J. Chem. Chem. Eng. 9 (2015) 90-100 doi: 10.17265/1934-7375/2015.02.002 D DAVID PUBLISHING

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth

Aibassov Yerkin Zhakenovich*, Yemelyanova Valentina Stepanovna, Shakieva Tatyana Vladimirovna, Aibassov Gizatulla, Abenov Bakhyt and Bulenbayev Maksat Research Institute of New Chemical Technologies and Materials, Kazakh National University Al-Farabi, Almaty 005012, Kazakhstan

Abstract: We discovered a new approach modification Bamberger, Barton, Beckmann, Wallach, Gabriel, Hofmann, Hofmann A.W. Martius, Dimroth, Semmler-Wolff-Schroeter, Sus, Claisen, Newman-Kwart, Orton, Pistschimuka, Robev, Smiles, Sawdey, Sommelet, Stevens, Tiemann, Fischer-Hepp, Chapman, Chattaway, Schonberg, Stieglitz Rearrangements with of phosphorous, arsine, stibine and bismuthine in organometallic chemistry. The authors have proposed a new mechanism for possible reactions.

Key words: Rearrangements, organic compounds of arsenic, antimony, bismuth.

 1. Introduction R(NO2)C6H3-NHR' (1)

where, R = H, CH3, NO2, Cl, Br; R' = H, CH3. Have now been discovered a lot of new reactions of It is known that Bamberger arylhydroxilamins in organometallic chemistry of phosphorus, arsenic, n-aminophenols in the presence of mineral acids antimony and bismuth. The resulting novel (H2SO4) [3]: compounds have potential biologically active R-C6H4-NHOH → [R-C6H4-NHO+H2 + H2O → substances and can be used in medicine. R(HO)C6H3=NH] → R(HO)C6H4-NH2 (2) We were interested to analyze the classical It is known that Barton photochemical rearrangement in organic chemistry and try to modify rearrangement of nitrites in nitroso compounds by them, and to expand the scope of their application. intramolecular exchange nitroso on hydrogen bonded In this paper the 26 classical rearrangements in to γ-carbon atom, followed by isomerization to oximes, order to study the possibility of expanding and or dimerization [4, 5]: modifying them by replacing the nitrogen atoms to NO2-C4H8-CH(H)-C3H6CH3 + hν → phosphorus, arsenic, antimony and bismuth. O*-C4H8-CH(H)-C3H6CH3 + *NO →

2. Theory HO-C4H8-C*H-C3H6CH3 + *NO →

HO-C4H8-CH(NO)-C3H6CH3 → Dimer + It is known that Bamberger Rearrangement HO-C4H8-C(=NOH)-C3H6CH3 (3) arilnitramines in o-nitroanilines by acids (H2SO4, Reacting a aliphatic, aliphatic-aromatic and CH3COOH, HCOOH) [1, 2]: alicyclic compounds and compounds containing R-C6H4-NR'-NO2 → R-C6H4-N+HR'-NO2 → + + various functional groups (Hal, OR and et.): [R-C6H4-N HR'-O-NO → R-C6H3=N HR'(NO2)] → C6H5-(CH2)4ONO + hν →

[C6H5-CH(NO)-(CH2)2CH2OH]2 (4) *Corresponding author: Aibassov Yerkin Zhakenovich, (CH2)3CHONO + hν → ONCH2(CH2)2CHO (5) Professor, research field: metalorganic chemistry of uranium, As, Sb and Bi. E-mail: [email protected].

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, 91 Arsenic, Antimony and Bismuth

The reaction is used in steroid chemistry, as they Rearrangement following: allow to introduce functional groups in the molecule inactive space. It is known that An (7) acid-induced rearrangement of oximes to give [6-9]: Oximes generally have a high barrier to inversion, (6) and accordingly this reaction is envisioned to proceed by protonation of the oxime hydroxyl, followed by This reaction is related to the Hofmann and migration of the substituent “trans” to nitrogen. Schmidt Reactions and the , in The N-O bond is simultaneously cleaved with the that an electropositive nitrogen is formed that initiates expulsion of water, so that formation of a free an alkyl migration. Mechanism of the Beckmann is avoided.

(8)

It is known that Wallach rearrangement where, R = OR', n-C6H4R" (R" = H, CH3, OCH3, Cl, azoxybenzenes in p-oksiazobenzols when heated by Br, NO2); R' = CH3, C2H5. the action of sulfuric acid [10-15]: Similarly (N-izathinyl) acetic ester derivative

H-C6H4-N=N(O)-C6H5 → HO-C6H4-N=N-C6H5 (9) rearranges to 3,4-dioksihinoline:

Electron-donating substituents, and the substituents C6H4C(=O)C(=O)NCH2COOC2H5 → cause steric hindrance, prevent reaction. C9H4N(OH)(OH)COOC2H5 (11) Known that Gabriel rearrangement It is believed that during the reaction there is an N-carboxymethyl- and N-phenaculphtalimids in a opening of the imide ring and rearrangement imide substituted 1,4-dioxiizohinolins under the influence of anion in a carbanion, followed by intramolecular sodium alcoholate RONa [16-19]: Dieckmann condensation.

C6H4(CO)2NCH2COR → The starting compounds are prepared by alkylation

C6H4(COOR')-CONHCH2COR → of phthalimide potassium halocarboxylic acids or

C9H4N(OH)(OH)COR (10) esters phenylacylhalogenids.

