PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006 CONTENTS A. Generaldescriptionofprojectactivity B. Applicationofabaselineandmonitoringmethodology C. Durationoftheprojectactivity /creditingperiod D. Environmentalimpacts E. Stakeholders’ comments Annexes Annex1:Contactinformationonparticipantsintheprojectactivity Annex2:Informationregardingpublicfunding Annex3:Baseline information Annex4:Monitoringplan PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 2

SECTION A. General description of project activity A.1 Title of the project activity : >> NaturalgasbasedCogenerationprojectofKadodaraIndustrialCluster,, Version01 Date:21/05/08 A.2. Description of the project activity : >> The proposed project involves the installation of a natural gas based cogeneration systems which are owned by the industrial users (i.e., selfowned) that consumes the project heat and electricity. Self owned projectsp onsorsareKadodaraPowerPlant,KrishnaTerinaPrintsPvtLtd,AakarProcessorsLtd,Ravi ExportPvtLtd,VenusSilksPvtLtd,DurgaProcessorsPrivateLimited,NavnibhiDyeingandPrintingPvt Ltd,TribeniProcessorsPvtLtd,NiharikaDyeingandPrintingMillsPvtLtd.Theseindustrialfacilitiesare textileprocessingunitsbasedintheDistrictofGujaratmovedtowardsanenterprisingsystemof theircogenerationfacilitiesasonepackage/clusterunderCleanDevelopmentMechanism. TheproposedprojectherebyreferredasKadodaraPowerIndustrialClusterwereimportingpowerfrom thegridandwereutilizinglignitetomeettheirthermalrequirementsoftheindustrialprocessesinthe preprojectscenario. Theobjectiveoftheprojectistoreducegreenhousegasemissionsthroughadaptationofacogeneration systemwithsubstitutionofcarbonintensivefuellignite and carbonintensive gridwithcomparatively cleanernaturalgasbasedpowergenerationandutilizationofwasteheatforthermalenergygeneration, therebyresultinginreductionofGHGemissions.Theprojectactivitythusleadstoacleanerenvironment throughlowergreenhousegasemissionsandotherpollutantsandgreaterenergysecurityofthenation throughlowerfuelconsumption,fossilfuelconservationforotheractivities.Italsoensurescontribution towardssustainabledevelopmentthroughsocial,economic,environmentalandtechnologicalinnovation. Furthertheprojectactivitywouldalsobemeetingthethermalenergyrequirementthroughthiswasteheat recoverysystemtherebyreducingtheadditionalfossilfuelconsumptiontakingplaceinthepreproject scenarioformeetingtheprocessthermalenergyrequirement.Theintroductionofenergyefficientnatural gasbasedcogenerationsystemwouldresultinreductioninthetotalamountoffossilfuelusedtoprovide heatandelectricitytotheindustrialfacilitytherebyresultinginasignificantamountofgreenhousegas emissionreductions. ThepurposeofNaturalGasbasedcogenerationsystemistoprimarilyachievethefollowingobjectives: • To help in sustainable development of industries in the region by supplying the clean power throughtappingof“unutilised”naturalgas. • Toreducethegreenhousegasesemissionsthroughgenerationofcleanpower • Conservefossilfuelsandmakingthemavailableforotherpurposes • Ensure contribution towards sustainable development through social, economic environmental andtechnologicalaspects PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 3

Project’s contribution towards sustainable development

Social well-being: The projectisexpectedtocreatesignificantemploymentopportunities in directlyby personnel’s required to operate / maintain the unit and indirectly, by generating power and thus eliminating the needtodrawpowerfromanalreadydeficitgrid.Suchproject,whichinvolvesenergy efficiency,willcertainlyhavelongtermdirectandindirectsocialbenefits.Theimplementationofthe projectactivitywillbringaboutanincreaseinthebusinessopportunitiesforcontractors,suppliers,and erectorsatdifferentphasesofitsimplementation.Thiswillimprovethelocaleconomicstructureand hence social status of the involved people. The plant is located in a backward area and therefore the projectactivitywillinawayhelptoimprovethestatusofthelocalpopulace. Economic well being: Ecofriendly technological option was adopted moreover the natural gas availabilityislowerthanthedemandinthecountryandsamewasthescenariointhestateofGujarat whichbecomesabarrierforthemanagementintheviewthatiftheindustryisn’tgettingnaturalgasthe whole investment would become futile. Further there is no special benefit or incentives to the entrepreneurforsuchadaptationhencetheadditionalrevenuethroughsaleofcarboncreditwillmakethe projectfeasible.Itwillalsohelpincreatingafewancillaryindustryopportunitiesinthevicinityofthe project.

Environmental well-being: InIndia,amajorshareofthecountry’selectricityisgeneratedfromfossil fuelsourcessuchascoal,diesel,furnaceoiletc.Theproposednaturalgasbasedcogenerationsystem including waste heat recovery project will displace or replace the equivalent quantity of electricity generatedinthegridandfossilfuel.Theprojectwillhelpinsustainabledevelopmentofindustriesinthe regionbysupplyingthemcleanpowerbasedonnaturalgas.Sincethisprojectactivitygeneratesclean power,ithaspositivelycontributedtowardsthereductionin(demand)useoffinitenaturalresourcelike coal/oil, minimizing depletion and in turn increasing its availability to other important purposes. As sulphurcontentinthenaturalgasisverylowandcanbeconsideredtobenilforanypracticalpurpose thereforetheprojectwouldresultineliminatingtheSOxemissionstoaconsiderableextent.Theproject isalsoresultsineliminationofNOx,carbonmonoxideandparticulatematteremissionlevel.Hencethe projectactivityapartfromreducinggreenhousegasemissionswillbecontributingtowardsbetterquality environmentfortheemployeesandthecommunity. Technological well-being: projectactivitywillactasacleantechnologydemonstrationprojecttoencourage thedevelopmentofmodernandmoreefficientcogenerationofelectricityandsteamgenerationusingnatural gas,throughouttheregion. Moreovertheprojectactivityinvolvesafuelswitchalongwithacogeneration unit in the same facility. This is not a ubiquitous practice in thetechnologicalfrontinIndiaanditis certainthatprojectimplementationwouldprovideusefulexperienceencouragingreplicationonalarger scaletherebyleadingtodiversificationofthegenerationsourceswithreducedGHGemissionscompared tothebaseline.

A.3. Project participants : >> Name of Party involved (*) Private and/or public entity(ies) Kindly indicate if ((Host) indicates a host Party) project participants (*) the Party involved (as applicable) wishes to be considered as project participant PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 4

(Yes/No) MinistryofEnvironmentand RaviExportPrivateLimited. No Forest,GovernmentofIndia (PrivateEntity,Projectparticipant) (HostCountry)

A.4. Technical description of the project activity:

A.4.1. Location of the project activity : >> A.4.1.1. Host Party (ies): >>India A.4.1.2. Region/State/Province etc.: >>Gujaratstate A.4.1.3. City/Town/Community etc: >>SuratDistrict,Palsanataluka A.4.1.4. Detail of physical location, including information allowing the unique identification of this project activity (maximum one page): >> TheprojectiscarriedoutatdifferentindustrialfacilitieslocatedintalukaofPalsana,SuratinGujaratAll theunitsarewellconnectedbyroadstoSurat,whichinturnisonthemainDelhiMumbairoadandrail transportation routes. The plants are also ideally located to nearby ports in the Gujarat state. The geographicallocationoftheprojectactivityisasfollows:

Mapshowinglocation ofGujaratinIndia

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 5

Mapshowing theDistrictof Surat

Locationof Projectactivity

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 6

A.4.2. Category(ies) of project activity : >> TheprojectactivitymayapplytothefollowingcategoriesasperthelistofSectoralScopes 1.Energyindustries(renewable–/nonrenewablesources) 4.Manufacturingindustries A.4.3. Technology to be employed by the project activity : >> Cogeneration involves the simultaneous production of useful heat and electricity using a single fuel source.Inacogenerationsystem,afuelisburnttogenerateelectricity,whiletheresidualheatisapplied to meet some thermal demand in the plant. The proposed project involves the installation of a cogenerationsystemthatwouldconsumenaturalgas.Thiscogenerationsystemisbeingsetupseparately intheeachoftheunitsintheclusterandthereforecannotbereferredasa“packagecogeneration.” TheKadodaraPowerIndustrialClusterwillcompriseofnineunitswithatotalcapacityof7.465MW. Thenamesofalltheunitswithintheclusteraregivenbelow: • KadodaraPowerPlant • AakarProcessorsLimited • KrishnaTerinaPrintsPrivateLimited • VenusSilkMillsPrivateLimited • RaviExportPrivateLimited • DurgaProcessorsPrivateLimited • NavnibhiDyeingandPrintingMillsPvt.Ltd • TribeniProcessorsPvtLtd • NiharikaDyeingandPrintingMillsPvt.Ltd Each plantcurrentlypurchaseselectricityfromthe power grid and utilizes lignite to meet the plant’s thermal requirements for their heating applications in their textile processing . The proposed project involves the installation of cogeneration system, which would consume natural gas and produce electricityandheatfortheindustrialprocess. Natural gas is burnt in a pressurized combustion chamber using combustion air supplied by the compressorwhichisintegraltothegasturbine.Hotandpressurizedgasenterstheturbineandisusedto turnaseriesofturbinebladesandtheshaftonwhichtheyaremountedtoproducemechanicalenergy whichisconvertedtoelectricalenergyinsynchronousgenerators,whileresidualenergyintheformof sensibleheatofwastegasesisusedforthepurposeofthermalenergygeneration.Theturbineanddrive equipmentarehousedinaweatherproof,insulatedandsoundattenuatedenclosurewherethesoundlevel ismaintainedatanoptimumlevelbythesteelprofileframeandthickwallconsistingoutersteelsheet with mineral wool packing and perforated inner steel plate. The entire energy of the hot gas is not utilizedingeneratingpower.Withthehelpofawasteheatrecoverysystemthewasteheatiscaptured anditisusedforsteamgenerationforinhouserequirements.Suchaprocesswouldallowfuelsavings withrespecttotheseparateproductionofheatandelectricityindifferentprocesses. A.4.4 Estimated amount of emission reductions over the chosen crediting period : >> PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 7

The total estimated amount of emission reductions based on the forecasted natural gas consumption throughoutthecreditingperiod(10years)fromtheprojectisexpectedtobeasunder: Years Annual estimation of emission reductions [tCO2 e]

2009 63,926 2010 63,926 2011 63,926 2012 63,926 2013 63,926 2014 63,926 2015 63,926 2016 63,926 2017 63,926 2018 63,926 Total estimated reductions (tCO2e) 639,260 Total number of crediting years 10 Annual average over the crediting 63,926 period of estimated reductions (tCO2e) Intheabovetable,theyear2009correspondstotheperiodstartingfrom01.01.2009to31.12.2009. Similarinterpretationshallapplyforremainingyears. A.4.5. Public funding of the project activity : >> Thereisnopublicfundinginvolvedforthedevelopmentoftheprojectactivity. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 8

SECTION B. Application of a baseline and monitoring methodology B.1. Title and reference of the approved baseline and monitoring methodology applied to the project activity : >> Title: Approved baseline methodology, “Natural gas-based package cogeneration” Reference: http://cdm.unfccc.int/methodologies/PAmethodologies/approved.html , AM0014,Version04, EB33. B.2 Justification of the choice of the methodology and why it is applicable to the project activity: >> Theprojectactivitymeetsalltheapplicabilitycriteriaasproposedintheapprovedbaselinemethodology AM0014 version 04 “Natural gas basedpackage cogeneration”. The methodology is applicable to the projectunderthefollowingconditions. Theapplicabilityofthemethodologyisjustifiedasfollows:

Applicability 1 :Thecogenerationsystemisathirdpartycogenerationsystems,i.e.notownoroperated by the consuming facility that receives the project heat and electricity or the cogeneration system is ownedbytheindustrialuser(henceforthreferredtoasselfowned)thatconsumestheprojectheatand electricity; Justification: Each industry in the Kadodara Power Industrial Cluster owns their natural gas based cogenerationsystemandthereforesatisfiesthecriteriaofselfownedprojectfacilitythatconsumesthe electricityandthermalenergyrequiredforitsindustrialprocess. Applicability 2: Thecogenerationsystemprovidesallorapartoftheelectricityandorheatdemandof theconsumingfacility; Justification: Since the owner of the cogeneration system and the user/consumer are same for each industryofthecluster,electricitygeneratedfromtheprojectactivitywillbefulfillingthemajorpartof the electrical demandof the industrialunit. Therefore the project activity satisfies the criteria of the cogenerationsystemthatprovidespartoftheenergydemandoftheconsumingfacility. Applicability 3: No excess electricity is supplied to the power grid and no excess heat from the cogenerationsystemisprovidedtoanotheruser. Justification: Asthecogenerationsystemisdesignedforsupplyingthebaseloadelectricaldemand,it rulesoutthepossibilityofwheelingthepowertotheregionalgrid.Theclosedloopheatrecoverysystem isdesignedtosupplythermalenergytotheindustrialfacilityonlyandhencethereisnopossibilityof supplyingexcessthermalenergytoanyotherindustrialfacility. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 9

Theabovejustificationoftheapplicabilitycriteriaconfirmsthechoiceoftheapprovedmethodologyby theprojectproponent. B.3. Description of the sources and gases included in the project boundary >> Thespatialextentoftheprojectboundaryencompassesalltheanthropogenicemissionsbysourcesof greenhouse gases under the control of the project participants that are significantly and reasonably attributabletotheprojectactivity. Theprojectactivityencompassesthenaturalgasbasedcogenerationsystemwherefromnoexcessheat orelectricityisexportedoutsidetheindustrialfacility.Thenaturalgasbasedcogenerationsystemwillbe meetingthebaseloadelectricaldemandandtheheatdemandintheformofsteam.Thespatialextentof baselinesystemboundaryencompassesimportofpowerfromgridformeetingupofindustrialelectrical demandinthepreprojectscenarioandtheheatdemandsthroughcombustionoflignite. Source Gas Included? Justification / Explanation

CO 2 Yes Mainemissionsourcedueto fuelcombustion. Combustion CH Yes Main emission source due to ofbaseline 4 fuelcombustion. fuel N2O Yes Main emission source due to fuelcombustion.

Baseline Electricity CO 2 Yes Main emission source due to grid electricitygridreplacement replacement fromthe baseline

CO 2 Yes Main emission source due to fuelcombustion.

Combustion CH 4 Yes Main emission source due to ofnewfuel fuelcombustion. Project Project Activity N2O Yes Main emission source due to fuelcombustion. B.4 . Description of how the baseline scenario is identified and description of the identified baseline scenario: >> The scenario below represents the potential alternatives that presented themselves to the project proponent. The continuation of baseline activity was one of them while implementing the proposed projectactivitywasanoption.Inaccordancetotheapprovedbaselinemethodologythedeterminationof baselinescenarioinvolvesconsiderationofalternativestotheproposedproject. Baselinescenario1:Industrialplantcontinuestooperatewithequipmentreplacementasneededwithno changeintheequipmentefficiency

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 10

KadodaraPowerIndustrialClusterwouldcontinuewithitsprevailingpracticeofimportingpowerfrom thegridandutilizingligniteforthepurposeofthermalenergygeneration,thesituationisthecommon andbusinessasusualscenariointhistypeofindustryandalsointhisregionmoreovertheutilizationof ligniteandgridimportisincompliancewithalllegalandstatutorynormsofthestateandcentrallevel apartfromthatthereexistnosuchpolicy,directiveorregulatoryframeworkforcingtheincorporationof thepackagedcogenerationwithintheindustrialfacility.Apartfromtheabovefacttheproposedproject activity exhibited financial unattractiveness due to heavy investment and there exist the risk of the natural gas availability which establishes the fact of continuation of the current practice. This is a considerablealternativebaselinescenario. Baselinescenario2:Industrialplantcontinuestooperatewithimprovedefficiencynewequipmentatthe timeofequipmentreplacementusingalesscarbonintensivefuel.

Theinnovativeandecofriendlytechnologythattheindustrialfacilityhasadoptedisthelateststateofart technology for its industrial energy generation andabove all the equipment functioning for the above purposeareenergyefficientandwillremainoperatingwithintheprojectedmanufacturerlifespan,this rulesoutthepossibilityoftheindustrialfacilitytooperatewithimprovedefficiencythroughadaptation ofnewequipmentatthetimeofequipmentreplacement.Sothisscenarioisnotanalternativebaseline scenario.

Baseline scenario 3: Industrial plant upgrades the thermal energy generating equipment and therefore increasestheefficiencyofboiler(s)immediately.

Theboilerisrunningefficientlyandisinlinewiththeboilerregulationandstandardandthereislittle feasible way out in the present day scenario for upgrading the boiler and thereby improving the efficiencyandsubsequentemissionreduction.Thisruleoutthepossibilityforconsiderationoftheabove alternativeasabaselinescenario

Baseline scenario 4: The heat and or electricity demand of the industrial plant is reduced through improvementsinenduseefficiency.

