Ladybird Mothers Mitigate Offspring Starvation Risk by Laying Trophic Eggs

Total Page:16

File Type:pdf, Size:1020Kb

Ladybird Mothers Mitigate Offspring Starvation Risk by Laying Trophic Eggs Behav Ecol Sociobiol (2005) 58: 578–586 DOI 10.1007/s00265-005-0947-1 ORIGINAL ARTICLE Jennifer C. Perry · Bernard D. Roitberg Ladybird mothers mitigate offspring starvation risk by laying trophic eggs Received: 5 October 2004 / Revised: 24 January 2005 / Accepted: 19 March 2005 / Published online: 1 June 2005 C Springer-Verlag 2005 Abstract A large proportion of ladybird beetle Keywords Coccinellidae . Harmonia axyridis . Hatching (Coleoptera: Coccinellidae) eggs are apparently infertile— synchrony . Sibling cannibalism . Trophic eggs they do not develop an embryo and are consumed by larvae hatching within the egg batch. The predicted benefits of egg consumption for larvae are empirically well supported. An important question, however, remains: are these eggs Introduction a maternal strategy to feed offspring (i.e., trophic eggs) or did egg eating evolve to exploit unavoidably infertile eggs? Parents in many species face the problem of high star- We investigated the adaptive value of infertile eggs in lab- vation risk for their offspring. Furthermore, some parents oratory experiments with multicoloured Asian ladybirds (e.g., most insects) do not interact with their offspring fol- (Harmonia axyridis). Female H. axyridis were assigned to lowing oviposition; hence mothers in this situation are lim- low and high resource environments for brief intervals; we ited to starvation-reduction behaviors that are expressed predicted that tactics to facilitate egg cannibalism, such as at the egg production or deposition stage. In the extreme infertile egg production and hatching asynchrony, would case, a mother’s best option might be to provide food be adopted in low food environments in which starvation for offspring in the form of eggs themselves (Alexander risk for offspring is greater. We conducted two experiments 1974; Mock and Forbes 1995). Mothers should sacrifice in this manner that provided females with information some offspring to others when they gain more offspring about resource levels through prey feeding or scent. We from the increased survival of the cannibals than they also observed female oviposition patterns and tested for lose as victims (Crespi 1992)—thus, when offspring star- infertile egg distributions that departed from random. vation risk is high and eating a sibling provides a large Females produced 56% more infertile eggs in the low vs. benefit. the high food treatment; however, hatching synchrony did One way for mothers to ensure that offspring have a not change. We consider a potential confound between sibling to eat is to produce ‘trophic’ offspring that serve information and nutrition state unlikely because ladybirds as a meal (Alexander 1974). This hypothesis provides a are well able to tolerate low food for 24 h, the duration of foundation for the study of trophic eggs—non-developing, trials, and because females were in good condition when ovariole-produced structures that are formed to feed trials began. Results suggest that ladybirds use information offspring (Crespi 1992). In studying hypothesized trophic from prey encounter to manipulate the proportion of eggs, then, it is necessary to ask the functional question: is trophic eggs in a manner consistent with the adaptive there an adaptive maternal strategy to feed offspring? The hypothesis, the first evidence of trophic egg plasticity in a alternative hypothesis is that some infertile eggs are un- non-eusocial insect. avoidably produced through some constraint (e.g., sperm limitation), and that offspring are adapted to consume Communicated by M. Elgar such eggs. In some taxa, the adaptive nature of trophic J. C. Perry () · B. D. Roitberg eggs seems clear; for example, when they have a unique Behavioural Ecology Research Group, Department of morphology, clearly different from viable eggs (e.g., Biological Sciences, Simon Fraser University, West and Alexander 1963; Henry 1972), or when parents Burnaby, British Columbia V5A 1S6, Canada actively feed them to offspring (e.g., Nakahira 1994; e-mail: [email protected] Heying 2001). In ladybird beetles, offspring consume J. C. Perry undifferentiated, apparently infertile eggs that occur within Department of Zoology, University of