92 A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth

It is known that the Hofmann rearrangement is the than the secondary. If R is a branched chain, in the organic reaction of a primary to a primary process of the rearrangement is also isomerization with one fewer carbon atom [20-25]. radical, e.g.:

C6H5NH(CH2)2CH(CH3)2 →

n-(CH3)3CCH2-C6H4NH2 (16) (12) Modification Reilly-Hickinbottom-rearrangement in the presence of metal halides (ZnCl2, CdCl2): The reaction of bromine with C6H5NHR·HX → R-C6H4NH2·HX (17) forms sodiuum hypobromite in situ, which transforms Known that the Dimroth Isomerization of the primary amide into an intermediate via a 1-substituted-1,2-dihydro-2-iminopirimidinov under formation of a nitrene. The intermediate isocyanate is the action of bases in a 2-substituted hydrolyzed to a primary amine, giving off carbon aminopyrimidines (amidine rearrangement) [30]: dioxide. R'-C4H2NR=NH → R'-C4H2N2-NHR (18)

where, R = Alk, CH2COOC2H5; R' = Alk, Hal, NO2,

(CH3)2N, CONH2. Electron-withdrawing groups on the pyrimidine ring accelerate rearrangement. The reaction rate increases in the number of substituents R (the highest

(13) rate of reaction at the methyl radical): Several reagents can substitute for bromine. Lead CH3 < C2H5 < C4H9 < C7H15 < CH2CH=CH2 < tetraacetate, N-brromosuccinimide, CH2C6H5 < CH2C6H4NO2-n. (bis(trifluoroacetoxy)iodo) benzene, and DBU In non-aqueous media rearrangement slows down. (1,8-diazabicyclo[5.4.0]undec-7-ene) can effect a Rearrangement is general and is observed in a number Hofmann rearrangement. In the following example, the of heterocyclic systems, especially for triazines, intermediate isocyanate is trapped by , tetrazoles, thiadiazoles, adenines. forming a . It is known that the Semmler-Wolff-Schroeter Rearrangement of oximes α, β-Unsaturated alicyclic (14) ketones in aromatic under the action of a mixture of the Beckmann ((CH3CO)2 + CH3COOH, o In a similar fashion, the intermediate isocyanate can HCl, 100 C) [31-40]: be trapped by tert-butyl alcohol, yielding the R-C6H8=NOH + (CH3CO)2 + CH3COOH → tert-butoxycarbonyl (Boc)-protected amine. [R-C6H8=NOCOCH3 → Known that the Hofmann A.W. Martius Thermal R-C6H8=N+HOCOCH3] → rearrangement of N-alkylanilines hydrochlorides in R-C6H4-NH2 (19) C-alkylanilines [26-29]: where, R = H, Alk, pyridyl. + - C6H5NHR·HX → [C6H5NH2 + R + X ] → This reaction takes disubstituted ketones oximes

R-C6H4NH2·HX (15) and ketones outside the fused system (α-tetralone, where, X = Cl, Br, J. 1-ketotetragidrofenantren). This reaction also come N, N-dialkylanilines. Known that the Sus photochemical rearrangement Mainly formed of para-isomers. The migration of of o-hinondiazidov in ketenes, accompanied by primary alkyl groups occurs at a higher temperature contraction cycle [41-44]:

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, 93 Arsenic, Antimony and Bismuth

+ - - + C10H6(=O)=N =N ↔ C10H6(O )-N =N + hν → Ar-O-C(=S)-NR2 → Ar-S-C(=O)-NR2 (28) + - + - [C10H6 (O )  C10H6 (O )] → C9H6=C=O + H2O → Alkaline hydrolysis of S-aryltiocarbamats leads to

C9H6-COOH (20) the corresponding thiols. The reaction is a convenient method of obtaining a The reaction is used as one of the steps of recovery number of acids cyclopentadiene. of phenols, which is not suitable for the direct Regrouping undergo various cyclic α-diazo ketones hydrogenation:

(alicyclic, heterocyclic compounds of terpene series). Ar-OH + COS + NH(C2H5)2 →

The starting o-hinondiazidy diazotization receive Ar-O-CSN(C2H5)2 → appropriate o-aminohinons. Ar-S-CON(C2H5)2 + KOH →

Known that the Claisen Thermal rearrangement of Ar-SH + H2 → ArH (29) allyl ethers of phenols or enols in the isomeric C-allyl It is known that the Orton Rearrangement of derivatives [45-52]: N-halogeno-N-atsilarilaminov in o- and

-CH=CH-O-CH2CH=CHR → n-galogenarilamidy by acids (CH3COOH) [56-58]:

[O=CHCH2-CHR-CH=CH2] → R-C6H4-N(X)COR'+ HX →

HO-CH=CH-CH(R)CH=CH2 (21) [2R-C6H4-NHCOR'+ Х2] → where, R = H, Alk. C6H5. R-C6H3(NHCOR")(п-X) +

Examples of reactions: R-C6H3(NHCOR')(o-X) (30)

R-C6H4-O-CH2CH=CHR' → In the resulting mixture prevails para-isomer.

R-C6H3(OH)CHR'CH=CH2 (22) Regrouping and goes for naphthalene derivatives.

