diana Gallagher Master’s Project for the M.S. in Entomology An Annotated Bibliography of Archaeoentomology April 2020 Introduction For my Master’s Degree Project, I have undertaken to compile an annotated bibliography of a selection of the current literature on archaeoentomology. While not exhaustive by any means, it is designed to cover the main topics of interest to entomologists and archaeologists working in this odd, dark corner at the intersection of these two disciplines. I have found many obscure works but some publications are not available without a trip to the Royal Society’s library in London or the expenditure of far more funds than I can justify. Still, the goal is to provide in one place, a list, as comprehensive as possible, of the scholarly literature available to a researcher in this area. The main categories are broad but cover the most important subareas of the discipline. Full books are far out-numbered by book chapters and journal articles, although Harry Kenward, well represented here, will be publishing a book in June of 2020 on archaeoentomology. -
Development of Synanthropic Beetle Faunas Over the Last 9000 Years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid
University of Birmingham Development of synanthropic beetle faunas over the last 9000 years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid DOI: 10.1016/j.jas.2020.105075 License: Other (please provide link to licence statement Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Smith, D, Hill, G, Kenward, H & Allison, E 2020, 'Development of synanthropic beetle faunas over the last 9000 years in the British Isles', Journal of Archaeological Science, vol. 115, 105075. https://doi.org/10.1016/j.jas.2020.105075 Link to publication on Research at Birmingham portal Publisher Rights Statement: Contains public sector information licensed under the Open Government Licence v3.0. http://www.nationalarchives.gov.uk/doc/open- government-licence/version/3/ General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2743, pp. 1-13, figs. 1-4, table 1 August 4, 1982 Redefinition, Revised Phylogeny, and Relationships of Pseudopsinae (Coleoptera, Staphylinidae) ALFRED F. NEWTON, JR.' ABSTRACT New evidence is presented to support transfer vised cladistic analysis of the four genera is pre- of the genera Nanobius, Asemobius, and Zalobius sented with the conclusion that Pseudopsis is the from the Piestinae to Pseudopsinae, currently in- sister group of the remaining genera. The rela- cluding only Pseudopsis. The subfamily is rede- tionships of the subfamily are discussed; a close scribed, a key to genera given, and the natural relationship to the Phloeocharinae rather than to history and distribution briefly reviewed. A re- the Oxytelinae is suggested. INTRODUCTION The subfamily Pseudopsinae, with the sin- paper is intended as a supplement to, rather gle included genus Pseudopsis, has recently than a replacement for, Herman's revisions been thoroughly revised by Herman (1975). (1975, 1977). Thus the treatment is largely The same author shortly thereafter revised limited to making changes in the subfamily the three piestine genera Nanobius, Asemo- description, generic keys, etc. that are re- bius, and Zalobius (Herman, 1977). In the quired by combining all four genera in one latter work Herman cited many similarities subfamily. A cladistic analysis is presented, among these four genera but concluded that combining data from Herman's analyses the available evidence did not adequately (1975, 1977) with new data. support the hypothesis that the four genera constituted a monophyletic unit; Nanobius and its allies were tentatively retained in the MATERIALS AND METHODS Piestinae. -
Zootaxa, Staphylinidae
ZOOTAXA 1251 Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names JOSÉ LUIS NAVARRETE-HEREDIA, CECILIA GÓMEZ-RODRÍGUEZ & ALFRED F. NEWTON Magnolia Press Auckland, New Zealand JOSÉ LUIS NAVARRETE-HEREDIA, CECILIA GÓMEZ-RODRÍGUEZ & ALFRED F. NEWTON Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names (Zootaxa 1251) 70 pp.; 30 cm. 3 July 2006 ISBN 978-1-86977-016-7 (paperback) ISBN 978-1-86977-017-4 (Online edition) FIRST PUBLISHED IN 2006 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2006 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1251: 1–70 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1251 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Staphylinidae (Insecta: Coleoptera) of the Biologia Centrali-Americana: Current status of the names JOSÉ LUIS NAVARRETE-HEREDIA1, CECILIA GÓMEZ-RODRÍGUEZ1 & ALFRED F. NEWTON2 1Centro de Estudios en Zoología, CUCBA, Universidad de Guadalajara, Apdo. Postal 234, 45100, Zapopan, Jalisco, México. E-mail: [email protected] 2Zoology Department, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, IL, 60605, USA. -
Encyclopedia of Social Insects
G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated.