Treponema Denticola in Microflora of Bovine Periodontitis1

Total Page:16

File Type:pdf, Size:1020Kb

Treponema Denticola in Microflora of Bovine Periodontitis1 Pesq. Vet. Bras. 35(3):237-240, março 2015 DOI: 10.1590/S0100-736X2015000300005 Treponema denticola in microflora of bovine periodontitis1 2 3 4 5* Ana Carolina Borsanelli , Elerson Gaetti-Jardim Júnior , Jürgen Döbereiner ABSTRACT.- and Iveraldo S. Dutra Trepo- nema denticola in the microflora of bovine periodontitis. Pesquisa Veterinária Brasileira 35(3):237-240.Borsanelli A.C., Gaetti-Jardim Júnior E., Döbereiner J. & Dutra I.S. 2015. Departamento de Apoio, Produção e Saúde Animal, Faculdade de Medicina Veterinária de Araçatuba, Universidade Estadual Paulista, Rua Clóvis Pestana 793, Cx. Postal 533, Jardim Dona Amélia, Araçatuba, SP 16050-680, Brazil. E-mail: [email protected] Periodontitis in cattle is an infectious purulent progressiveTreponema disease species associated in periodontal with strict anaerobic subgingival biofilm and is epidemiologically related to soil management at several locations of Brazil. This study aimed to detect pockets of cattle with lesions deeper than 5mm in the gingival sulcus of 6 to 24-month-old animals considered periodontally healthy. WeT. amylovorumused paper conesT. denticola to collectT. maltophilum the materials,T. mediumafter removal and T. of vincentii supragingival plaques, and kept frozen (at -80°C) up to DNA extraction and polymerase chain reactionTreponema (PCR) amylovorum using , , T. denticola, T. primers. maltophilum In periodontal pocket, it was possible to identify by PCR directly, the presenceT. amylovorum of T. denticola in 73% of animals (19/26),T. maltophilum in 42.3% (11/26)Treponema and medium and in T. 54% vincentii (14/26). Among the 25 healthy sites, it was possible to identify Treponema in 18 amylovorum (72%), T. maltophilum in two (8%) and in eight (32%). T. denticola were not detected over all 51 evaluated samples. The presence of , and, in particular, the widely recognized in subgingival microflora brings an original and potencially Treponema denticolaimportant contribution in studies of the bovine periodontitis. INDEX TERMS: Bovine periodontitis, periodontal disease, subgingival microflora, RESUMO.- [Treponema .denticola na microbiota da pe- - riodontite bovina.] A periodontite bovina é um processo tar espécies de Treponema presentes na bolsa periodontal infeccioso purulento e progressivo associado à presença degeográficas bovinos comdo Brasil. lesões O de trabalho profundidade teve por maior objetivo que 5mmdetec e - do sulco gengival de animais com idade de 6 a 24 meses camente relacionada ao manejo do solo em amplas áreas - de biofilme subgengival anaeróbio estrito e epidemiologi e considerados periodontalmente sadios. Os materiais fo 1 ram colhidos por meio de cones de papel, após a remoção 2 Received on January 5, 2015. cadeiado biofilme da polimerase supragengival, (PCR) ecom mantidos o emprego sob decongelamento iniciadores Accepted for publication on March 16, 2015. de(-80°C) até a extração do DNA e realização da reação eme Programa de Pós-Graduação em Medicina Veterinária, Faculdade de T. amylovorum T. denticola T. maltophilum T. medium Cências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), T. vincentii - Via3 de Acesso Professor Paulo Donato Castellane s/n, Jaboticabal, SP- mais , , , - 14664-900, Brazil. E-mail: [email protected] ça de Treponema. Na bolsa amylovorum periodontalde de 73% ((19/26) dosT. denti ani- Departamento de Patologia e Propedêutica Clínica, Faculdade de Od cola foi possível ( detectar) T. maltophilum diretamente, pela PCR,sítios a presen sadios ontologia4 de Araçatuba, Unesp, Rua José Bonifácio 1193, Araçatuba, SP- em , 42,3% T. amylovorum11/26) em dois 16015-050, Brazil. E-mail: [email protected] e T.de denticola 54% 14 /26e em oito T. maltophilumDos 25 Trepo-, Ex-Pesquisador