CH2=CH-O-CH2CH=CH2 → Regrouping can take place in non-aqueous media

CH2=CHCH2-CH2CHO (23) by the action of ClCH2COOH, C6H5CH2COOH, o- or

Similar rearrangement observed in heterocycles such: m-O2NC6H4COOH:

C6H4ZN=C-OCH2CH=CH2 → C6H5NXCOR + R'COOH →

C6H4ZN(-CH2-CH=CH2)C=O (24) [C6H5NHCOR + R'COOX] → where, Z = O, S. X-C6H5NHCOR + R'COOH (31) This reaction is widely used in the synthesis of Known that the Pistschimuka the conversion of natural compounds, such as essential oils. aromatic amines to azo compounds by the action of Like allyl ether enamines rearrange to form imines selenium (or sulfur) and merkuratsetamide [59, 60]:

(amino-Claisen rearrangement - amino-Claisen): 2ArNH2 + Se + (CH3CONH)2Hg →

CH2=CH-CH2-NR-CH=C(R)-CH3 → Ar-N=N-Ar (32)

CH2=CH-CH2-C(R)(CH3)-CH=NR (25) where, Ar = C6H4R, R = H, CH3, OCH3, NO2, Cl, where, R = Alk, C6H5. N(CH3)2. Undergo a similar rearrangement unsaturated Merkuracetamide serves to bind the liberated thioesters (thio-Claisen rearrangement - thio-Claisen): hydrogen selenide (or hydrogen sulphide). Instead

CH2=CH-S-CH2-CH=CH2 → merkuratsetamide can be used mercury salts with

CH2=CH-CH2-CH2-CH=S (26) inorganic or organic acids.

CH2=CH-S-CH2-CH=CH → It is known that Robev rearrangement

CH2=C=CH-CH2-CH=S → C5H7S (27) phenylhydrazones aromatic by reacting

It is known that the Newman-Kwart Thermal a N-phenylamidines with alkali metal amides (KNH2, rearrangement of O-aryltiocarbamats in NaNH2) in the presence of oxidants by heating S-aryltiocarbanats [53-55]: [61, 62]:

94 A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth

. ArCH=N-NHC6H5 + NaNH2 + O2 → [ArCH=N ArNHN=C3NO(=O)-C6H5 . . . + NHC6H5 → ArC =NH + NHC6H5] → HOOC-C3N3(Ar)-C6H5 (39)

ArC(=NH)-NHC6H5 (80%) (33) where, Ar = C6H5, C6H4CH3, C6H4OCH3, C6H4Br. Reacting a phenylhydrazones also certain It is known that the Sommelet Regrouping in heterocyclic aldehydes. trialkylbenzylammonium salts in tertiary amines Known that the Smiles Isomerization of substituted containing o-alkylbenzyl group, under the action of aromatics (diaryl ethers diarilsulfids, sulfoxids, strong bases [70-72]: + sulfonyl, aryl esters of carboxylic acids and sulphonic C6H5-CH(R)-N R2'-CH2R" → aromatic) under the action of alkalis resulting [CHR=C6H4-CH(R")-NR3'] → intramolecular nucleophilic substitution [63-66]: CH2R-C6H4-CH(R")-NR2' (40)

R-C6H3(ZH)Y-С6Н4-R'→ It is known that the Stevens intramolecular

[R-C6H3(Z-)-Y-C6H4-R'→ rearrangement of quaternary ammonium salts of

R-C6H3(Y-)-Z-C6H4-R'] → tertiary amines in the presence of bases [73]: + - R-C6H3(YH)-Z-С6Н4-R' (34) RCH2-N (CH2Ar)(CH3)2Br → where, R = H, CH3, Hal; R' = H, NO, NO2, Hal; Y = S, RCH(CH2Ar)-N(CH3)2 (41)

SO, SO2, SO2O, O, COO; ZH = OH, SH, NHOH, NH2, Ability ArCH2-group migration depends on the

SO2H, OR", CONHR", SO2NHR", NHR" (where R" = nature of the substituent in the aryl ring, and increased

Alk, Ar). in the series from NO2 to CH3O:

The reaction is facilitated by the ability to increase CH3O < H, CH3 < Cl, Br, J < NO2. the nucleophilic anion of Z- and in the presence of Undergo a similar rearrangement of salt sulfonium electron-acceptor R'. arsonium, stibonium, phosphonium. Similarly rearranged compound containing both one The transformation in the series aminimids similar aromatic condensed system radicals, heterocyclic, or rearrangement Stevens rearrangement called aliphatic radical: Wawzonek [74-78]: + Cl-C5H2N(NHCOCH3)-S-C6H4NO2 → CH3-CO-N–N R(CH3)2 →

Cl-C5H2N(SCH3)-N(COCH3)-C6H4NO2 (35) CH3-CO-NR-N(CH3)2 (42)

C6H4(NO2)-SO-CH2CH2OH → where, R = C6H5CH3, CH2-CH=CH2.