Thepossibilityofreductioninenergydemandislesswithadoptedmosttechnologicallyupgradedand energy efficient technology in its production process and no such possibilityfor consideration of this alternativeasbaselinescenario.

Baselinescenario5:Installationofacogenerationsystemownedbytheindustrialplant.

This alternative is the projectscenariotakingintoconsiderationtheCDMbenefit.Theadaptationof natural gas based cogeneration system is not prevalent in this type of industry and this region. The incorporationoftheprojectactivityincurshighcapitalinvestmentmoreovertheindustrialfacilityhasto faceseriousfinancialproblemduetothefluctuatingandsoaringgasprice.Managementandoperationof thetechnologyrequireshighleveloftrainingincorporatingconsiderableamountofcost.Thealternative beingtheprojectactivitycannotbeconsideredasthebaselinescenario.

Baselinescenario6:Installationofapackagecogenerationsystemownedbyacompanyotherthanthe industrialplant.

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 11

Yettheconceptoflocalizedandcaptivecogenerationsystemisnotacommonpracticeinourcountry and the package of cogeneration system owned by a company other than the industrial plant is not prevalentinIndiaorinthestate.Thereforeconsiderationofthealternativeasthebaselinescenarioisnot feasible.

Baselinescenario7: Installationofacogenerationsystembyathirdparty. Yettheconceptof cogenerationsystembyathirdpartycogenerationsystems,i.e.notownoroperatedbythe consuming facility that receives the project heat and electricity isnotacommoninIndiaorinthestate. Thereforeconsiderationofthealternativeasthebaselinescenarioisnotfeasible. B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality): >> As per AM0014 version 04 (Approved baseline methodology) the project activity should posses an alternatebaselinescenariofromamongthesevenlikelyalternativebaselinescenarioasdescribedinthe methodology.Thebestsuitedalternatebaselinescenariofortheprojectactivityis:Baselinescenario1 “Industrial plant continues to operate with equipment replacement as needed with no change in the equipmentefficiency”. AsperAM0014version04toprovetheprojectisadditional,fouradditionalitytestsareapplied.The firsttwotestsareapplicabletoanycogenerationownershipscenario.Thethirdtestisspecifictopackage cogenerationcasewherethecogenerationsystemisownedbyapartyotherthantheindustryusingthe heatandelectricityfromthesystem.Thefourthtestisspecifictothepackagecogenerationcaseforself ownedcogenerationsystem.Incaseofselfownedcogenerationprojectactivitiestheprojectactivityis additionaliftheentirefouradditionalitytestresultintheprojectbeingassessedasadditional. 1. Are there technological barriers to cogeneration in the country? Additionalitytest1isappliedbyfollowingtheflowchartbelow.Alowmarketshareofcogeneration meansthatthereisinsufficientinfrastructuretosupportinstallationandmaintenanceofsuchsystems, actingasatechnologicalbarriertoprojectparticipants.

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 12

TheapplicationofnaturalgasbasedpackagedcogenerationsysteminKadodaraPowerIndustrialCluster is not prevalent practice in similar industry in this part of the region. The low market share of cogeneration systems compared to the existing power generation capacity, and, the gap between harnessedandpotentialcapacitiesstronglysuggesttheinsufficientinfrastructuretosupportinstallation andmaintenanceofthesystemactingasatechnologicalbarriertotheprojectparticipant Does the country have a study quantifying its economic cogeneration potential? Thegovernmenthassetatargetof15,000MW 1powercogenerationincoreindustries.Theindustries likesugar,fertilisers,distilleries,paperandpulp,ricemillshavethepotentialtoproduce15,000MW throughcogenerationwhileindustrialandurbanwastescouldgenerateabout2,700MWwhichwould increaseto7000MWby2017. Has 10% of the economic potential been reached? Ason31.03.2007asperMNESstudyonpotentialachievements,thecumulativepotentialachievedin powercogenerationis615.83MW 2,whichislessthen5%.Hencetheabovefactsandfiguressuggestthe institutionalbarriersfacedbytheindustryinadaptationofsuchtechnologicalbarriers. 2. A Institutional barrier: Are there institutional barriers to cogeneration in general? Additionalitytest2Aisappliedbyfollowingtheflowchartbelow.

Does the cogenerator receive preferential tariffs, financing and/or fiscal benefits compared to other generator? Since the proposed project activity is natural gas based cogeneration system, it does not receive any preferential tariffs or fiscal benefits compared to other co generators like bagasse based. Indian 1http://www.terienvis.nic.in/news2006.htm 2http://mnes.nic.in/ach1.htm PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 13

Renewable Energy Development Agency (IREDA) – the apexfinancialinstituteforrenewableenergy promotioninIndiaprovidessoftloanstobagassebasedcogenerationsystembutsincethecogeneration project at the industrial facility is a fossil fuel (natural gas) based system it is disadvantaged from acceptanceoffinancialbenefitcomparedtootherelectricitygenerationsystemfromrenewablesource. Thisweakensthefinancialviabilityofcogenerationinvestment. Theindustriesaretextilemanufacturersandarethereforecontinuouslyoperatingonesandwouldmeet their power and heat requirements by installing a natural gas based cogeneration. Hence any power interruptionwouldcauseheavylosstothem.Whencogenerationsystemisnotoperatingduetoregular shutdownitwillbeahugetechnicalproblemfortheindustries,henceprojectactivityfacesinstitutional barrier. Procurementofgasprocurementisafinancialbarrierandholdupfortheindustrialfacility.Thereishuge disparityinthedemandsupplyscenarioofnaturalgasinthispartofthecountrymoreoverthegaspriceis very much fluctuating 3 and elevating resulting in the project to be commercially nonviabile without additional CDM revenues. Hence revenue generated from the CDM activities would substantiate the viabilityoftheproject. Does the co-generator face economic penalties that are more onerous than those faced by other generators when they are down and is this unjustified on a purely economic basis? KadodarPowerIndustrialClusterpriortotheprojectactivityusedtoimportpowerfromthegridand generatethermalenergythroughlignitebutastheindustryisaprocessindustry,interruptionofpower supplywouldresultinhugelosses.Hencetheprojectactivityfacesinstitutionalbarriers. 2. B. Institutional barrier for ESCOs: Are there institutional barriers to the “package cogeneration” operational context? In other words, is there enough experience in which one company installs a cogeneration system at the location of a separate energy user? For an industrial user with continuous process the common practice is to meet their electricity and naturalgasdemandfromgridelectricityandcaptivesteamgeneration.Inthiscogenerationsystemthe projectproponentwhoownstheindustrialfacilityinvestsinandinstallsthecogenerationsystematthe plant site and provides internal electricity and heat demand. This institutional arrangement requires industrial facility to have special management resources and organizational capacity. Where such experienceislacking,promotingthenewarrangementinvolvesasignificantinstitutionalbarrier. Additionalitytest2Bisappliedbyfollowingtheflowchartbelow.

3http://www.gail.nic.in/gailnewsite/mediacenter/mediacenter_pressrelease17.html PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 14

Have energy service companies (ESCOs) installed package cogeneration system at energy user location TheESCOmodelisstillatapreliminarystateinIndiatheconceptisjustcomingupandthereisfew institutionthataremobilisingtheprocess.ESCOshavenotinstalledafacilityofthissortinsimilartype industry.Thisestablishestheprojectadditionalityintermsofinstitutionalbarrier. 2. C. Institutional barriers for Industrial Users: Arethereinstitutionalbarrierstothe’packagecogeneration’operationalcontext?Inotherwordsisthere enoughexperienceinwhichanindustrialusercaninstallandoperateacogenerationsystematit’splant premises? EachindustrialuserofKadodaraPowerIndustrialClusterinstallsandoperatesthecogenerationsystem for use at its own site. This arrangement requires the industrial user to have specific expertise and knowledgeofcogenerationsystems.Wheresuchexperienceislacking,promotingthenewarrangement involvesasignificantinstitutionalbarrier. Additionalitytest2Cisappliedbythefollowingflowchartbelow:

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 15

Have industrial energy users installed packaged cogeneration systems at their site location or at any of their associated companies (mother, sister, daughter) in the same country? Theindustrialfacilityhasnopriorexperienceofhandlingofnaturalgasbasedpackagedcogenerationat anyoftheirindustrialsitesnorinanyoftheirassociatedcompanies.Thisdemonstratestheinstitutional barriertothepackagedcogenerationsystem. Thoughtheprojectactivityhasmanybarriers,KadodaraPowerIndustrialClusterhaveundertakenthe projectasthereisanopportunitytoselltheCO2emissionreductionsandgetscarbonrevenuethrough CleanDevelopmentMechanism(CDM)streamfortheprojectactivity,whichwouldmitigatetherisks associated with project activity. Hence the project is additional and anthropogenic emissions of greenhousegaseswouldhavebeenmoreintheabsenceoftheprojectactivity. B.6. Emission reductions: B.6.1. Explanation of methodological choices: >> Project emissions:

The project activity encompasses the installation of a cogeneration system whose input is naturalgas from the gas pipeline, andwhose outputs are electricity and heat suppliedtoanindustry.Theproject activityavoidsconsumptionofligniteforheatgenerationanddisplaceselectricityfromthegrid. Project emissions correspond to natural gas combustion by the cogeneration system, and includes the fourcomponentsasinthebaseline(CO2,CH4andN2Oemissionsfromcombustion)andCH4emissions fromnaturalgasproductionandleaksinthetransportanddistributionpipelinesupplyingtheplantand leaksinthegasdistributionpipingwithintheplant,associatedwiththenaturalgasconsumption. Emissionsarethencalculatedasfollows:

a) CO2 emissions from natural gas combustion in cogeneration system

Carbondioxideemissionsfromnaturalgascombustioninthecogenerationsystem,ECS (tonneCO 2/year): 3 ECS (tonneCO2/year) = AEC NG *EF NG /10 Where AEC NG =annualenergyconsumptionofnaturalgasincogenerationsystem(GJ/year),and EF NG =CO 2 emissionfactorofnaturalgas(kgCO 2/GJ,lowerheatingvaluebasis) b) CH4 emissions from natural gas combustion in cogeneration system Methaneemissionsfromnaturalgascombustioninthecogenerationsystem,Emetcomb (tonneCH4/year), aregivenby: 6 Emetcomb (tonneCH4/year)=AEC NG *MEF/10 WhereAEC NG =annualenergyconsumptionofnaturalgasinthecogenerationsystem(GJ/year),and MEF=methaneemissionfactorfornaturalgascombustion PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 16

Inunitsofcarbondioxideequivalentemissions,Eequivmetcomb (tonneCO2equiv/year) Eequivmetcomb (tonneCO2equiv/year)=Emetcomb *GWP(CH4) whereGWP(CH4)=globalwarmingpotentialofmethane=21 c) Nitrous oxide emissions from natural gas combustion in cogeneration system Nitrous oxide emissions from natural gas combustion in the cogeneration system, EN2O comb (tonne N2O/year),aregivenby: 6 EN2Ocomb (tonneN2O/year)=AEC NG *NEF/10 WhereAEC NG =annualenergyconsumptionofnaturalgasinthecogenerationsystem(GJ/year),and NEF=nitrousoxideemissionfactorfornaturalgascombustion(kgN2O/TJ,lowerheatingvaluebasis) Inunitsofcarbondioxideequivalentemissions,EequivN2Ocomb (tonneN2O/year)=EN2Ocomb *GWP(N2O) WhereGWP(N2O)=globalwarmingpotentialofnitrousoxide=310

d) Methane emissions from natural gas production and pipeline leaks in the transport and distribution of natural gas, including leakage within the industrial plant

Methaneemissionsfromnaturalgasproductionandleakageintransportanddistribution,corresponding tofuelusedincogenerationsystem,E fug (tonneCH4/year),aregivenby: 3 Efug (tonneCH4/year)=AEC NG *MLR/10 WhereAEC NG isdefinedasbefore,and MLR = methane leakage rate in natural gas production, transport and distribution leakage, including leaksattheindustrialsite(kgCH4/GJnaturalgasenergyconsumption,lowerheatingvaluebasis). Convertmethaneemissionstocarbondioxideequivalentemissions,E equivfug (tonneCO2equiv/year) E equivfug (tonneCO2equiv/year)=Efug *GWP(CH4) WhereGWP(CH4)=isdefinedasbefore=21

Total project emissions are given by the sum of the components analysed above:

Etotal = E CS + E equiv met comb + E equiv N2O comb + E equiv fug Baseline Emissions: Baselineemissionsarethoseemissionsthatare associatedwiththeproductionofheatandelectricitythat areoffsetbytheoutputofthecogenerationsystem.Baselineemissionscomprisefivecomponents:

a) CO2 from combustion. CO2emissionscorrespondingtothecombustionofabaselinefuelthat wouldhavebeenusedifthecogenerationsystemdidnotprovide heat totheplant. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 17

b) CH4 from combustion. CH4emissionscorrespondingtothecombustionofabaselinefuelthat wouldhavebeenusedifthecogenerationsystemdidnotprovide heat totheplant. c) N2O from combustion. N2Oemissionscorrespondingtothecombustionofabaselinefuelthat wouldhavebeenusedifthecogenerationsystemdidnotprovide heat totheplant. d) CH4 leaks during production of the baseline fuel. If the baseline fuel is natural gas, CH4 emissions from natural gas production and leaks in the transport and distribution pipeline supplyingtheplantandleaksinthegasdistributionpipingwithintheplant,associatedwiththe natural gas consumption identified in item (a) above. For other types of fuel, the baseline emissionsassociatedwithproductionandtransportationareassumedzeroforsimplificationand conservatism. e) CO2 from electricity generation. CO2emissionsassociatedwiththeelectricitythatwouldhave tobepurchasedfromthepowergridifthecogenerationsystemdidnotprovideelectricitytothe plant.

The baseline emissions for the first four items are proportional to the amount of baseline fuel consumptionintheplantthatisoffsetbyheatsuppliedbythenaturalgascogenerationsystem.Eachcan berepresentedastheproductofanemissionsfactorandanenergyconsumption,whichdependsonthe heatoutputofthecogenerationsystem. Theconsumptionofthefuelavoidedinthebaselineforthesupplyofheatisdeterminedasfollows:

Annualenergyconsumptionforheatsupplyatbaselineplant,ABEC BF (GJ/year): ABEC BF (GJ/year)=CAHO/eb WhereCAHO=annualheatoutputfromcogenerationsystem(GJ/year),and eb=industrialboilerefficiency(fraction,lowerheatingvaluebasis).

Theannualheatoutputfromthecogenerationsystem(CAHO)isestimatedonthebasisoftheheatoutput rate of the cogeneration system ( CHOR ) and an estimate of annual operating hours ( AOH ) of the cogenerationsystem.Theformulaisdescribedbelow:

Annualbaselineenergyconsumptionforheatsupply,ABEC BF (GJ/year): ABEC BF (GJ/year)=CHOR*AOH/e b Where; CHOR=cogenerationsystemheatoutputrate(GJ/h), AOH=Annualoperatinghours(h/year),and eb=boilerefficiency(fraction,lowerheatingvaluebasis) Inordertobeconservative,ahighvalueofebischosen.Themethodologyproposesadefaultvalueof 0.90 ThevalueofCHORmaybedeterminedfromthespecificationsofthecogenerationsystem.Avalueof AOHshouldbedeterminedfromanengineeringstudyoftheproposedcogenerationsystem.Oncethe boilerenergyconsumptionhasbeenquantified,thefourGHGemissionscomponents(atod,above)can bedetermined,asindicatedbelow. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 18

a) Baseline CO 2 emissions from combustion of baseline fuel for heat supply

BaselineCO2emissionsfromcombustionofbaselinefuelforheatsupply,BE th (tonnesCO2/year): BE th (tonnesCO2/year)=ABEC BF *EF BF Where: ABEC BF =annualenergyconsumptionforheatsupplyatbaselineplant(GJ/year),and EF BF =CO2emissionfactorofthefuelusedtogenerateheat(tCO2/GJ) AvalueofEF BF needstobeestimatedfromthefollowingdatasources.Thenumbersindicateahierarchy indatatobeused,with#1beingthebest.If#1dataarenotavailable,#2datashouldbechosen.Ifthese arenotavailable,#3datashouldbechosen. 1.NationalGHGinventory 2.IPCC,fueltypeandtechnologyspecific 3.IPCC,nearfueltypeandtechnology b) Baseline methane emissions from combustion of baseline fuel for heat supply to plant Baseline methane emissions from combustion of baseline fuel for heat supply, BEmet comb (tonne CH4/year): 6 BEmetcomb (tonneCH4/year)=ABEC BF *MEF BF /10 Where ABEC BF =annualbaselineenergyconsumptionforheatsupply(GJ/year),and MEF BF =methaneemissionfactorforbaselinefuelcombustion(kgCH4/TJ),lowerheatingvaluebasis) Inunitsofcarbondioxideequivalent,BEequivmetcomb (tonneCO2eq/year) BE equivmetcomb (tonneCO2−equiv/year)=BE metcomb * GWP(CH4) whereGWP(CH4)=globalwarmingpotentialofmethane=21 The value of MEF needs to be estimated from the following data sources. The numbers indicate a hierarchy in data to be used, with #1 being the best.If#1dataarenotavailable,#2datashouldbe chosen. 1.IPCC,fueltypeandtechnologyspecific 2.IPCC,nearfueltypeandtechnology c) Baseline nitrous oxide emissions from combustion of baseline fuel for heat supply to plant Baselinenitrousoxideemissionsfromcombustionofbaselinefuelforheatsupply,BE N2Ocomb (tonne N2O/year): 6 BE N2Ocomb (tonneN2O/year)=ABEC BF *NEF BF /10 Where ABEC BF =annualbaselineenergyconsumptionforheatsupply(GJ/year),and NEF BF =nitrousoxideemissionfactorforfuelcombustion(kgN2O/TJ,lowerheatingvaluebasis) PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 19