da Empresa Brasileira de Pesquisa Agropecuária (Em nema18 medium(72%) foi e possívelT. vincentii identificar n , nas brapa),5 General Editor of “Pesquisa Veterinária Brasileira”, Seropédica, RJ- 23897-970, Brazil. E-mail: [email protected] amostras(8%) avaliadas A presença (32%) de Treponema amylovorum. Departamento de Apoio, Produção e Saúde Animal, Faculdadeisdutra@ de Me T. maltophilum na microbiota subgengivalão foram detectados, e em especial 51do dicina Veterinária de Araçatuba, Unesp, Rua Clóvis Pestana 793, Jardim . T. denticola,, Dona Amélia, Araçatuba, SP 16050-680. *Corresponding author: fmva.unesp.br amplamente reconhecido periodontopatógeno 237 238 Ana Carolina Borsanelli et al. MATERIALS AND METHODS Periodontitis clinical characterization and sample collection traz uma contribuição original de importância potencial - nos estudos da periodontite bovina. Treponema denticola TERMOS DE INDEXAÇÃO: Periodontite bovina, doença periodon Clinical status of 6 to 24-month-old cattle was established tal, microbiota subgengival, . after intra-oral and periodontal evaluation, considering during INTRODUCTION all stages the Ethics Committee on Animal Experiment criteria- Cara inchada - (Process FOA nº 2013-01402). The indicators for periodontal lesion identification were the same as those observed by Döbe “ ” in cattle is a purulent progressive perio reiner et al. (2000) that consist of dental arch visible aspects, dontitis associated with strict anaerobic Gram-negative which was performed by animal containment and with the aid microorganisms. The disease of peculiar epidemiological pocketof a mouth (n=26) opener, and andfrom probing gingival to sulcus measure of animalsperiodontal considered pocket characteristics had great economic and health importance- depth. Samples were obtained from injured bovine periodontal in Brazilian cattle breeding from the 1960s to the 1980s.- periodontally healthy (n=25) from farms considered endemic or- Initially, the condition was associated with new large pas- harmless for the disease. Gingival sulcus sampling was carried- ture areas in Southeastern, Midwestern and Northern Bra out from cattle with periodontal pockets deeper than 5mm be zil (Döbereiner et al. 2000). The disease recurs in appa tween the palatal medial edge of the second and third jaw pre rent clinical manifestation in herds after grazing reform or molar tooth. when cattle in dentition stage are fed with forage grown in samplingPeriodontal procedures pocket of gingivalsampling sulcus was madeor periodontal after food pocket removal, ma- an endemic area (Dutra etcara al. 1993,inchada Döbereiner et al. 2004). when needed. Gaetti-Jardim Jr et al. (2012) have described the Pathogenic microorganisms in periodontal pocket of Bacteroidescalves is a constant Fusobacteriumin “ ” cultivation through- terial. After supragingival bacterial biofilm removal with a sterile conventional culture media, especially black-pigmented gauze pad, samples were collected by paper cone, which was left species, spp. and other anaero for about 60 seconds. Then, the cone was transferred to a tube bic Gram-negative bacteria (Blobel et al. 1984, Dutra et al.- containing 1ml of sterile ultrapure water, and stored at -80°C until DNA extraction. mless1986, onesBotteon results et al. in 1993). spontaneous In this clinicalcontext, remission the transfer of pe of- Bacterial identification by polymerase chain reaction (PCR) affected animals from periodontitis endemic areas to har Bacteroides Each sample bacterial DNA detection in sterile ultrapure riodontal pocket microflora process and its modification, water was priory performed by commercial DNATreponema extraction amy kit- especially the black-pigmented (Dutra et al.