Toronto, their natal egg batch (e.g., Kawai 1978;Osawa1992). For Toronto, ON M5S 3G5, Canada ladybirds and similar taxa (e.g., Valerio 1977; Frechette 579 and Coderre 2000), the adaptive nature of trophic eggs optimize their contribution to sibling survival. Thus, we ex- must be empirically investigated. amined the spatial distribution and order of oviposition of A second way for mothers to sacrifice some offspring infertile eggs, suggesting that a uniform distribution indi- to others is to manipulate hatching synchrony (O’Connor cates adaptive production (e.g., if it maximizes the chance 1978; Forbes et al. 2002). If cannibalism is directed to- that cannibals attack an infertile egg first rather than a viable wards siblings still in the defenceless egg stage, as in many offspring). insects (e.g., Branquart et al. 1997;Via1999; Sigsgaard et al. 2002), then mothers can decrease hatching synchrony in low-food environments to allow early-hatching offspring Methods to cannibalize (otherwise viable) siblings. For example, mothers might alter hatching synchrony by staggering the Study system and experimental animals rate of egg development or by creating eggs that vary in mass (and, hence, development time). Mothers in some Harmonia axyridis is an aphidophagous ladybird beetle, insect [e.g., lacewings (Frechette and Coderre 2000)] native to Asia. It was introduced to parts of North America and bird [e.g., American kestrels (Wiebe and Bortolotti for the biological control of aphid pests, and is now the 1994)] species appear to manipulate hatching synchrony dominant coccinellid in many areas (Koch 2003). After to facilitate sibling cannibalism. overwintering, females emerge in the spring and lay One way to investigate whether mothers adaptively use clusters of eggs on plants infested with prey (aphids or these two provisioning strategies—trophic eggs and hatch similar phloem-feeding insects, Koch 2003). Females synchrony adjustment—is to test whether they are adjusted produce a clutch of 10–50 eggs every 1–2 days for their to offspring starvation risk (Frechette and Coderre 2000), adult lives of 1–3 months. Larvae progress through four which determines the benefit of sibling cannibalism from a instars in 3–5 weeks. Several generations per summer are mother’s perspective. The multicolored Asian lady beetle usually possible (Koch 2003). Harmonia axyridis is a good candidate species for examin- Harmonia axyridis and other ladybirds produce three ing flexible use of the behaviors for several reasons. First, types of eggs: apparently infertile eggs, viable eggs, and females produce many apparently infertile eggs (15.2%, ‘inviable’ eggs where a larva develops but does not emerge Kawai 1978; 24.5%, Osawa 1992) that are consumed by from the egg capsule (Ng 1986). In this study, we investi- larvae hatching in the same egg batch. Second, first instar gate the trophic function of infertile eggs, excluding in- larvae face a high starvation risk due to oviposition sites viable eggs because some embryo development occurs. that are some distance from aphid prey (Majerus 1994) and Larvae are soft-bodied upon emergence. After a period their poor predatory abilities (Hodek and Honek 1996). Fur- of quiescence (mean: 141 min; 95% CI: 126–155; N=76; thermore, egg cannibalism dramatically reduces the risk of unpublished data) following hatching, they are sclerotized starvation in H. axyridis (up to 226%, Osawa 1992, see also enough to consume any unhatched eggs in the natal clutch. Kawai 1978) and other ladybirds (reviewed by Hodek and Egg-eating larvae apparently do not discriminate between Honek 1996). Finally, female ladybirds frequently disperse viable and infertile or inviable eggs (Banks 1956;Brown to new sites between bouts of egg laying (Evans 2003) 1972;Osawa1992). Other unhatched eggs are normally and are thus likely to deposit offspring at sites that vary in hatched or consumed by the time a cannibal is ready to resource availability. Therefore, female ladybirds should eat a second egg. Larvae remain at the egg batch for about be selected to use plastic strategies to mitigate offspring 24 h, then disperse in search of aphid prey (Osawa 1989). starvation risk. Newly eclosed adult H. axyridis were obtained from Two possibilities, then, are that the infertile eggs of H. Applied Bionomics (Victoria, British Columbia, Canada). axyridis are trophic offspring adaptively