Inunitsofcarbondioxideequivalent,BE equivN2Ocomb (tonneCO2equiv/year) BE equivN2Ocomb (tonneCO2equiv/year)=BE N2Ocomb * GWP(N2O) Where GWP(N2O)=globalwarmingpotentialofnitrousoxide=310 ThevalueofNEFneedstobeestimatedthefollowingdatasources.Thenumbersindicateahierarchyin datatobeused,with#1beingthebest.If#1dataarenotavailable,#2datashouldbechosen. 1.IPCC,fueltypeandtechnologyspecific 2.IPCC,nearfueltypeandtechnology d) Baseline methane emissions from natural gas production and pipeline leaks in the transport and distribution Thissectionisapplicableonlyforprojectsthatdisplacenaturalgasinthebaselineforheatgeneration. Forbaselinefuelotherthannaturalgas,BE th_fug isassumedzeroforsimplificationandtobeconservative. The value of MLR needs to be estimated from the following data sources. The numbers indicate a hierarchy in data to be used, with #1 being the best.If#1dataarenotavailable,#2datashouldbe chosen. 1.Nationalestimates(ifavailable) 2.IPCCestimatesoffugitiveemissionsfromoilandnaturalgasactivities. Baseline methane emissions from natural gas production and leakage in transport and distribution, correspondingtoheatsupply,BE th_fug (tonneCH4/year): 3 BE th_fug (tonneCH4/year)=ABEC NG *MLR/10 Where MLR = methane leakage rate in natural gas production, transport and distribution leakage, including leaksattheindustrialsite(kgCH4/GJnaturalgasenergyconsumption,lowerheatingvaluebasis). ABEC NG =annualbaselinenaturalgasenergyconsumptionforheatsupply(GJ/year) Inunitsofcarbondioxideequivalentemissions,BEthequivfug (tonneCO2equiv/year): BE thequivfug (tonneCO2equiv/year)=BE thfug * GWP(CH4) whereGWP(CH4)isdefinedasbefore=21 e) Baseline emissions of CO2 from electricity supply to industrial plant, which is offset by electricity supplied from cogeneration system ThefinalitemofGHGemissionsinthebaselinearisesfromelectricity,correspondingtotheemissions avoidedatthepowerplantssupplyingthepublicgrid,Therelevantformulaisdescribedbelow: Baselinecarbondioxideemissionsforelectricitysupplied,BE elec (tonneCO2/year): 3 BE elec (tonneCO2/year)=BEF elec *CEO/10 Where CEO=cogenerationelectricityoutput(MWh/year),and BEF elec =baselineCO2emissionsfactorforelectricityfrompublicsupply(kgCO2/MWh) PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 20

Theactualbaselineemissionsaredeterminedbymonitoringcogenerationelectricityoutput(CEO)and calculatingBE elec .ForanaprioriestimationofthebaselineCO2emissionsforelectricitysupplytothe plant,CEOisdeterminedbythecogenerationelectricpoweroutput(CPO)andannualoperatinghours (AOH),inamannersimilartoEquationforheatoutput,andisdescribedbelow. Annualelectricitygenerationfromthecogenerationsystem,CEO(MWh/year): CEO(MWh/year)=CPO*AOH whereCPO=cogenerationsystemnetpoweroutputcapacity(MWe),and AOH=annualoperatinghoursofcogenerationsystem(h/year) Total baseline emissions are given by the sum of the components analyzed above:

BE total = BE th + BE equiv met comb + BE equiv N2O comb + BE th equiv fug + BE elec Emission Reductions Emissionreductionsarecalculatedasthedifferencebetweenbaselineandprojectemissions,takinginto accountanyadjustmentsforleakage. B.6.2. Data and parameters that are available at validation: (Copy this table for each data and parameter)

Data / Parameter: EF NG Dataunit: kgCO 2/GJ Description: CO 2 emissionfactorofnaturalgas Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 56.1 Justificationofthe This data is used to estimate the emissions of Carbon di oxide from the choiceofdataor combustionofnaturalgasinthecogenerationsystem. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

Data / Parameter: MEF Dataunit: kgCH4/TJ Description: Methaneemissionfactorfornaturalgascombustion Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 1 Justificationofthe Thisdataisusedtoestimatetheemissionsofmethanefromthecombustionof choiceofdataor naturalgasinthecogenerationsystem. descriptionof StandardvaluerecommendedbyUNFCCC measurementmethods andprocedures actuallyapplied: Anycomment:

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 21

Data / Parameter: GWP (CH4) Dataunit: Description: GlobalWarmingPotentialofmethane Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 21 Justificationofthe GlobalWarmingPotentialofmethaneisusedtocalculatetheequivalent choiceofdataor CO2emissions. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

Data / Parameter: NEF Dataunit: kgN2O/TJ Description: Nitrousoxideemissionfactorfornaturalgascombustion Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 0.1 Justificationofthe Thisdataisusedtoestimatetheemissionsofnitrousoxidefromthe choiceofdataor combustionofnaturalgasinthecogenerationsystem. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

Data / Parameter: GWP (N2O) Dataunit: Description: GlobalWarmingPotentialofNitrousoxide Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 310 Justificationofthe Global Warming Potential of Nitrous oxide is used to calculate the choiceofdataor equivalentCO2emissions. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

Data / Parameter: MLR Dataunit: KgCH4/GJ Description: Leakageofnaturalgasfromproduction,transportation,distribution Sourceofdataused: IPCC:1996revisedguidelinesRef.Manualvol3energypage1.131table 1.64oftherestoftheworld Valueapplied: 0.3 Justificationofthe StandardvaluerecommendedbyUNFCCC PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 22

choiceofdataor descriptionof measurementmethods andprocedures actuallyapplied: Anycomment:

Data / Parameter: EF BF Dataunit: kgCO 2/GJ Description: CO 2 emissionfactorofbaselinefuel(Lignite) Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 101 Justificationofthe ThisdataisusedtoestimatethebaselineemissionsofCarbondioxidefromthe choiceofdataor combustionofbaselinefuelinthecogenerationsystem. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

Data / Parameter: MEF BF Dataunit: kgCH4/TJ Description: Methaneemissionfactorforbaselinefuelcombustion(Lignite) Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 1 Justificationofthe Thisdataisusedtoestimatetheemissionsofmethanefromthecombustionof choiceofdataor baselinefuelinthecogenerationsystem. descriptionof StandardvaluerecommendedbyUNFCCC measurementmethods andprocedures actuallyapplied: Anycomment:

Data / Parameter: NEF BF Dataunit: kgN2O/TJ Description: Nitrousoxideemissionfactorforbaselinefuelcombustion Sourceofdataused: 2006IPCCGuidelinesforNationalGreenhouseGasInventories Valueapplied: 1.5 Justificationofthe Thisdataisusedtoestimatetheemissionsofnitrousoxidefromthe choiceofdataor combustionofbaselinefuelinthecogenerationsystem. descriptionof measurementmethods StandardvaluerecommendedbyUNFCCC andprocedures actuallyapplied: Anycomment:

PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 23

Data / Parameter: BEF elec Dataunit: tCO 2e/GWh Description: Baseline Emission Factor Sourceofdataused: CO2BaselineDatabase(CEA) Valueapplied: 831.39 Justificationofthe CEACO2baselinedatabaseisusedforestimatedthebaselineemissionsfrom choiceofdataor avoidingthegridelectricityreplacement.Thevalueisstandardvaluepublished descriptionof byCentralElectricityAuthority. measurementmethods andprocedures actuallyapplied: Anycomment:

B.6.3 Ex-ante calculation of emission reductions: >> Calculation of Project emissions:

a) CO2 emissions from natural gas combustion in cogeneration system (E CS )

AEC NG(GJ/yr) EF NG(kgCO2/GJ) ECS(tCO2/yr) 77656.86167 56.1 4356.549939

b) CH4 emissions from natural gas combustion in cogeneration system(E equiv met comb )

AEC NG(GJ/yr) MEF (kgCH4/TJ) Emetcomb Eequivmetcomb(tCO2e/yr) 77656.86167 1 0.077656862 1.630794095

c) Nitrous oxide emissions from natural gas combustion in cogeneration system (E equiv N2O comb )

AEC NG(GJ/yr) NEF(kgN2O/TJ) EN2Ocomb EequivN2Ocomb(tCO2e/yr) 77656.86167 0.1 0.007765686 2.407362712

d) Methane emissions from natural gas production and pipeline leaks in the transport and distribution of natural gas, including leakage within the industrial plant (E equiv fug )

AEC NG(GJ/yr) MLR(kgCH4/GJ) Efug E equivfug(tCO2e/yr) 77656.86167 0.3 23.2970585 489.2382285

Total project emissions are given by the sum of the components analysed above:

Etotal = E CS + E equiv met comb + E equiv N2O comb + E equiv fug = 4,850 tCO2e/yr

Calculation of Baseline Emissions: Annualenergyconsumptionforheatsupplyatbaselineplant,ABEC BF (GJ/year): PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 24

CHOR(GJ/yr) AOH(hrs/yr) eb ABEC BF (GJ/year) 26.874 7920 0.9 236491.2 a) Baseline CO 2 emissions from combustion of baseline fuel for heat supply ( BE th )

ABEC BF(GJ/yr) EF BF(kgCO2/GJ) BEth (tCO2/yr) 236491.2 101.2 23932.90944 b) Baseline methane emissions from combustion of baseline fuel for heat supply to plant ( BE equiv met comb )

ABEC BF(GJ/yr) MEF BF(kgCH4/TJ) Emetcomb Eequivmetcomb(tCO2e/yr) 236491.2 1 0.2364912 4.9663152 c) Baseline nitrous oxide emissions from combustion of baseline fuel for heat supply to plant (BE equiv N2O comb )

ABEC BF(GJ/yr) NEF BF (kgN2O/TJ) EN2Ocomb EequivN2Ocomb(tCO2e/yr) 236491.2 1.5 0.3547368 109.968408 d) Baseline methane emissions from natural gas production and pipeline leaks in the transport and distribution (BE th equiv fug )

ABEC ng(GJ/yr) MLR(kgCH4/GJ) Efug E equivfug(tCO2e/yr) 77656.86167 0.3 23.2970585 489.2382285 e) Baseline emissions of CO2 from electricity supply to industrial plant, which is offset by electricity supplied from cogeneration system (BE elec )

BEF elec(kgCO2/MWh) CEO(MWh/yr) BE elec (tCO2e/yr) 831.39 53210.52 44238.69422 Total baseline emissions are given by the sum of the components analyzed above:

BE total = BE th + BE equiv met comb + BE equiv N2O comb + BE th equiv fug + BE elec = 68,776 tCO2e/yr Emission Reductions Emissionreductionsarecalculatedasthedifferencebetweenbaselineandprojectemissions,takinginto accountanyadjustmentsforleakage.

B.6.4 Summary of the ex-ante estimation of emission reductions: >> Year Estimation of Estimation of Estimation of project activity baseline overall emissions emissions emissions reductions PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 25

(tCO2e) (tCO 2e) (tCO2e)

2009 4,850 68,776 63,926 2010 4,850 68,776 63,926 2011 4,850 68,776 63,926 2012 4,850 68,776 63,926 2013 4,850 68,776 63,926 2014 4,850 68,776 63,926 2015 4,850 68,776 63,926 2016 4,850 68,776 63,926 2017 4,850 68,776 63,926 2018 4,850 68,776 63,926

Intheabovetable,theyear2009correspondstotheperiodstartingfrom01.01.2009to31.12.2009. Similarinterpretationshallapplyforremainingyears.

B.7 Application of the monitoring methodology and description of the monitoring plan: B.7.1 Data and parameters monitored: (Copy this table for each data and parameter)

Data / Parameter: QNG Dataunit: M3 Description: Thevolumeofthegasconsumedbytheindustrialfacilityduringthecrediting period.Theabovedatawillbeessentialforestimatingoftheprojectemission therebytheemissionreduction. Sourceofdatatobe Naturalgasconsumptionintheindustrialunitismeasuredbyflowmeterpresent used: inthecogenerationunitwhichisalsodepictedfromthegasinvoicepresentwith theindustrialfacility. Valueofdataapplied Theamountofnaturalgastobeconsumedbytheindustrialfacilityinayearwill forthepurposeof beintherangeof4272788metrecubeofgasannually calculatingexpected emissionreductionsin sectionB.5 Descriptionof Thevolumeofnaturalgasconsumedbythecogenerationunitwillbemeasured measurementmethods bytheflowmeterpresentinthecogenerationunit.Themeterwillbecalibrated andprocedurestobe asperthemanufacturerspecificationandrequirementfeltonthepartofthegas applied: distributioncompany. QA/QCproceduresto Qualitycontrolandqualityassuranceproceduresareplannedformonitoringof beapplied: theprojectrelateddataasthedatawillbeusedasasupportingdocumentationto calculateemissionreductionbytheprojectactivity.Moreovertheconsumption ofnaturalgasasdepictedinthemetercanalsobecrosscheckedwithnaturalgas purchaseinvoice. Anycomment: The data measured will be periodically (monthly) archived both in paper and electronic spreadsheet whereby the paper documentation will be kept with the industrialfacilityfortheperiodofoneyearandtheelectronicdatawillbekept PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 26

foraperiodofCreditingperiod+2years

Data / Parameter: CEO Dataunit: MWh Description: The electrical energy obtained from the cogeneration unit is required for estimationofthenetelectricitygeneratedwhichinturnisrequiredforestimation ofbaselineemissionfromthegridintheabsenceoftheprojectactivity. Sourceofdatatobe The data will be obtained from the project developer. The amount of the used: electricity generated is reflected from the energy meter present with the cogenerationunit. Valueofdataapplied Itisexpectedthatthecogenerationfacilitywillbegenerating53,210MWhof forthepurposeof electricalenergyeveryyear calculatingexpected emissionreductionsin sectionB.5 Descriptionof The electricity generated by the cogeneration unit will be measured through measurementmethods appropriateenergymeteringsystempresentwiththecogenerationunit. andprocedurestobe applied: QA/QCproceduresto Qualitycontrolandqualityassuranceproceduresareplannedformonitoringof beapplied: theprojectrelateddataasthedatawillbeusedasasupportingdocumentationto calculateemissionreductionbytheprojectactivity. Anycomment: The data measured will be periodically (monthly) archived both in paper and electronic spreadsheet whereby the paper documentation will be kept with the industrialfacilityfortheperiodofoneyearandtheelectronicdatawillbekept foraperiodofCreditingperiod+2years

Data / Parameter: Heatproduction Dataunit: GJ Description: The industrial facility will be installing appropriate metering system for measurementofthesteamgeneratedformtheprojectactivity.Themeterwillbe calibratedasperthemanufacturerspecification. Sourceofdatatobe Plant used: Valueofdataapplied forthepurposeof calculatingexpected emissionreductionsin sectionB.5 Descriptionof Fromthesteamflowmetertheamountofheatproducedisnotedandthedata measurementmethods will be recorded continuously (along with steampressureandtemperatureand andprocedurestobe feedwatertemperature). applied: QA/QCproceduresto Qualitycontrolandqualityassuranceproceduresareplannedformonitoringof beapplied: theprojectrelateddataasthedatawillbeusedasasupportingdocumentationto calculateemissionreductionbytheprojectactivity. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 27

Anycomment: The data measured will be periodically (monthly) archived both in paper and electronic spreadsheet whereby the paper documentation will be kept with the industrialfacilityfortheperiodofoneyearandtheelectronicdatawillbekept foraperiodofCreditingperiod+2years.