- lovorum(GenEluteT. Mammaliandenticola T. Genomicmaltophilum DNAT. Miniprep medium andKit, T.Sigma). vincentii In 2000). addition, specific primers were used to identify Throughout several clinical forms of periodontal dise , , , l volumes containing ase in humans, spirochetes in microflora are associated (Table 1). ++ - with high risk of developing specific site injury (SocranskyTreponema Amplifications were performed in 25μ denticola& Haffajee 2010). Regarded as an important periodontal- 11.9μl water for PCR, 5μl PCR/Mg buffer (Boehringer Man pathogen and part of Socransky’s red complex, nheim, Indianapolis, IN, USA), 1μl dNTP (Pharmacia Biotech,- (Socransky et al. 1998) is more common in perio Piscataway, NJ, USA), 0.1μl Taq DNA polymerase (Invitrogen do dontal disease sites than in healthy ones, and more often Brasil, São Paulo, SP, Brazil), 0.2μl of each primer pair (Invit rogen do Brasil) and 5μl of the sample. This amplification was found in subgingival than in supragingival plaques (Riviere performed in a PCR apparatus (Perkin Elmer GeneAmp PCR et al.In 1992, order Haffajeeto increase et al. knowledge 1998, Ximénez-Fyvie on bovine periodontitis et al. 2000, System 9700, Norwalk, CT, USA) programmed for one cycle at Avila-Campos & Velásquez-Melendéz 2002). - 94°C (5min), and 30 to 36 cycles at 94°C (1min). The annealing- temperature of each primer was programmed for a time ranging Treponemamicroflora, this study aimed to identify by means of poly- from 30 seconds to one minute, 2min at 72°C and a final exten merase chain reaction (PCR), spirochete species from the sion of 5min at 72°C. PCR amplification products were subjected genus in subgingival biofilm samples from cat to electrophoresis on 1% agarose gel and staining with ethidium tle with and without periodontitis.Table 1. Polymerase chain reaction (PCR) primersbromide used (0.5mg/ml). to identify Treponema spp. genus species within subgingival microflora of cattle with periodontitis and healthy sites of animals without clinical evidence of the disease Treponema
Recommended publications
  • Borrelia Burgdorferi and Treponema Pallidum: a Comparison of Functional Genomics, Environmental Adaptations, and Pathogenic Mechanisms
    PERSPECTIVE SERIES Bacterial polymorphisms Martin J. Blaser and James M. Musser, Series Editors Borrelia burgdorferi and Treponema pallidum: a comparison of functional genomics, environmental adaptations, and pathogenic mechanisms Stephen F. Porcella and Tom G. Schwan Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA Address correspondence to: Tom G. Schwan, Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840, USA. Phone: (406) 363-9250; Fax: (406) 363-9445; E-mail: [email protected]. Spirochetes are a diverse group of bacteria found in (6–8). Here, we compare the biology and genomes of soil, deep in marine sediments, commensal in the gut these two spirochetal pathogens with reference to their of termites and other arthropods, or obligate parasites different host associations and modes of transmission. of vertebrates. Two pathogenic spirochetes that are the focus of this perspective are Borrelia burgdorferi sensu Genomic structure lato, a causative agent of Lyme disease, and Treponema A striking difference between B. burgdorferi and T. pal- pallidum subspecies pallidum, the agent of venereal lidum is their total genomic structure. Although both syphilis. Although these organisms are bound togeth- pathogens have small genomes, compared with many er by ancient ancestry and similar morphology (Figure well known bacteria such as Escherichia coli and Mycobac- 1), as well as by the protean nature of the infections terium tuberculosis, the genomic structure of B. burgdorferi they cause, many differences exist in their life cycles, environmental adaptations, and impact on human health and behavior. The specific mechanisms con- tributing to multisystem disease and persistent, long- term infections caused by both organisms in spite of significant immune responses are not yet understood.