designed to be Females were maintained individually in petri dishes and eaten (Osawa 2003); or that sibling cannibalism behav- supplied daily with an excess of pea aphids (Acyrthosiphon ior takes advantage of an available food source. We also pisum reared on broad bean, Vicia faba) and a water source. looked for evidence that females use hatching synchrony They were mated to males from laboratory colonies every to alter the opportunity for sibling cannibalism among off- 10 days. spring. We hypothesized that if the behaviors are plastic, female ladybirds would lay clutches with fewer trophic eggs and more synchronous hatching when food resources Resource level experiments for offspring were high, and more trophic eggs and less synchronous hatching in low food environments. We con- The goal of these experiments was to test the hypothesis ducted two experiments to test the hypotheses that differed that ladybirds would increase trophic egg production
Recommended publications
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Zamudio Et Al. 2016
    vol. 188, supplement the american naturalist september 2016 Symposium Polyandry, Predation, and the Evolution of Frog Reproductive Modes* Kelly R. Zamudio,1,† Rayna C. Bell,2 Renato C. Nali,3,4 Célio F. B. Haddad,3 and Cynthia P. A. Prado4,‡ 1. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853; 2. Museum of Vertebrate Zoology, Department of Integrative Biology, University of California, Berkeley, California 94720; and Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; 3. Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil; 4. Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil Online enhancements: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.v67g3. fi abstract: Frog reproductive modes are complex phenotypes that diversi ed as egg and clutch characteristics, oviposition site, include egg/clutch characteristics, oviposition site, larval develop- larval development, stage and size of hatchling, and some- ment, and sometimes, parental care. Two evident patterns in the evo- times, parental care (Salthe and Duellman 1973). This com- lution of these traits are the higher diversity of reproductive modes in plexity—and the diversity that arises from variation in the the tropics and the apparent progression from aquatic to terrestrial re- many interconnected components of reproductive modes— production, often attributed to higher fitness resulting from decreased has attracted the attention of biologists for decades (Jameson predation on terrestrial eggs and tadpoles. Here, we propose that sex- 1957; Crump 1974; Duellman 1985).
    [Show full text]
  • Sociality Improves Larval Growth in the Stag Beetle Figulus Binodulus (Coleoptera: Lucanidae)
    Eur. J. Entomol. 106: 379–383, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1465 ISSN 1210-5759 (print), 1802-8829 (online) Sociality improves larval growth in the stag beetle Figulus binodulus (Coleoptera: Lucanidae) HIDEAKI MORI and SATOSHI CHIBA Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, University of Tohoku, Aobayama, Sendai, 980-8578, Japan; e-mail: [email protected] Key words. Stag beetle, social behaviour, parental care, filial cannibalism, nestmate recognition, Lucanidae Abstract. The benefits for offspring of attendant adult were investigated in the stag beetle Figulus binodulus. The initial growth rate of third-instar larva was significantly higher when the larvae were in a nest with adults compared to those in a nest without adults. The difference in growth rate is reflected in adult body size. Although the presence of adult beetle generally benefited the offspring, the adults did eat some of the larvae. Filial cannibalism was the primary cause of juvenile death in nests with adults. Mortality was lower in nests with adults related to the juveniles compared to nests with unrelated adults, suggesting that infanticide of nest mates may be inhibited. These results suggest that F. binodulus has a level of sociality and nest mate recognition that is very rare in stag beetles. Social behaviour may be more advantageous for small stag beetles than fighting. INTRODUCTION onidae) utilise food that remains available for a relatively In many animal species, parental care is critical for the long time but is difficult to digest (Kent & Simpson, proper growth and development of their offspring 1992; Schuster & Schuster, 1997).