C6H4(NO2)-O-CH2CH2SOH (36) In the case of R'= Alk aminimid decomposed to If the nucleophilicity of the anion Y- and Z- is close, isocyanate and a tertiary amine: + the rearrangement may be reversible, e.g.: RCO-N–N R'(CH3)2 →

H3C-C6H3(SO2H)-O-C6H4NO2 ↔ RN=C=O + (CH3)2NR' (43)

H3C-C6H3(OH)-SO2-C6H4NO2 (37) It is known that the Tiemann Rearrangement Reaction Truce-Smiles rearrangement of amidoximes carboxylic acid derivatives of urea by o-metildiarilsulfons under the n-C4H9Li: reaction with benzenesulfonyl chloride (C6H5SO2Cl)

R-C6H3(CH3)-SO2Ar → R-C6H3(SO2H)-CH2Ar (38) and subsequent hydrolysis [79, 80]:

Unlike Smiles rearrangement in this case easily R'R"N-CR=NOH + C6H5SO2Cl → migrate unactivated aromatic residue, in particular R'R"N-CR=N-OSO2C6H5 → R'R"N-CO-NHR (44) naphthyl. where, R = C6H5, CH2C6H5. Known that the Sawdey Rearrangement Speed rearrangement depends on the inductive 4-arilazooksazolidonov-5-substituted in 1,2,4-triazole effect of the substituents R' and R" decreases in the under the presence of bases (KOH) [67-69]: order from CH3 to H:

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, 95 Arsenic, Antimony and Bismuth

R = R' = CH3 > R = CH3, R' = C6H5 > R = R' = H. Known that the Stieglitz Rearranging

When the cyclic rearrangement occurs amidoximes triarylmethylhydroxylamines in Anils under the PCl5: expansion cycle: ArAr2'C-NHOH → Ar2'C=N-Ar +

C6H11N=N-OSO2C6H4CH3 → C6H11N2O (45) ArAr'C=N-Ar' (51) Amidoximes can easily be prepared from nitriles by The presence of electron-donor substituents in the the action of NH2OH. aromatic ring facilitates the rearrangement. The ability Known that the Fischer-Hepp Rearrangement of of the aryl moiety to migrate decreases in the series aromatic N-nitrosamines in n-nitrosoaniline under the from (CH3)2NC6H4 to O2NC6H4: (CH3)2NC6H4 > influence of acids [81-84]: CH3OC6H4 > CH3C6H4 > C6H5 > O2NC6H4.

R-C6H4-N(R')-NO → [R-C6H4-N+H(R')-NO ↔ Thus, the analysis of classical rearrangements + R-C6H4-NHR' + NO ] → R-C6H3(NHR')(NO) (46) showed that the nitrogen atom may be replaced by where, R = Alk, Hal, COOH; R' = Alk, Ar. atoms of phosphorus, arsenic, antimony and bismuth. Regrouping also exposed naphthalene derivatives. This opens up new possibilities for the synthesis of For example, N-nitroso-N-alkyl-β-naphthylamines are new organometallic compounds of phosphorus, converted into α-nitroso-N-alkyl-β-naphthylamines. arsenic, antimony and bismuth. Known that the Chapman Thermal isomerization of 3. Results and Discussion aromatic iminoether in N, N-diarilamidy aromatic carboxylic acids [85-87]: We propose to modify the Bamberger Ar-C(OAr")=N-Ar' → Ar-CO-N(Ar")-Ar' (47) rearrangement arylnitr (phosphine, arsine, stibine, where, Ar, Ar' = C6H5, C6H4Cl, C6H4NO2, C6H4OCH3, bismuthine) amine in o-nitro (P, As, Sb, Bi) anilines

C6H4CH3; Ar" = C6H4R (where R = H, F, Cl, Br, NO2, with acids (H2SO4, CH3COOH, HCOOH):

Alk), naphtyl. R-C6H5-ER'-NO2 → [R-C6H5-E+HR'-NO2 →

Electron accept substituents in the radical Ar" R-C6H5-E+HR'-O-NO → R-C6H4=E+HR'(NO2)] → facilitate and electron-donor substituents impede R(NO2)C6H4-EHR' (52) reaction. where, E = N, P, As, Sb, Bi; R = H, CH3, NO2, Cl, Br;

It is known that the Chattaway Rearrangement of N, R' = H, CH3. N-diatsilanilins in N-acetylaminoarilketons in the We propose to modify the Bamberger presence of ZnCl2 [88-94]: rearrangement arylhydroxyl (phosphine, arsine, stibine,

RC6H4-N(COR)2 → RC6H3(4-COR)(NHCOR) (48) bismuthine) amines in n- (phosphine, arsine, stibine, where, R = Alk, C6H5; R' = H, Cl, Br, CH3. bismuthine) aminophenols in the presence of mineral

Known that the Schonberg Thermal rearrangement acids (H2SO4): + diaryltioncarbonats in diaryltiolcarbonats [95-100]: R-C6H4-NHOH → [R-C6H4-NHO H2 + H2O → - ArO-C(=S)-OAr → [Ar…S…S…C-OAr] → R(HO)C6H2=NH] → R(HO)C6H3 NH2 (53) Ar-S-C(=O)-OAr (49) where, E = N, P, As, Sb, Bi. Electron-donating substituents at the ortho or We propose to modify the Barton rearrangement para-position to the oxygen atom markedly facilitate photochemical rearrangement nitr (arsen-, antimon-, the reaction. bismuth) in a nitroso (P, As, Sb, Bi) compounds by The reaction used to prepare and recover intramolecular exchange nitrozo(phosphorinozo, thiophenols and phenols: arsinozo, stibinazo, bismuthazo) groups on hydrogen

2ArOH + SOCl2 → ArO-C(=S)-OAr → bonded to γ-carbon atom followed by isomerization in - ArS-CO-OAr + HO → ArSH + H2 → ArH (50) ox (P, As, Sb, Bi) or dimerization:

96 A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth

EO2-C4H8-CH(H)-C3H6CH3 + hν → R'C4H2NR=EH → R'C4H2N2-EHR (60)

[O*- C4H8-CH(H)-C3H6CH3 + *EO → where, E = N, P, As, Sb, Bi; R = Alk, CH2COOC2H5;

HO-C4H8-C*H-C3H6CH3 + *EO] → R' = Alk, Hal, NO2, (CH3)2N, CONH2.