    [Show full text]
  • Detection of Putative Periodontal Pathogens in Subgingival Specimens of Dogs
    Brazilian Journal of Microbiology (2007) 38:23-28 ISSN 1517-8283 DETECTION OF PUTATIVE PERIODONTAL PATHOGENS IN SUBGINGIVAL SPECIMENS OF DOGS Sheila Alexandra Belini Nishiyama1; Gerusa Neyla Andrade Senhorinho1; Marco Antônio Gioso2; Mario Julio Avila-Campos1,* 1Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Science; 2Veterinary and Zootechny School, University of São Paulo, São Paulo, SP, Brazil Submitted: April 07, 2006; Returned to authors for corrections: July 13, 2006; Approved: October 13, 2006 ABSTRACT In this study, the presence of putative periodontal organisms, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, Fusobacterium nucleatum, Dialister pneumosintes, Actinobacillus actinomycetemcomitans, Campylobacter rectus, Eikenella corrodens and Treponema denticola were examined from subgingival samples of 40 dogs of different breeds with (25) and without (15) periodontitis, by using the PCR method. The PCR products of each species showed specific amplicons. Of the 25 dogs with periodontitis, P. gingivalis was detected in 16 (64%) samples, C. rectus in 9 (36%), A. actinomycetemcomitans in 6 (24%), P. intermedia in 5 (20%), T. forsythensis in 5 (20%), F. nucleatum in 4 (16%) and E. corrodens in 3 (12%). T. denticola and D. pneumosintes were not detected in clinical samples from dogs with periodontitis. Moreover, P. gingivalis was detected only in one (6.66%) crossbred dog without periodontitis. Our results show that these microorganisms are present in periodontal microbiota of dogs with periodontitits, and it is important to evaluate the role of these putative periodontal microorganisms play in the periodontitis in household pets particularly, dogs in ecologic and therapeutic terms, since these animals might acquire these periodontopahogens from their respective owners.
    [Show full text]
  • Comparison of Three Dispersion Procedures for Quantitative Recovery of Cultivable Species of Subgingival Spirochetes SERGIO L
    JOURNAL OF CLINICAL MICROBIOLOGY, Nov. 1987, p. 2230-2232 Vol. 25, No. 11 0095-1137/87/112230-03$02.00/0 Copyright © 1987, American Society for Microbiology Comparison of Three Dispersion Procedures for Quantitative Recovery of Cultivable Species of Subgingival Spirochetes SERGIO L. SALVADOR, SALAM A. SYED, AND WALTER J. LOESCHE* Department of Microbiology and Immunology, University of Michigan School of Dentistry and University of Michigan School of Medicine, Ann Arbor, Michigan 48109-1078 Received 9 April 1987/Accepted 3 August 1987 Spirochetes are usually the predominant organisms observed microscopically in subgingival plaques removed from tooth sites associated with periodQntitis, but these organisms are rarely isolated by cultural means, presumably because the media do not support their growth and/or because these fragile organisms are disrupted by the various procedures used to disperse plaque samples. In the present investigation, three dispersal procedures, sonification, mechanical mixing, and homogenization, were compared for their ability to permit the isolation of Treponema denticola, Treponema vincentii, Treponema socranskii, and Treponema pectinovorum from plaque samples on media that support the growth of these species. Plaque samples in which the spirochetes averaged 50% of the microscopic count were chosen. The highest viable recoveries of spirochetes were observed when the plaques were dispersed with a Tekmar homogenizer, and the lowest occurred with sonification. The highest recoveries averaged only about 1% of the total cultivable counts, indicating either that the sought-after species were minor members of the flora or that the dispersal procedures were still too harsh. A total of 91% of the isolates were T. denticola, 5% were T.
    [Show full text]
  • Molecular Studies of Treponema Pallidum
    Fall 08 Molecular Studies of Treponema pallidum Craig Tipple Imperial College London Department of Medicine Section of Infectious Diseases Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy of Imperial College London 2013 1 Abstract Syphilis, caused by Treponema pallidum (T. pallidum), has re-emerged in the UK and globally. There are 11 million new cases annually. The WHO stated the urgent need for single-dose oral treatments for syphilis to replace penicillin injections. Azithromycin showed initial promise, but macrolide resistance-associated mutations are emerging. Response to treatment is monitored by serological assays that can take months to indicate treatment success, thus a new test for identifying treatment failure rapidly in future clinical trials is required. Molecular studies are key in syphilis research, as T. pallidum cannot be sustained in culture. The work presented in this thesis aimed to design and validate both a qPCR and a RT- qPCR to quantify T. pallidum in clinical samples and use these assays to characterise treatment responses to standard therapy by determining the rate of T. pallidum clearance from blood and ulcer exudates. Finally, using samples from three cross-sectional studies, it aimed to establish the prevalence of T. pallidum strains, including those with macrolide resistance in London and Colombo, Sri Lanka. The sensitivity of T. pallidum detection in ulcers was significantly higher than in blood samples, the likely result of higher bacterial loads in ulcers. RNA detection during primary and latent disease was more sensitive than DNA and higher RNA quantities were detected at all stages. Bacteraemic patients most often had secondary disease and HIV-1 infected patients had higher bacterial loads in primary chancres.