    [Show full text]
  • Eusocial Animals Author(S) Noriyuki, Suzuki
    Factors promoting maternal trophic egg provisioning in non- Title eusocial animals Author(s) Noriyuki, Suzuki; Kawatsu, Kazutaka; Osawa, Naoya Citation Population Ecology (2012), 54(3): 455-465 Issue Date 2012-07 URL http://hdl.handle.net/2433/158353 The final publication is available at www.springerlink.com; This is not the published version. Please cite only the published Right version.; この論文は出版社版でありません。引用の際に は出版社版をご確認ご利用ください。 Type Journal Article Textversion author Kyoto University *Manuscript Click here to download Manuscript: thirdsubmittionPopulationEcology.doc Click here to view linked References 1 Title: Factors promoting maternal trophic egg provisioning in 2 non-eusocial animals 3 4 Authors: Suzuki Noriyuki1*, Kazutaka Kawatsu1 and Naoya Osawa2 5 6 1Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University 7 Kitashirakawa-oiwake, Sakyo, Kyoto, Japan 8 9 2Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University 10 Kitashirakawa-oiwake, Sakyo, Kyoto, Japan 11 12 *Author for correspondence 13 E-mail: [email protected] 14 15 The number of text pages: 27 16 The number of figures: 6 17 The number of tables: 1 18 1 19 Abstract 20 21 The adaptive function of trophic egg-laying is generally regarded as extended parental 22 investment to the offspring. However, the evolutionary factors promoting trophic 23 egg-laying are still unclear, because the amount of maternal investment per offspring 24 should be ideally equal between smaller offspring with trophic eggs and larger offspring 25 without any additional investment. Several authors have suggested that trophic 26 egg-laying should evolve only when egg size is constrained, but this hypothesis has not 27 been evaluated.
    [Show full text]
  • ITE AR 75.Pdf
    á Natural Environment Researdh Council Institute of Terrestrial Ecology Annual report 1975 London : Her Majesty's Stationery Office © Crown copyright 1976 First published 1976 ISBN 0 11 881 395 1 The cover shows clockwise from the top: Puffin. Photograph M. D. Harris; Red deer calf. Photograph B. Mitchell; Dorset heath. Photograph S. B. Chapman; Female Shield bug on juniper. Photograph L. K. Ward; Common gill fungus. Photograph J. K. Adamson. The Institute of Terrestrial Ecology is a component body of the Natural Environment Research Council Contents SECTION I 1 ECOLOGY AND THE MANAGEMENT OF THE BRITISH ENVIRONMENT SECTION II 8 THE INTERNATIONAL ROLE OF ITE SECTION III THE RESEARCH OF THE INSTITUTE IN 1974-75 11 Introduction METHODS OF SURVEY AND ENVIRONMENTAL CHARACTERISATION 11 Synoptic review of freshwater animals and ecosystems in Great Britain 12 Classification of vegetation by indicator species analysis 12 Plant inventories in woodlands 13 A method of assessing the abundance of butterflies 13 Estimation of soil temperatures from meteorological data 15 Plant isoenzymes and the characterisation of plant populations SURVEY OF HABITATS 16 Cliff vegetation in Snowdonia 17 Survey of mature timber habitats 17 Studies on the fauna of juniper, 18 Shetland 19 The Culbin shingle bar and its vegetation 20 Variation in British peatlands 22 Man and nature in the Tristan da Cunha Islands 23 Ecological survey of the Lulworth ranges, Dorset 23 Survey of sand-dune and machair sites in Scotland SURVEYS OF SPECIES DISTRIBUTION AND TAXONOMY 24 Erica
    [Show full text]
  • Ecology and Evolution of Phytotelm- Jreeding Anurans
    * ECOLOGY AND EVOLUTION OF PHYTOTELM- JREEDING ANURANS Richard M. Lehtinen Editor MISCELLANEOUS PUBLICATIONS I--- - MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 193 Ann Ahr, November, 2004 PUBLICATIONS OF THE MUSEUM OF ZQOLOGY, UNIVERSITY OF MICHIGAN NO. 192 J. B. BURCII,Editot* Ku1.1: SI.EFANOAND JANICEPAPPAS, Assistant Editoras The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series-the Miscellaneous P~rhlicationsand the Occasional Papers. Both serics were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of thesc series; beginning in 1990 these are titled Special Publications and are numbered. All s~tbmitledmanuscripts to any of the Museum's publications receive external review. The Occasiontrl Papers, begun in 1913, sellie as a mcdium for original studies based prii~cipallyupon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Mi.scelluneous Puhlicutions, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are publislled separately. It is not intended that they bc grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, Insects, Mollusks, and other topics is avail- able. Address inquiries to Publications, Museum of Zoology, The University of Michigan, Ann Arbor, Michigan 48 109-1079.