HO-C4H8-CH(EO)-C3H6CH3 → Dimer + We propose to modify the

HO-C4H8-C(=EOH)-C3H6CH3 (54) Semmler-Wolff-Schroeter rearrangement of oxi(P, As, where, E = N, P, As, Sb, Bi. Sb, Bi)mes α, β-Unsaturated alicyclic ketones in We propose to modify the Beckmann aromatic am(arsines, stibines, bismuth)ines under the

Rearrangement by replacing nitrogen atoms per atom action of a mixture of the Beckmann ((CH3CO)2 + o of phosphorus, arsenic, antimony and bismuth: CH3COOH, HCl, 100 C):

RR'C=E-OH → R'CO-EH-R (55) RC6H8=EOH + (CH3CO)2 + CH3COOH → where, E = N, P, As, Sb, Bi. [RC6H8=EOCOCH3 → + We propose to modify the Wallach rearrangement RC6H8=E HOCOCH3] → azoxy (P, As, Sb, Bi) benzene p-oxiazo (P, As, Sb, Bi) RC6H5-EH2 (61) benzene by heating under the action of sulfuric acid: where, E = N, P, As, Sb, Bi; R = H, Alk, pyridyl.

H-C6H4-E1=E2(O)-C6H5 → We propose to modify the Sus photochemical

HO-C6H4-E1=E2-C6H5 (56) rearrangement of o-hinondi (P, As, Sb, Bi) azides in where, E1 and E2 = N, P, As, Sb, Bi. ketenes, accompanied by a narrowing of the cycle by We propose to modify the Gabriel Rearrangement replacing the nitrogen atoms of phosphorus, arsenic, E-carboxymethyl and E-phenacylphalimids in a antimony and bismuth: + - - + substituted 1,4-dioksiizohinoliny under the action of C10H6(=O)=E =E ↔ C10H6(O )-E =E + hν → + - + sodium alcoholate RONa: [C10H6 (O ) ↔ C10H6 (=O):] →

C6H4(CO)2ECH2COR → C9H6=C=O +H2O →C9H6-COOH (62)

C6H4(COOR')-COEHCH2COR → where, E = N, P, As, Sb, Bi.

C9H4E(OH)(OH)COR (57) We propose to modify the The thermal Claisen where, E = N, P, As, Sb, Bi; R = OR', n-C6H4R" (R" = rearrangement by replacing nitrogen atoms

H, CH3, OCH3, Cl, Br, NO2); R' = CH3, C2H5. phosphorus, arsenic, antimony and bismuth. Like the We propose to modify the Hofmann rearrangement allylic ethers rearranged ene (P, As, Sb, Bi) amines, by replacing nitrogen atoms per atom of phosphorus, and forming (P, As, Sb, Bi) mine (phospho, APCO, arsenic, antimony and bismuth: stibolyl, bismuth-Claisen rearrangement-phospho,

R-CO-EH2 + Br2 → [R-E=C=O] arso, stibo, bismutho-Klaisen) :

+ H2O → R-EH2 (58) CH2=CH-CH2-NR-CH=C(R)-CH3 → where, E = N, P, As, Sb, Bi. CH2=CH-CH2-C(R)(CH3)-CH=NR (63)

We propose to modify the Hofmann A.W. Martius where, E = C, N, S, P, As, Sb, Bi; R = Alk, C6H5. thermal rearrangement hydrochlorides E-alkylanilines We propose to modify the Newman-Kwart thermal in C-alkylanilines: rearrangement of O-aryltiocarbamats in + - C6H5NHR.HX → [C6H5NH2 + R + X ] → S-aryltiocarbanats:

R-C6H4NH2.HX (59) Ar-O-C(=S)-ER2 → Ar-S-C(=O)-ER2 (64) where, E = N, P, As, Sb, Bi; X = Cl, Br, J. where, E = N, P, As, Sb, Bi. We propose to modify the Dimroth rearrangement We propose to modify the Orton Rearrangement by replacing nitrogen atoms per atom of phosphorus, E-halo-E-acylarilamins in o- and n-haloaryl (P, As, Sb, arsenic, antimony and bismuth: Bi) under the action of acid amides (CH3COOH):

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, 97 Arsenic, Antimony and Bismuth

R-C6H4-E(X)COR' + HX (KOH):

→ [2R-C6H4-EHCOR' + X2] ArNHN=C3EO(=O)-C6H5 →

→ R-C6H3(EHCOR')(p-X) + HOOC-C3E3(Ar)-C6H5 (69)

R-C6H3(EHCOR')(o-X) (65) where, E = N, P, As, Sb, Bi; Ar = C6H5, C6H4CH3, where, E = N, P, As, Sb, Bi; X = Cl, Br, J. C6H4OCH3, C6H4Br. We propose to modify the Pistschimuka aromatic We propose to modify the Sommelet rearrangement conversion (P, As, Sb, Bi) amines azo (P, As, Sb, Bi) by replacing nitrogen atoms per atom of phosphorus, compound under the action of selenium (or sulfur) and arsenic, antimony and bismuth: + merkuratsetamide: C6H5-CH(R)-E R2'-CH2R" →

2ArEH2 + Se + (CH3CONH)2Hg → [CHR=C6H4-CH(R')-ER3'] →

Ar-E=E-Ar (66) CH2R-C6H4-CH(R")-ER2' (70) where, E = N, P, As, Sb, Bi; Ar = C6H4R, R = H, CH3, where, E = N, P, As, Sb, Bi.