    [Show full text]
  • Bacterial Communities Associated with Chronic Rhinosinusitis and the Impact of Mucin
    Bacterial communities associated with chronic rhinosinusitis and the impact of mucin degradation on Staphylococcus aureus physiology A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Sarah Kathleen Lucas IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Ryan C. Hunter August 2020 © Sarah Kathleen Lucas 2020 Acknowledgements First, this thesis was made possible by the support of the Microbiology, Immunology, and Cancer Biology graduate program, and the faculty and staff of the Department of Microbiology & Immunology at the University of Minnesota. The contribution of the research community and resources available to me at the University of Minnesota cannot be overstated, and I feel very fortunate to have had the opportunity to work within a community that upholds high scholarly standards and are also a pleasure to be around. I would like to extend my deepest gratitude to several individuals for their support during my doctoral training: My advisor, Dr. Ryan Hunter: Thank you for the confidence you had in me, especially in the times when I scarcely believed in myself. Thank you for your patience, and for being the first true mentor I ever had. My labmates: it was a pleasure to conduct research alongside you all. My daily sounding boards for far-out ideas, and encouragement to jump into experiments and just “see what happens”. The members of my thesis committee: Gary Dunny, Mark Herzberg, and Dan Knights. Thanks for all the great feedback in our meetings. Your comments on my work over the years have always been constructive. There would be times in our annual meetings where I would find great motivation in your enthusiasm of the data I presented.
    [Show full text]
  • Laboratory Diagnostic Testing for Treponema Pallidum
    Laboratory Diagnostic Testing for Treponema pallidum Expert Consultation Meeting Summary Report January 13‐15, 2009 Atlanta, GA This report was produced in cooperation with the Centers for Disease Control and Prevention. Laboratory Diagnostic Testing for Treponema pallidum Expert Consultation Meeting Summary Report January 13‐15, 2009 Atlanta, GA In the last decade there have been major changes and improvements in STD testing technologies. While these changes have created great opportunities for more rapid and accurate STD diagnosis, they may also create confusion when laboratories attempt to incorporate new technologies into the existing structure of their laboratory. With this in mind, the Centers for Disease Control and Prevention (CDC) and the Association of Public Health Laboratories (APHL) convened an expert panel to evaluate available information and produce recommendations for inclusion in the Guidelines for the Laboratory Diagnosis of Treponema pallidum in the United States. An in‐person meeting to formulate these recommendations was held on January 13‐15, 2009 on the CDC Roybal campus. The panel included public health laboratorians, STD researchers, STD clinicians, STD Program Directors and other STD program staff. Representatives from the Food and Drug Administration (FDA) and Centers for Medicare & Medicaid Services (CMS) were also in attendance. The target audience for these recommendations includes laboratory directors, laboratory staff, microbiologists, clinicians, epidemiologists, and disease control personnel. For several months prior to the in‐person consultation, these workgroups developed key questions and researched the current literature to ensure that any recommendations made were relevant and evidence based. Published studies compiled in Tables of Evidence provided a framework for group discussion addressing several key questions.