    [Show full text]
  • Benefits and Costs of Parental Care (Ed NJR)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC Chapter 3: Benefits and costs of parental care (Ed NJR) Carlos Alonso‐Alvarez and Alberto Velando 3.1. Introduction In order to explain the huge variation in parental behaviour evolutionary biologists have traditionally used a cost‐benefit approach, which enables them to analyse behavioural traits in terms of the positive and negative effects on the transmission of parental genes to the next generation. Empirical evidence supports the presence of a number of different trade‐offs between the costs and benefits associated with parental care (Stearns 1992; Harshman and Zera 2007), although the mechanisms they are governed by are still the object of debate. In fact, Clutton‐Brock’s (1991) seminal book did not address the mechanistic bases of parental care and most work in this field has been conducted over the last 20 years. Research on mechanisms has revealed that to understand parental care behaviour we need to move away from traditional models based exclusively on currencies of energy/time. Nevertheless, despite repeated claims, the integration of proximate mechanisms into ultimate explanations is currently far from successful (e.g. Barnes and Partridge 2003; McNamara and Houston 2009). In this chapter, nonetheless, we aim to describe the most relevant advances in this field. In this chapter, we employ Clutton‐Brock’s (1991) definitions of the costs and benefits of parental care. Costs imply a reduction in the number of offspring other than those that are currently receiving care (i.e. parental investment, Trivers 1972), whereas benefits are increased fitness in the offspring currently being cared for.
    [Show full text]
  • The Presence of Micropyles in the Shells of Developing and Undeveloped Eggs of the Ladybird Beetle Harmonia Axyridis (Coleoptera: Coccinellidae)
    Eur. J. Entomol. 106: 607–610, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1494 ISSN 1210-5759 (print), 1802-8829 (online) The presence of micropyles in the shells of developing and undeveloped eggs of the ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae) NAOYA OSAWA1 and ARATA YOSHINAGA2 1Laboratory of Forest Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; e-mail: [email protected] 2Laboratory of Tree Cell Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Key words. Coccinellidae, Harmonia axyridis, hatchability, infertile egg, morphology, scanning electron microscopy, sibling cannibalism, trophic egg Abstract. In Hymenoptera and Heteroptera, the absence of micropyles is one criterion for categorizing an egg as trophic. Undevel- oped eggs are observed in more than 90% of the egg clusters of the ladybird beetle Harmonia axyridis Pallas. Traditionally, these undeveloped eggs are regarded as “trophic eggs.” The surfaces of the eggs of H. axyridis were examined using scanning electron microscopy and the presence of micropyles in the shells of developing and undeveloped eggs determined. Micropyles are circularly distributed around the top of eggs and present in both developing and undeveloped eggs. The number of micropyles in the shells of developing and undeveloped eggs did not differ significantly. Our results indicate that the undeveloped eggs of H. axyridis have micropyles, suggesting that the mechanisms regulating the production of undeveloped eggs in H. axyridis differ from those resulting in the production of trophic eggs by Hymenoptera and Heteroptera. INTRODUCTION Hymenoptera. Kudo et al. (2006) report similar differ- Many female insects store the sperm received from one ences in the eggs of the subsocial burrower bug or more males in a sperm storage organ called a sper- Adomerus triguttulus (Motschulsky) (Heteroptera: Cydni- matheca (Gullan & Cranston, 2000).
