Impact of Gene Flow from Cultivated Beet on Genetic Diversity of Wild Sea Beet Populations

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Gene Flow from Cultivated Beet on Genetic Diversity of Wild Sea Beet Populations MEC769.fm Page 1733 Wednesday, September 29, 1999 9:43 AM Molecular Ecology (1999) 8, 1733–1741 ImpactBlackwell Science, Ltd of gene flow from cultivated beet on genetic diversity of wild sea beet populations DETLEF BARTSCH,* MARC LEHNEN,* JANET CLEGG,† MATTHIAS POHL-ORF,* INGOLF SCHUPHAN* and NORMAN C. ELLSTRAND† *Chair of Biology V, Ecology, Ecochemistry and Ecotoxicology, Aachen University of Technology — RWTH Aachen, D-52056 Aachen, Germany, †Department of Botany and Plant Sciences, University of California, Riverside, CA 92521–0124, USA Abstract Gene flow and introgression from cultivated plants may have important consequences for the conservation of wild plant populations. Cultivated beets (sugar beet, red beet and Swiss chard: Beta vulgaris ssp. vulgaris) are of particular concern because they are cross- compatible with the wild taxon, sea beet (B.vs. ssp. maritima). Cultivated beet seed pro- duction areas are sometimes adjacent to sea beet populations; the numbers of flowering individuals in the former typically outnumber those in the populations of the latter. In such situations, gene flow from cultivated beets has the potential to alter the genetic composition of the nearby wild populations. In this study we measured isozyme allele frequencies of 11 polymorphic loci in 26 accessions of cultivated beet, in 20 sea beet accessions growing near a cultivated beet seed production region in northeastern Italy, and 19 wild beet accessions growing far from seed production areas. We found one allele that is specific to sugar beet, relative to other cultivated types, and a second that has a much higher frequency in Swiss chard and red beet than in sugar beet. Both alleles are typically rare in sea beet populations that are distant from seed production areas, but both are common in those that are near the Italian cultivated beet seed production region, supporting the contention that gene flow from the crop to the wild species can be sub- stantial when both grow in proximity. Interestingly, the introgressed populations have higher genetic diversity than those that are isolated from the crop. The crop-to-wild gene flow rates are unknown, as are the fitness consequences of such alleles in the wild. Thus, we are unable to assess the long-term impact of such introgression. However, it is clear that gene flow from a crop to a wild taxon does not necessarily result in a decrease in the genetic diversity of the native plant. Keywords: Beta vulgaris, gene flow, genetic diversity, introgression, plant conservation genetics, genetically modified plants Received 7 March 1999; revision received 15 June 1998; accepted 15 June 1999 Introduction populations, gene flow may lead to significant evolutionary change in the recipient populations (e.g. Anderson 1949). Domesticated plants often have the potential to spon- Crop-to-weed gene flow will have important practical taneously hybridize with those wild relatives that are and economic consequences if it promotes the evolution growing in close proximity (Ellstrand et al. 1999). Such of more aggressive weeds (e.g. Anderson 1949; Barrett hybridization may lead to gene flow: ‘the incorporation 1983). Hybridization with domesticated species has also of genes into the gene pool of one population from one been implicated in the extinction of certain wild crop or more populations’ (Futuyma 1998). If new or locally relatives (e.g. Small 1984; Ellstrand & Elam 1993). Also, rare alleles from the domesticated plants persist in wild because gene flow tends to genetically homogenize popu- lations (reviewed by Slatkin 1987) and because crops Correspondence: D. Bartsch. Fax: +49 (241) 8888 182; E-mail: are typically genetically depauperate compared to their [email protected] wild relatives (Ladizinsky 1985), overwhelming gene flow © 1999 Blackwell Science Ltd MEC769.fm Page 1734 Wednesday, September 29, 1999 9:43 AM 1734 BARTSCH ET AL. Fig. 1 Geographical distribution of sea beet accessions surveyed in this study (see Table 1). from crops is expected to deplete genetic diversity in wild natural crosses between sugar beet and sea beet in sugar populations (Ellstrand et al. 1999). beet seed production areas, with sea beet as the pollen Over the last decade, much attention has been focused parent. on crop-to-weed hybridization as a potential avenue for The genus Beta is endemic to the Old World. Cultiv- the