    [Show full text]
  • Prevotella Intermedia
    The principles of identification of oral anaerobic pathogens Dr. Edit Urbán © by author Department of Clinical Microbiology, Faculty of Medicine ESCMID Online University of Lecture Szeged, Hungary Library Oral Microbiological Ecology Portrait of Antonie van Leeuwenhoek (1632–1723) by Jan Verkolje Leeuwenhook in 1683-realized, that the film accumulated on the surface of the teeth contained diverse structural elements: bacteria Several hundred of different© bacteria,by author fungi and protozoans can live in the oral cavity When these organisms adhere to some surface they form an organizedESCMID mass called Online dental plaque Lecture or biofilm Library © by author ESCMID Online Lecture Library Gram-negative anaerobes Non-motile rods: Motile rods: Bacteriodaceae Selenomonas Prevotella Wolinella/Campylobacter Porphyromonas Treponema Bacteroides Mitsuokella Cocci: Veillonella Fusobacterium Leptotrichia © byCapnophyles: author Haemophilus A. actinomycetemcomitans ESCMID Online C. hominis, Lecture Eikenella Library Capnocytophaga Gram-positive anaerobes Rods: Cocci: Actinomyces Stomatococcus Propionibacterium Gemella Lactobacillus Peptostreptococcus Bifidobacterium Eubacterium Clostridium © by author Facultative: Streptococcus Rothia dentocariosa Micrococcus ESCMIDCorynebacterium Online LectureStaphylococcus Library © by author ESCMID Online Lecture Library Microbiology of periodontal disease The periodontium consist of gingiva, periodontial ligament, root cementerum and alveolar bone Bacteria cause virtually all forms of inflammatory
    [Show full text]
  • Influence of Treponema Denticola on Apical Periodontitis Due to Infection of Endodontal Origin
    International Journal of Applied Dental Sciences 2019; 5(3): 172-175 ISSN Print: 2394-7489 ISSN Online: 2394-7497 IJADS 2019; 5(3): 172-175 Influence of Treponema denticola on apical © 2019 IJADS www.oraljournal.com periodontitis due to infection of endodontal origin Received: 20-05-2019 Accepted: 22-06-2019 Anali Roman Montalvo, Lizeth Edith Quintanilla Rodriguez, Nemesio Anali Roman Montalvo Elizondo Garza, Karen Melissa Garcia Chavez, Arturo Santoy Lozano, Universidad Autonoma de Nuevo Leon, Facultad de Odontologia, Jose Elizondo Elizondo, Jovany Emanuel Hernandez Elizondo, Sergio Monterrey, Nuevo Leon, CP 64460, Eduardo Nakagoshi Cepeda and Juan Manuel Solis Soto Mexico Lizeth Edith Quintanilla Rodriguez Abstract Universidad Autonoma de Nuevo Introduction: The ultimate goal of endodontic therapy is to eliminate all pathogenic bacteria from the Leon, Facultad de Odontologia, Monterrey, Nuevo Leon, CP 64460, root canal system in order to prevent apical periodontitis. Mexico Aim: Review of literature on the influence of Treponema denticola on apical periodontitis due to infection of endodontal origin. Nemesio Elizondo Garza Methodology: Search was carried out in the database PubMed and EBSCO. Universidad Autonoma de Nuevo Leon, Facultad de Odontologia, Results: T. denticola is one of the most frequently identified microorganisms within the root canals and Monterrey, Nuevo Leon, CP 64460, these spirochetes are partly responsible for the pathogenesis of periapical bone lesions such as apical Mexico periodontitis. They are found within the biofilm and their aggressiveness is due to a diversity of virulence factors, highlighting their dentillisin, mobility and their ability to modulate the host's defensive response. Karen Melissa Garcia Chavez Universidad Autonoma de Nuevo Conclusion: T.
    [Show full text]
  • Treponema Amylovorum Sp. Nov., a Saccharolytic Spirochete of Medium Size Isolated from an Advanced Human Periodontal Lesion
    Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B. Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion. Int. J. Syst. Bacteriol. 1997, 47(3):842-5. Postprint available at: http://www.zora.unizh.ch University of Zurich Posted at the Zurich Open Repository and Archive, University of Zurich. Zurich Open Repository and Archive http://www.zora.unizh.ch Originally published at: Winterthurerstr. 190 Int. J. Syst. Bacteriol. 1997, 47(3):842-5 CH-8057 Zurich http://www.zora.unizh.ch Year: 1997 Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B Wyss, C; Choi, B K; Schüpbach, P; Guggenheim, B; Göbel, U B. Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion. Int. J. Syst. Bacteriol. 1997, 47(3):842-5. Postprint available at: http://www.zora.unizh.ch Posted at the Zurich Open Repository and Archive, University of Zurich. http://www.zora.unizh.ch Originally published at: Int. J. Syst. Bacteriol. 1997, 47(3):842-5 Treponema amylovorum sp. nov., a saccharolytic spirochete of medium size isolated from an advanced human periodontal lesion Abstract A highly motile, medium-size, saccharolytic spirochete was isolated from an advanced human periodontal lesion in medium OMIZ-Pat supplemented with 1% human serum. The growth of this organism is dependent on either glucose, maltose, starch, or glycogen. The cells contain six endoflagella, three per pole, which overlap in the central region of the cell body.