    [Show full text]
  • Forficula Auricularia
    Influence of Ecology and Social Interactions on the Early Evolution of Family Life Dissertation Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes-Gutenberg Universität Mainz Jos Kramer geb. am 18. November 1985 in Filderstadt, Deutschland Mainz, 2016 Dekan: 1. Berichterstatterin: 2. Berichterstatterin: Tag der mündlichen Prüfung: 17.01.2017 TABLE OF CONTENTS Summary 2 General Introduction 5 Chapter 1. Negative association between parental care and sibling cooperation in 19 earwigs: a new perspective on the evolution of family life? Chapter 2. Maternal condition determines offspring behavior toward family members 39 in the European earwig. Chapter 3. Influences of relatedness, food deprivation, and sex on adult behaviors in 55 the group-living insect Forficula auricularia. Chapter 4. When earwig mothers do not care to share: parent-offspring competition 71 and the evolution of family life. Chapter 5. Short-term benefits, but transgenerational costs of maternal loss in an 89 insect with facultative maternal care. Chapter 6. The population determines whether and how life-history traits vary between 107 reproductive events in an insect with maternal care. Chapter 7. Kin and multilevel selection in social evolution: a never-ending controversy? 123 Perspectives 141 Author contributions 150 Acknowledgements 152 References 153 Curriculum vitae 172 1 SUMMARY A core research area in evolutionary biology is devoted to the investigation of universal mechanisms that drive transitions to social life. The formation of animal societies out of formerly independent, solitary organisms has long taken center stage in the quest for these mechanisms. However, while transitions from family systems to the highly integrated societies of cooperatively breeding vertebrates and eusocial insects have been thoroughly explored, little attention has thus far been paid to the evolutionary origin of the allegedly simple family systems themselves.
    [Show full text]
  • LEPIDOPTERA: NOCTUIDAE) with ITS HOST PLANT TOMATO Solanum Lycopersicum and the EGG PARASITOID Trichogramma Pretiosum (HYMENOPTERA: TRICHOGRAMMATIDAE
    The Pennsylvania State University The Graduate School Department of Entomology OVIPOSITION-MEDIATED INTERACTIONS OF TOMATO FRUITWORM MOTH Helicoverpa zea (LEPIDOPTERA: NOCTUIDAE) WITH ITS HOST PLANT TOMATO Solanum lycopersicum AND THE EGG PARASITOID Trichogramma pretiosum (HYMENOPTERA: TRICHOGRAMMATIDAE) A Dissertation in Entomology by Jinwon Kim © 2013 Jinwon Kim Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 The Dissertation of Jinwon Kim was reviewed and approved* by the following: Gary W. Felton, Ph.D. Professor and Department Head of Entomology Dissertation Advisor Chair of Committee John F. Tooker, Ph.D. Assistant Professor of Entomology James H. Tumlinson, Ph.D. Professor of Entomology Dawn S. Luthe, Ph.D. Professor of Plant Stress Biology *Signatures are on file in the Graduate School i ABSTRACT An increasing number of reports document that, upon deposition of insect eggs, plants induce a variety of defenses to remove the eggs from plant tissue using plant toxic compounds or lending a hand of egg predators and egg parasitoids. In this research, I explored the interactions of tomato fruitworm Helicoverpa zea Boddie (Lepidoptera: Noctuidae) with its host plant tomato Solanum lycopersicum L. (Solanales: Solanaceae) and its egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) mediated via H. zea eggs laid on tomato plants. In Chapters 2 and 3, tomato’s defensive response to H. zea oviposition was investigated, and in Chapter 4, a novel defense mechanism of H. zea eggs against the egg parasitoid T. pretiosum was explored. The tomato fruitworm moth, H. zea, lays eggs on tomato plants and the larvae emerging from the eggs consume leaves first and then fruit to cause serious loss in the plant fitness.