OCH3, NO2, Cl, N(CH3)2. We propose to modify the Stevens intramolecular We propose to expand and modify Robev rearrangement quaternary (P, As, Sb, Bi) ammonium regrouping fenylhydraz (phospho, arso, stibo, salts in the tertiary (phosphins, arsines, stibines, bismutho) new aromatic aldehydes in new bismuthines) amines under the influence of bases: + - N-phenylamid (phosph, ars, stibo, bismuth)ins RCH2-E (CH2Ar)(CH3)2Br → reacting with alkalimetal amides (KNH2, NaNH2) in RCH(CH2Ar)-E(CH3)2 (71) + the presence of oxidants when heated: RCO-E–E R'(CH3)2 → RE=C=O + (CH3)2NR'(72)

ArCH=E-EHC6H5 + NaEH2 + O2 → where, E = N, P, As, Sb, Bi; R = C6H5CH3, . [ArCH*=EH + *EHC6H5 → CH2-CH=CH2. . ArC=EH + EHC6H5] → We propose to modify the Tiemann Rearranging

ArC(=EH)-EHC6H5 (67) amidoximes carboxylic acid in derivatives of urea by where, E = N, P, As, Sb, Bi. reaction with benzenesulfonyl chloride (C6H5SO2Cl) We propose to modify the Smiles isomerization of and subsequent hydrolysis: substituted aromatics P, As, Sb, Bi (diarilarsenids, R'R"E1-CR=E2OH + C6H5SO2Cl →

-phosphinoxids, -bismutons, aryl esters, P, As, Sb, Bi- R'R"E1-CR=E2-OSO2C6H5 → and aromatic carboxylic acids) under the action of R'R"E1-CO-E2HR (73) alkalis resulting intramolecular nucleophilic where, E1 = E2 = N, P, As, Sb, Bi; R = C6H5, substitution: CH2C6H5.

R-C6H3(ZH)-Y-С6Н4-R'→ We propose to modify the Fischer-Hepp - [R-C6H3(Z )-Y-C6H4-R'→ Rearrangement E-nitrozo aromatic (P, As, Sb, Bi) - R-C6H3(Y )-Z-C6H4-R']→ amine in n-nitrozo (P, As, Sb, Bi) anilines with acids:

R-C6H3(YH)-Z-С6Н4-R' (68) R-C6H4-E(R')-NO → [R-C6H4-E+H(R')-NO ↔ where, R = H, CH3, Hal; R’ = H, NO, NO2, Hal; Y = S, R-C6H4-EHR' + NO] → R-C6H3(EHR')(NO) (74)

SO, SO2, SO2O, O, COO; ZH = OH, SH, NHOH, NH2, where, E = N, P, As, Sb, Bi; R = Alk, Hal, COOH; R'

AsO2H, COSbHR, BiHR", AsHR" (where, R" = Alk, = Alk, Ar. Ar). We propose to modify the Chapman Thermal We propose to modify the Rearranging Sawdey by isomerization of aromatic iminoether in E, replacing nitrogen atoms per atom of phosphorus, E-diarilamids aromatic carboxylic acids: arsenic, antimony and bismuth by action of bases Ar-C(OAr")=NE-Ar' → Ar-CO-E(Ar")-Ar' (75)

98 A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth where, E = N, P, As, Sb, Bi; Ar, Ar' = C6H5, C6H4Cl, Beckmann, Wallach, Gabriel, Hofmann, Hofmann

C6H4NO2, C6H4OCH3, C6H4CH3; Ar" = C6H4R (where, A.W.-Martius, Dimroth, Semmler-Wolff-Schroeter,

R = H, F, Cl, Br, NO2, Alk), naphtyl. Sus, Claisen, Newman-Kwart, Orton, Pistschimuka, We propose to modify the Chattaway Robev, Smiles, Sawdey, Sommelet, Stevens, Tiemann, Rearrangement of E, E-diatsilanilinov in Fischer-Hepp, Chapman, Chattaway, Schonberg,