    [Show full text]
  • Porphyromonas Gingivalis and Treponema Denticola Exhibit Metabolic Symbioses
    Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses Kheng H. Tan1., Christine A. Seers1., Stuart G. Dashper1., Helen L. Mitchell1, James S. Pyke1, Vincent Meuric1, Nada Slakeski1, Steven M. Cleal1, Jenny L. Chambers2, Malcolm J. McConville2, Eric C. Reynolds1* 1 Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia, 2 Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia Abstract Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6:1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono- culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up- regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P.
    [Show full text]
  • Oral Chlamydia Trachomatis in Patients with Established Periodontitis
    Clin Oral Invest (2000) 4:226–232 © Springer-Verlag 2000 ORIGINAL ARTICLE S.G. Reed · D.E. Lopatin · B. Foxman · B.A. Burt Oral Chlamydia trachomatis in patients with established periodontitis Received: 9 February 2000 / Accepted: 30 June 2000 Abstract Periodontitis is considered a consequence of a more precise periodontal epithelial cell collection device, pathogenic microbial infection at the periodontal site and the newer nucleic acid amplification techniques to detect host susceptibility factors. Periodontal research supports C. trachomatis, and additional populations to determine the association of Actinobacillus actinomycetemcomi- the association of C. trachomatis and periodontitis. tans, Porphyromonas gingivalis, Prevotella intermedia, and Bacteroides forsythus, and periodontitis; however, Keywords Chlamydia · Chlamydia trachomatis · causality has not been demonstrated. In pursuit of the Fluorescent antibody technique · Periodontal diseases · etiology of periodontitis, we hypothesized that the intra- Periodontitis cellular bacteria Chlamydia trachomatis may play a role. As a first step, a cross-sectional study of dental school clinic patients with established periodontitis were as- Introduction sessed for the presence of C. trachomatis in the oral cav- ity, and in particular from the lining epithelium of peri- Periodontitis is characterized by apical migration of the odontal sites. C. trachomatis was detected using a direct periodontal attachment to the root surface and destruc- fluorescent monoclonal antibody (DFA) in oral speci- tion of the proximal alveolar bone [12]. These diseases mens from 7% (6/87) of the patients. Four patients tested are generally considered a consequence of a pathogenic positive in specimens from the lining epithelium of dis- microbial infection at the periodontal site and host sus- eased periodontal sites, one patient tested positive in ceptibility factors [29].
    [Show full text]
  • Coexistence of Porphyromonas Gingivalis , Tannerella Forsythia And
    Int. J. Odontostomat., 8(3):359-364, 2014. Coexistence of Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola in the Red Bacterial Complex in Chronic Periodontitis Subjects Coexistencia de Porphyromonas gingivalis, Tannerella forsythia y Treponema denticola en el Complejo Rojo Bacteriano en Sujetos con Periodontitis Crónica Carlos Martín Ardila Medina; Astrid Adriana Ariza Garcés & Isabel Cristina Guzmán Zuluaga ARDILA, M. C. M.; ARIZA, G. A. A. & GUZMÁN, Z. I. C. Coexistence of Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola in the red bacterial complex in chronic periodontitis. Int. J. Odontostomat., 8(3):359-364, 2014. ABSTRACT: Previous reports showed that periodontitis is associated with different microorganisms rather than individual periodontopathogens in the dental biofilm. The purpose of the current study was to evaluate the coexistence and relationship among Porphyromonas gingivalis, Tanerella forsythia, and Treponema denticola in the red complex, noting its association with the severity of periodontitis. In this cross sectional study, 96 subjects, aged 33 to 82 years (with ≥18 residual teeth) with chronic periodontitis who attended the dental clinics of the Universidad de Antioquia in Medellín, Colombia were invited to participate. The presence or absence of bleeding on probing and plaque were registered. Probing depth and clinical attachment level were measured at all approximal, buccal and lingual surfaces. Microbial sampling on periodontitis patients was performed on pockets >5 mm. The presence of P. gingivalis, T. forsythia, and T. denticola was detected by PCR using primers designed to target the respective 16S rRNA gene sequences. The coexistence of the three periodontopathogens was the most frequent (25 subjects). A statistically significant association between the three bacteria was observed (P.
    [Show full text]