B.7.2 Description of the monitoring plan: >> Each of the nine industrial facilities has a representative person responsible for documenting the monitoreddata.RaviExportPrivateLimited—asabundlingagent—alsohasapersonresponsiblefor the CDM project activity, who is responsible to collect all the information thatwillbe enteredin a database, and to carry out internal audits of the industries in order to guarantee the quality of the registries,priortoVerificationbytheOperationalEntity. In theCDM team, a special group ofoperatorswillbeformedwhowillbeassignedresponsibilityof monitoringofdifferentparametersandrecordkeepingasperthemonitoringplan(ReferAnnex4).Ona daily basis, the monitoring reports will be checked and discussed by the senior CDM team members/managers. In case of any irregularity observed by any of the CDM team members, the concerned person will be informed for necessary action. On a weekly basis, these reports will be forwardedtothemanagement. The monitoring methodology involves monitoring of the following data for estimation of emission reductioncalculation: •Thenaturalgasconsumptionatthecogenerationsystem •Heatproductionatthecogenerationsystem •Electricityproductionatthecogenerationsystem Inordertoverifydataquality,theindustrieswillworkinaccordancewithQualityAssuranceSystem, whichintendstoorganizetheinformationthroughdatacodificationandinternalaudits.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies) >> Date of completion of baseline study: 01/01/08 Person/ entity determining the baseline: RaviExportPrivateLimited. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 28

SECTION C. Duration of the project activity / crediting period

C.1 Duration of the project activity :

C.1.1. Starting date of the project activity : >> 02/10/2005 C.1.2. Expected operational lifetime of the project activity: >> 25y0m C.2 Choice of the crediting period and related information:

C.2.1. Renewable crediting period

C.2.1.1. Starting date of the first crediting period : >> NotApplicable C.2.1.2. Length of the first crediting period : >> NotApplicable C.2.2. Fixed crediting period : C.2.2.1. Starting date: >> 01/01/2009(orstartsonthedateofregistration) C.2.2.2. Length: >> 10y0m PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 29

SECTION D. Environmental impacts >> D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts: >> The Environmental Impact Assessment is not required by the Environmental Impact Assessment notificationunderEnvironmentProtectionAct1986(GovernmentofIndia)andhencenotconductedas per the requirement of guidelines there under. This assessment is conducted by Kadodara Industrial Cluster,asavoluntaryinitiativetounderstandtheimpactsandmitigateanyadditionalimpactsthatmay ariseduetotheproposedprojectactivity. Theinstallationofnaturalgasbasedcogenerationsystemattheindustrialfacilityhasbeendonekeeping inconsiderationofalltheenvironmentalnormsofthecountry.Thecogenerationsystemutilizingnatural gasreplacesligniteforthermalenergygenerationandpowerimportfromgridwithhighercarbonand sulphurcontent. Air pollution mitigation • NaturalgascontainingnegligibleamountofsulphurwillreducethelevelofSOxpollutionto a considerable extent which was emitted in the pre project scenario from burning of the lignite/carbonintensivegridforelectricitygeneration. • The manufacturer also provide guarantee on the emission level from the gas turbine w.r.t NOxemissionandCOemissions • Theprojectactivitywillalsoresultinmitigationofemissionofsuspendedparticulatematter. • Theprojectactivitywillalsoreducetheeffectofthermalpollutionowingtoefficientwaste heatrecoverymodule.

Noise pollution mitigation Thetotalnoiselevelwouldbebelow85dBAastheturbineanditsaccessoriesareenclosedwithina soundattenuatedstructuremadeupofsteelandmineralwool. To keep the noise level much lower than that could be attained through the turbo generator set the industrialfacilityhaveconstructedhighandthickwalltoreducethenoiselevelfromtheprojectactivity below70dBA Water Pollution mitigation The industrial facility haveadopted measures that result in zero blow down for the steam generating boilerandiswithinthepermissiblelimitofwastewaterdisposalregulationofthestatepollutioncontrol board.

Contribution towards Social Environment The company has created employment opportunities for local people. Moreover the project itselfhas resultedinanemploymentgenerationformorethanthirtypersonals.Sinceitsinception,ithasenhanced theindustrialactivitiesofthecityandencouragedsettingupofmanymoreindustriesintheregionthus drivingeconomicgrowthinthisregion. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 30

D.2. If environmental impacts are considered significant by the project participants or the host Party , please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the host Party : >> TheStatePollutionControlBoarddoesnotrecommendanyenvironmentalimpactassessmentforthis activity.TheindustrialfacilitiesthusappliedtotheStatePollutionControlBoardandhavebeengivena goaheadwithNoObjectionCertificatefortheprojectactivity. SECTION E. Stakeholders’ comments >> E.1. Brief description how comments by local stakeholders have been invited and compiled: >> Thestakeholdersidentifiedforthepresentprojectareasunder: VillagePanchayat(localstakeholderreview) GujaratPollutionControlBoard GujaratGasCompany Stakeholderslistincludesvariousgovernmentalorganizationsandthelocalpopulace,whichareinvolved intheproject atvarious stages.Allclearancesfrom the above stakeholders are on the way and they wouldbereportedtothevalidatorsduringvalidationstage. E.2. Summary of the comments received: >> The Village Panchayat / local elected body of representatives administering thelocal area are a true representation of the local population in a democratic country like India and hence their consent / permission to set up the project are essential. The Kadodara Industrial Cluster has conducted the necessaryconsultationprocessandwaitingforapproval. Gujarat Pollution Control Board (GPCB)hasprescribedstandardsofenvironmentalcomplianceand monitor the adherence to the standards. The project activity is in the process of receiving the No ObjectionCertificate(NOC)fromGPCB. Gujarat Gas Company (GGC) the company that supplies gas for the project entities. A suitable purchaseagreementwithGGCforsupplyofnaturalgashasbeenexecuted. All clearances from the stakeholders are in process and would be supplied in the final phase of the validation.Theprojectpromotersareexpectingthecommentsfromthestakeholdersaspositive. E.3. Report on how due account was taken of any comments received: >> Theproponentshaveapproachedtherespectiveauthoritiesforobtainingthenecessaryclearancesandare expectingpositivecomments. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 31

Annex 1 CONTACT INFORMATION ON PARTICIPANTS IN THE PROJECT ACTIVITY Organization: RaviExportPrivateLimited Street/P.O.Box: 301,302,KadodaraRoad, Building: DhanlaxmiComplex City: Kadodara State/Region: Gujarat;Taluka:PalsanaDistrict:Surat Postfix/ZIP: 394327 Country: India Telephone: 9102622309583 FAX: 9102622273033 EMail: [email protected],[email protected] URL: Representedby: Title: Mr. Salutation: LastName: Kothari MiddleName: FirstName: Chandrakanth Department: Mobile: 09824149410 DirectFAX: Directtel: PersonalEMail: [email protected]

Annex 2

INFORMATION REGARDING PUBLIC FUNDING ThisisaunilateralCDMprojectactivityundertakenbytheprojectproponentforwhichnopublic fundinghasbeenused PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 32

Annex 3 BASELINE INFORMATION

BaselineInformationofthedataconsideredforestimationofMethaneandNitrousoxideemissionfactor is being obtained from revised 2006 IPCC guidelines for National Green house Gas Inventories: ReferenceManual

Data for estimation of leakage from natural gas production and distribution is being obtained from revised2006IPCCguidelinesforNationalGreenhouseGasInventories:ReferenceManual

Data for grid emission factor for the grid replacement is being obtained from the CEA CO2 baseline database PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 33