E-acyilaminoarylketons in the presence of ZnCl2: Stieglitz Rearrangements. R-C H -E(COR) → 6 4 2 Acknowledgments R-C6H3(4-COR)(EHCOR) (76) where, E = N, P, As, Sb, Bi. The authors would like to thank Ruben M. Savizky We propose to modify the Schonberg Thermal (Columbia University, New York), Peter C/Burns rearrangement diaryltioncarbonats in (Notre Dame, Indiana) and Chistopher L. Cahill diaryltiolcarbonats by replacement of the sulfur atom (George Washington University) for discussion of the to atoms of selenium and tellurium: results. ArO-C(=E)-OAr → References [Ar…E…E…C-OAr] → Ar-E-C(=O)-OAr (77) [1] Hughes, E. D., and Ingold, C. K. 1952. Quart. Rev. Chem. where, E = S, Se, Te; R = Alk, C6H5; R′ = H, Cl, Br, Soc. London 6: 48. CH . 3 [2] Bamberger, E., and Landsteiner, K. 1894. Ber. We propose to modify the Stieglitz Rearranging [3] Hughes, E. D., and Ingold, C. K. 1952. Quart. Rev. Chem. triarylmethylhydroxil (P, As, Sb, Bi) amines in en (P, Soc. London 6: 45. [4] Barton, D. H. R. 1960. J. Am. Chem. Soc. 82: 2640. As, Sb, Bi) iles under the PCl5: [5] Barton, D. H. R. 1961. J. Am. Chem. Soc 83: 4076. ArAr 'C-EHOH → 2 [6] Siginome, H., Sato, N., and Masamune, T. 1969. Ar2'C=E-Ar + ArAr'C=E-Ar' (78) Tetrahedron Letters 35: 3353. where, E = N, P, As, Sb, Bi. [7] Jones, J., Careth, L., and Marples, B. A. 1973. J. Chem. Soc. Perkin Trans. 11: 1143. 4. Conclusions [8] Akhtar, M. 1964. “Advances in Photochemistry.” Interscience 2: 263. The authors’ proposed new method of modifying [9] Kan, R. O. 1966. Organic Photochemistry. New York: Bamberger, Barton, Beckmann, Wallach, Gabriel, McGraw-Hill. Hofmann, Hofmann A.W.-Martius, Dimroth, [10] Wallach, O., and Belli, L. 1880. Ber 13: 525. [11] Bigelow, H. E. 1931. Chem. Rev 9: 139. Semmler-Wolff-Schroeter, Sus, Claisen, [12] Chi, S. H. 1967. J. Am. Chem. Soc. 89: 4975. Newman-Kwart, Orton, Pistschimuka, Robev, Smiles, [13] Hendley, E. C., and Deiffey, D. 1970. J. Org. Chem. 35: Sawdey, Sommelet, Stevens, Tiemann, Fischer-Hepp, 3579. Chapman, Chattaway, Schonberg, Stieglitz [14] Cox, R. A. 1974. J. Am. Chem. Soc. 96: 1059. [15] Dolenko, A., and Buncel, E. 1974. Canad. J. Chem. 52: Rearrangements opens a new opportunity to obtain 623. new previously unknown organic compounds of [16] Gabriel, S., and Colman, J. 1900. Ber. 980: 2630. arsenic, antimony and bismuth. Halides of arsenic, [17] Allen, C. F. H. 1950. Chem. Rev. 47: 284. antimony and bismuth are convenient starting [18] Hill, H. M. 1965. J. Org. Chem. 30: 620. [19] Henecka, H. 1950. Chemie Der materials for the formation of C-P, C-As, C-Sb, Beta-Dicarbonylverbindungen. Berlin: Springer. C-Bi-bonds in the preparation of various [20] Hofmann, A. W. 1881. Ber.14: 2725. organometallic compounds which are more widely [21] Wallis, E. S., and Lane, J. F. 1949. Org. React. 3: used as catalysts, pharmaceuticals. We have proposed 267-306. [22] Shioiri, T. 1991. Comp. Org. Syn. 6: 800-806. a new mechanism for possible Bamberger, Barton, [23] Baumgarten, H., Smith, H., and Staklis, A. 1975. The