    [Show full text]
  • Production of Trophic Eggs by Virgin Workers in the Ponerine Ant Gnamptogenys Menadensis
    Physiological Entomology (1998) 23, 329–336 Production of trophic eggs by virgin workers in the ponerine ant Gnamptogenys menadensis B. GOBIN,1 C. PEETERS2 * and J . B I L L E N 1 1Laboratory of Entomology, University of Leuven, Belgium, and 2CNRS URA 667 Laboratoire d’Ethologie experimentale et compare´e, Universite´ Paris Nord, F-93430 Villetaneuse, France Abstract. Most colonies (thirty-five out of thirty-seven) of the ant Gnamptogenys menadensis (Mayr) (Hymenoptera: Formicidae: Ponerinae) lack queens. Mated workers produce reproductive eggs, whereas virgin workers can lay only smaller trophic eggs (350 ovipositions observed). These two egg types are morphologically distinct (e.g. in the pattern of oogenesis and ultrastructure of membranes and micropyle) and relate to different ovarian characteristics (ovariole length, number of yolky oocytes and yellow bodies). When reproductives are removed, a small number of virgin workers switch to producing reproductive eggs, although only 3% of these develop into larvae. Once workers are mated, up to 50% of their eggs develop further. Trophic eggs are generally absent in social insects lacking physical castes, and we review adaptive explanations of its occurrence in G. menadensis. Key words. Development, egg, nutrients, ovary, reproductive division of labour, social insect. Introduction Sexual reproduction by workers is known in 10% of species in the subfamily Ponerinae (Peeters, 1991, 1997). Workers can Hymenopteran females can reproduce even if they are not mate and lay fertilized eggs (they are termed ‘gamergates’ to mated, and their unfertilized eggs develop into males as a distinguish them from queens), and in many species the queen consequence of haplodiploidy.
    [Show full text]
  • Effects of Trophic-Eggs on Offspring Performance and Rivalry in a Sub-Social Bug
    OIKOS 107: 28Á/35, 2004 Effects of trophic-eggs on offspring performance and rivalry in a sub-social bug Shin-ichi Kudo and Taichi Nakahira Kudo, S. and Nakahira, T. 2004. Effects of trophic-eggs on offspring performance and rivalry in a sub-social bug. Á/ Oikos 107: 28Á/35. Trophic eggs, which are inviable and usually function as a food supply for offspring, have been regarded as extended parental investment or the outcome of parentÁ/ offspring conflict in sibling oophagy. Adomerus triguttulus (Heteroptera: Cydnidae) is a sub-social bug showing a complex pattern of maternal care, including progressive provisioning of host seeds and trophic-egg production. To investigate the functions of trophic eggs, we removed trophic eggs from clutches under different resource conditions. The longevity of nymphs was greatly extended by feeding upon trophic eggs when seeds were excluded. When seeds were provided, trophic-egg feeding by nymphs enhanced their development, but there were no significant effects on brood survival. Some viable eggs were also fed upon by sibling nymphs. However, there was no difference in the proportion of viable eggs consumed between clutches with and without trophic eggs. Females lay viable eggs within the first oviposition day. The synchronous hatching resulting from this oviposition mode seems to prevent sib- cannibalism. The body size of females affected their relative investment in trophic eggs; larger females produced more viable eggs with relatively fewer trophic eggs. The functions and adaptive allocation of trophic eggs are discussed in light of the two hypotheses mentioned above. S. Kudo, Dept of Biology, Naruto Univ.
    [Show full text]