Annex 4

MONITORING INFORMATION

TheMonitoringandVerification(M&V)proceduresdefineaprojectspecificstandardagainstwhichthe project'sperformance(i.e.GHGreductions)andconformancewithallrelevantcriteriawillbemonitored andverified.Theaimistoenablethisprojecthave a clear, credible, and accurate set of monitoring, evaluationandverificationprocedures.Thepurposeoftheseprocedureswouldbetodirectandsupport continuous monitoring of project performance/key project indicators to determine project outcomes, GreenhouseGas(GHG)emissionreductions. TheM&VProtocolprovidesarangeofdatameasurement,estimationandcollectionoptions/techniques ineachcaseindicatingpreferredoptionsconsistentwithgoodpracticestoallowprojectmanagersand operational staff, auditors, and verifiers to apply the most practical and costeffective measurement approachestotheproject.Itincludesdevelopingsuitabledatacollectionmethodsanddatainterpretation techniques for monitoring and verification of GHG emissions with specific focus on technical / efficiency/performanceparameters.Italsoallowsscopeforreview,scrutinizeandbenchmarkallthis informationagainstreportspertainingtoM&Vprotocols. Theprojectrevenueisbasedonthepowerandheatgeneratedbytheprojectactivity(equivalentunits displaced in the in fuel replacement and from the Gujarat state electricity grid). The monitoring and verificationsystemwouldmainlycomprisemetersasfaraspowergenerationisconcerned.Thenatural gasinputisalsotobemonitored. The measurement of the quantity of natural gas used produces evidence that the energy is being generated with associated onsite CO 2 emissions. The project would employ latest stateoftheart monitoringandcontrolequipmentthatwillmeasure,record,report,andmonitorandcontrolvariouskey parameters. Parametersmonitoredwillbequantityandqualityofnaturalgasfuelused,totalpowergenerated,etc.All monitoringandcontrolfunctionswillbedoneaspertheinternallyacceptedstandardsandtheproject proponent. Thequantityofemissionreductionunitsclaimedbytheprojectwilldependontheactualgenerationmix of the grid in a particular year. CEA publishes yearly reports regarding the performance of all power generationunits(whichincludeprivatesectorgenerationunitsandGSEB’sowngenerationunits). Hence,authenticdatarelatedtothemeasurements,recording,monitoringandcontrolofthegeneration mix of the GSEB network is ensured. The CEA report contains all information regarding type of generation like hydro, thermal, renewable etc., installed capacity, derated capacity, performance of generating unit, actual generation, capacity additions during the year, etc. which can be used for verificationofgenerationmixandemissionfactorsforbaselinecalculationforaparticularyear. Project Parameters affecting Emission Reduction Monitoring Approach Thegeneralmonitoringprinciplesarebasedon: •Frequency PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 34

•Reliability •Registrationandreporting Astheemissionreductionunitsfromtheprojectaredeterminedbythenumberofunitsreplacedbythe projectactivityattheregionalgrid(andthenmultiplyingwithappropriateemissionfactor),itbecomes importantfortheprojecttomonitorthenetgenerationandcaptiveconsumptionofpoweronarealtime basis. Frequency of monitoring Theprojectdeveloperwillinstallallmeteringandcheckmeteringfacilitieswithintheplantpremisesand willberecordandmonitorthemonacontinuousbasis.Theenvironmentalmonitoringwillbeundertaken periodically(quarterly)andwillbeundertakenbyself/thirdparty.

Reliability Theamountofemissionreductionunitsisproportionaltothenetenergydisplacedinthegridandthe amountoflignitedisplaced.ThefinalkWhmeterreadingisthefinalvaluefromprojectside.Sincethe reliability of the monitoring system is governed by the accuracy of the measurement system and the qualityoftheequipmenttoproducetheresultallpowermeasuringinstrumentsmustbecalibratedoncea yearforensuringreliabilityofthesystem.Allinstrumentswouldcarrytagplates,whichindicatethedate ofcalibrationandthedateofnextcalibration.Thereforethesystemwillensurethatthefinalgeneration ishighlyreliable.

Registration and reporting Registrationofdatawillbeonlineinthecontrolcabinthroughamicroprocessor.However,hourlydata loggingwillbethereinadditiontosoftwarememory.Daily,weeklyandmonthlyreportswillbeprepared statingthegeneration,whichwillalsobeauditedforstatutoryfinancialaudit.Theothermajorfactors, whichneedtobeensuredandmonitored,areuseofonlynaturalgasfuelforpowerandheatgeneration andtheparametersthatwouldensuresmoothandregularoperationoftheplant.Nootherprojectspecific indicatorsareidentifiedthataffecttheemissionreductionsclaims.

Natural Gas Requirement and Utilization

Availability of Natural Gas Theprimaryfuelusedbytheprojectactivityisnaturalgas.Theprojectproponenthasenteredintoan agreement with Gujarat Gas Company Limited (GGCL) for the supply of natural gas for the project activity.Thedetailsoffuelalongwiththeanalysisreportwillberegisteredattheplantfromwhichthe emissioncanbecomputed. Quantity of fuel used in the engine TheprojectproponenthasenteredintoanagreementwithGGCLforthesupplyofnaturalgasforthe projectactivity.Thenetpowergenerationisdirectlyproportionaltothefuelconsumptionandhencecan be crossverified. As it is mandatory for industries to submit yearly financial performance record (Statutory audit), whichincludesthenetconsumptionoffuelandgenerationtothegovernment,these figurescanbecrosscheckedfromrespectiverecords.Theamountofpurchasedfuel,ifany,willbebased oninvoices/receiptsfromgascompanies.Incaseanyotherfossilfuelispurchased,willbereflectedin the audit report. However the purchase agreement between SISL and GGCL clearly indicates thatthe quantityofnaturalgasagreedforpurchasewillbesufficientfortheplannedgeneration. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 35

Quantity of the additional fuel purchased KadodaraIndustrialClusterwillmaintainproperrecordsofadditionalfuelifprocuredandwillbekept open for verification. The quantity of the fuel received / purchased will be measured, recorded and monitoredfromstartingpointintheprojecti.e.attheentryoftheprojectpremises.KadodaraIndustrial Clusterwillinstallmeasuring/weighingsystemtorecordanyadditionalfuelused.GGCLreceiptswill alsoindicatethequantityoffuelused.

Calorific value of fuel used in the engine Themainfueltobeusedbytheprojectactivityforpowergenerationisnaturalgas.Thepropertiesand compositionofthenaturalgasarealreadyestablishedandwillbeconsistentintheregion.However,itis proposed to monitor various properties of natural gas by takingsamples atrandom from the fuel lots fromtheprocessedfuelsothatincaseofanydrasticchangeintheproperties,correctiveactionscanbe taken. Themeasurementoffuelpropertieswillbedoneatreputedlaboratoriesasperinternationalpracticesand data or documents will be kept open for verifiers. The data will also be computerized and monitored throughmanagementinformationsystem. Operational Parameters of the power plant Unit Total Power Generated Thetotalpowergeneratedbythe“projectactivity”willbemeasuredtothebestaccuracyintheplant premisesandwillberecorded&monitored.Allinstrumentswillbecalibratedatregularintervals.All instrumentscarrytagplates,whichindicatethedateofcalibrationandthedateofnextcalibration.The parameterwillsubstantiatethesmoothoperationsofthepowerplant.Duringverificationthetotalpower generatedwouldbeverified.

Power consumed by the plant auxiliaries Thepowerconsumedbyplantauxiliarieswillberecordedtothebestaccuracy.Allinstrumentswillbe calibratedatregularintervals.Allinstrumentscarrytagplates,whichindicatethedateofcalibrationand thedateofnextcalibration.Thetotalquantumofpowerconsumedbytheauxiliarieswouldaffectthe totalpowerexportedtotheplant(gridpowerreplacement)andthereforetheamountofGHGreductions. Thereforeanyincreaseintheconsumptionpatternoftheauxiliarysystemwouldbeattendedto.

Power consumption within plant premises Theprojectdeveloperwillinstallallmeteringand check metering facilities within the plantpremises wherepowerisconsumed.Themeasurementwillberecordedandmonitoredonacontinuousbasisby the project developer. Allinstrumentswillbecalibratedatregularintervals.Allinstrumentscarrytag plates,whichindicatethedateofcalibrationandthedateofnextcalibration.

Efficiency of the power plant project activity Highly efficient engine is used by the project. Rotor directly coupled with the crankshaft to generate power. Quantity with major quality parameters of the fuel, engine pressure, and vibration will be measured. Based on the measured input andoutput parameters,powerplantsystemefficiencywillbe calculatedandmonitored.Incaseofanyirregularity,therootcauseofthedeviationswouldbeidentified andthenecessarycorrectiveactionswillbetaken.Alltheaboveparameters/factorswilldemonstratethe performanceoftheprojectatanypointoftime. PROJECT DESIGN DOCUMENT FORM (CDM PDD) - Version 03.1. CDM – Executive Board

page 36

Verification Theperformanceofthe“projectactivity”determinesthequantumofCO2emissionreductions.Inother words, the longer the power plant runs, more would be the emission reductions. The project control system measures, collects the information about various process parameters, records, monitors and controlsonacontinuousbasis,sothataccessingandverificationofactualdataarepossibleatanypoint oftime.Themajoractivitiestobeverifiedareasunder: •Verificationofvariousmeasurementandmonitoringmethods •Verificationofinstrumentcalibrationmethods •Verificationofmeasurementaccuracy Likeaboveactivities,followingmajorprojectparameterswhichaffectstheemissionclaimsneedtobe verified,basedontheavailableoperatingdataisasunder •Fuelentryattheprojectactivitypremises •Quantityofthenaturalgas/fuelalongwiththeadditionalfuelpurchasedifany •Typeoffuelsusedintheengine •Efficiencyofpowerplantsystem •Totalgenerationofpowerandcaptive&auxiliarypowerrequirements

- - - - -