A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, 99 Arsenic, Antimony and Bismuth Journal of Organic Chemistry 40 (24): 3554-3561. [55] Relles, H. M., and Pizzoloto, G. 1968. J. Org. Chem. 33: [24] Almond, M. R., Stimmel, J. B., Thompson, E. A., and 2249. Loudon, G. M. 1993. “Hofmann Rearrangement under [56] Orton, K. L., and Jons, W. J. 1909. J. Chem. Soc. 95: Mildly Acidic Conditions Using [I,I-Bis (Trifluoroacetoxy)] 1456. Iodobenzene: Cyclobutylamine Hydrochloride from [57] Scott, J. M. W. 1960. Can. J. Chem. 38: 2441. Cyclobutanecarboxamide.” Org. Synth. Coll. 8: 132. [58] Scott, J. M. W., and Martin, J. G. 1966. Can. J. Chem. 44: [25] Keillor, J. W., and Huang, X. 2004. “Methyl Carbamate 2901. Formation via Modified Hofmann Rearrangement [59] Pistschimuka, R. S. 1940. J. Org. Chem. (USSR) 10: 305. Reactions: Methyl N-(p-Methoxyphenyl) Carbamate.” [60] Pistschimuka, R. S. 1959. Ukrain J. Org. Chem. 25: 99. Org. Synth. Coll. 10: 549. [61] Robev, S. 1954. Doklads Bulgar Acad. Science 7: 37. [26] Hofmann, A. W., and Martius, C. A. 1871. Ber. 4: 742. [62] Robev, S. 1955. Doklads Acad. Science USSR 101: 277. [27] Hughes, E. D., and Ingold, C. K. 1952. Quart. Rev. 6: 45. [63] Naumov, U. A., and Grandberg, I. I. 1966. Uspehi Chimii [28] Fischer, A., Topson, R. D., and Vaughan, J. 1960. J. Org. 35: 21. Chem. 25: 463. [64] Warren, L. A., and Smiles, S. 1930. J. Chem. Soc. 957: [29] Odata, Y., and Tokagi, K. 1970. J. Org. Chem. 35: 1642. 1327. [30] Dimroth, O. 1909. Ann. 364: 183. [65] Bunnett, J. F., and Zahler, R. E. 1951. Chem. Rev. 49: [31] Wohren, M. 1969. Z. Chem. 9: 241. 362. [32] Jacquier, R., Lopez, H., and Maury, G. 1973. J. [66] Truce, W. E., and Ray, W. J. 1959. J. Am. Chem. Soc. 81: Heterocyclic. Chem. 10: 755. 481-484. [33] Saddiqui, M., Shakil, S., and Stevens, M. F. G. 1974. J. [67] Schneller, S. W. 1973. Int. J. Sulfur Chem. 8: 486. Chem. Soc. Perkin Trans. 5: 609. [68] Sawdey, G. W. 1957. J. Am. Chem. Soc. 79: 1955. [34] Brown, D. J. 1968. Mechanism of Molecular Migrations. [69] Browne, E. J., and Polya, J. B. 1962. J. Chem. Soc. 2: Interscience. 5149. [35] Semmler, F. W. 1892. Ber. 25: 3352. [70] Sommelet, M. 1937. C. r. 205: 56. [36] Wolff, L. 1902. Ann 322: 351. [71] Hauser, C. R. 1953. J. Am. Chem. Soc. 75: 2660. [37] Schroeter, G. 1930. Ber 63: 1308. [72] Pine, S.H., and Sanchez, B. L. 1969. Tetrahedron 25: [38] Davey, J., Keene, B. R. T., and Mannering, G. 1967. J. 1319. Chem. Soc.5: 120. [73] Stevens, T. S. 1928. J. Chem. Soc. 3193: 1932. [39] Royer, R. 1970. Bull. Soc. Chim. France 3: 1026. [74] Wawzonek, S., and Yeakey, E. 1960. J. Am. Chem. Soc. [40] Nunn, A. J., and Rowell, F. J. 1973. J. Chem. Soc. Perkin 82: 5718. Trans. I 22: 2697. [75] Wadsworth, W. S. 1966. J. Org. Chem. 31: 1704. [41] Sus, O. 1944. Ann556: 65. [76] Jacobson, A. E., and Parfitt, R. T. 1967. J. Org. Chem. 32: [42] Smith, P. A., and Berry, W. L. 1961. J. Org. Chem. 26: 27. 1894. [43] Sus, O., Munder, J., and Steppan, H. 1962. Angew. Chem. [77] Adams, B. L., and Kovacic, P. 1974. J. Org. Chem. 39: 74: 985. 3090. [44] De, M. P. 1963. Molecular Rearrangements. London: [78] De, M. P. 1963. Molecular Rearrangements. London: Interscience. Interscience. [45] Claisen, L. 1912. Ber. 45: 3157. [79] Tiemann, F. 1891. Ber. 24: 4162. [46] Marwell, E. N., Stephenson, J. L., and Ong, J. 1965. J. [80] De, M. P. 1963. Molecular Rearrangements. New York: Am. Chem. Soc. 87: 1265. Interscience. [47] Jefferson, A., and Scheinmann, F. 1968. Quart. Rev. 22: [81] Fischer, O., and Hepp, E. 1886. Ber. 19: 2991. 391. [82] Steel, G., and Williams, D. L. 1969. Chem. Comm. 1: [48] Andrews, J. T. S. 1970. Angew. Chem. 82: 779. 975. [49] Mortensen, J. Z., Hedegaard, B., and Zawesson, S. 1971. [83] Baliga, B. T. 1970. J. Org. Chem. 35: 2031. Tetrahedron 27: 3831. [84] Williams, D. L., and Wilson, J. A. 1974. J. Chem. Soc. [50] Jain, A. C., and Anand, S. M. 1974. J. Chem. Soc. Perkin Perkin Trans. 2: 13. Trans. 3: 329. [85] Chapman, A. W. 1925. J. Chem. Soc. 127: 1992. [51] Hartke, K., and Goelz, G. 1974. Chem. Ber. 107: 566. [86] Relles, H. M. 1968. J. Org. Chem. 33: 2245. [52] Gilchrist, T. L., and Storr, R. C. 1972. Organic Reactions [87] Wheeler, O. H., Roman, F., and Rosado, O. 1969. J. Org. and Orbital Symmetry. Cambridge: Univer. Press. Chem. 343: 966. [53] Newman, M. S. 1966. J. Org. Chem. 31: 3980. [88] Chattaway, D. F. 1904. J. Chem. Soc. 85: 386. [54] Kwart, H., and Evans, E. R. 1966. J. Org. Chem. 31: 410. [89] Derick, C. G., and Bornmann, J. H. 1913. J. Am. Chem.

100 A New Approach to Modification of Rearrangements in Metallorganic Chemistry of Phosphorus, Arsenic, Antimony and Bismuth Soc. 35: 1269. [96] Berg, S. S., and Petrov, V. 1952. J. Chem. Soc. 26: 3713. [90] Dippy, J. F., and Moss, V. 1952. J. Chem. Soc. 2205. [97] Newman, M. S., and Hay, P. M. 1953. J. Am. Chem. Soc. [91] Schonberg, A., 1930. Ann. 483: 107. 75: 2322. [92] Krauch, C. H., Farid, C., and Schenck, G. O. 1965, Chem. [98] Saunders, W. H., and Ware, J. C. 1958. J. Am. Chem. Soc. Ber. 98: 3102. 80: 3328. [93] Kwart, H., and Evans, E. R. 1966. J. Org. Chem. 31: 410. [99] Kovacic, P., Lowery, K. M., Field, K. W. 1970. Chem. [94] Newman, M. S., and Karner, H. A. 1966. J. Org. Chem. Rev. 70: 664. 31: 3980. [100] Mayo, P. 1963. Molecular Rearrangements. London: [95] Stieglitz, J., and Vosburgh, I. 1913. Ber. 46: 2151. Interscience.