escape of crop transgenes into natural populations ated beets have been known for more than 2000 years in the (e.g. Colwell et al. 1985; Dale 1994; Darmency 1994). eastern Mediterranean region (Ford-Lloyd & Williams Although that narrow issue has been the topic of numer- 1975). In Europe, wild B.vs. ssp. maritima is largely a coastal ous theoretical, empirical, and synthetic publications, the taxon, with a wide distribution from the Cape Verde general issue of the population genetic consequences of and Canary Islands in the west, northward along Europe’s the flow of alleles from domesticated plants (whether Atlantic coast to the North and Baltic Seas. It extends genetically engineered or not) to their wild relatives has eastward through the Mediterranean region into Asia received scant attention. where it occurs in Asia Minor, in the central and outer Empirical work has been largely focused in two areas: Asiatic steppes and desert areas as far as western India experiments addressing whether a crop and a wild rel- (Letschert 1993). There is no crossing barrier between ative are able to hybridize under field conditions (e.g. wild and cultivated forms of B. vulgaris (Bartsch & Pohl- Langevin et al. 1990; Arias & Rieseberg 1994; Arriola & Orf 1996). Ellstrand 1996; Darmency et al. 1998), and descriptive This study focuses on one of Europe’s most important studies addressing whether introgression from crops has sugar beet seed production districts in northeastern Italy occurred in populations of adjacent wild relatives (e.g. (Fig. 1). Domesticated beet seed production has been in Oka & Chang 1961; Wendel & Percy 1990; Whitton et al. progress in this region for more than 100 years, with 1997; Bartsch & Ellstrand 1999). However, we are not an intensification since the 1950s. All subspecies of B. aware of any study that addresses how population vulgaris are usually wind pollinated, but insect pollination genetic diversity of natural populations is altered under is also possible. In northeastern Italy, commercial sugar gene flow from a crop relative. beet seeds are produced on 4500 ha, each ha containing Therefore, the aim of this study is to examine how gene approximately 50 000 flowering plants. Furthermore, flow and introgression from cultivated beet (Beta vulgaris small farmers in the region grow red beet and Swiss ssp. vulgaris (DC.) HELM) to sea beet (B.vs. ssp. maritima chard for private seed production, which may be an addi- (L.) ARVANG) has impacted upon the genetic diversity tional source of gene flow. Wild sea beet populations of effected wild populations. To date, no population occur on the nearby coastal plain, sometimes within genetic study has been conducted in this gene flow 1000 m of the cultivated fields. All red beet and Swiss direction in Beta, but there are several reports of gene chard cultivars are diploid, as is the wild sea beet. The flow from wild to cultivar populations. Weed beets have most common varieties of sugar beet are diploid. How- appeared in sugar beet fields in France (Boudry et al. ever, some tetraploid sugar beet cultivar lines are used to 1993; Desplanque et al. 1999) and the UK (Hornsey & breed triploid varieties by crosses with diploids (Barocka Arnold 1979; Ford-Lloyd & Hawkes 1986) as a result of 1985). Previous studies demonstrated that genetically © 1999 Blackwell Science Ltd, Molecular Ecology, 8, 1733–1741 MEC769.fm Page 1735 Wednesday, September 29, 1999 9:43 AM GENE FLOW FROM CULTIVATED BEET TO SEA BEET 1735 Table 1a Cultivated Beta vulgaris accessions surveyed in this study No. Taxon Variety/Type Accession Origin Ploidy N 01 B. vulgaris ssp. vulgaris sugar beet USDA FC172 USA 2 15 02 KWS-2N1009 Germany 2 30 03 KWS-Kavetina Germany 3 49 04 KWS-Rizor Germany 2 48 05 KWS-246 Italy 2 39 06 KWS-247 Italy 3 41 07 Betaseed-4035 USA 2 25 08 Betaseed-4581 USA 2 24 09 Betaseed-4776 USA 2 31 10 SES-HH103 USA 2 29 11 Spreckels-IV2R USA 2 30 12 Spreckels-NB2 USA 2 34 13 Spreckels-SS781 USA 2 85 14 Spreckels-VB7R USA 2 26 15 B. vulgaris ssp. vulgaris Swiss chard Dark Green USA 2 70 16 Fordhook USA 2 21 17 Lucullus Germany 2 21 18 Rhubarb USA 2 39 19 Glatter Silber Germany 2 20 20 B. vulgaris ssp. vulgaris Red beet USDA W300C USA 2 32 21 Burpee USA 2 78 22 Detroit Dark Red USA 2 16 23 Red Ball USA 2 25 24 Tall Top USA 2 29 25 Forono Germany 2 20 26 Rubia Germany 2 20 N, number of individuals examined. based morphological markers that are crop specific occa- Materials and methods sionally occur in the wild populations, revealing that some gene flow occurs in this region from 2.25 × 108 flower- Plant materials ing sugar beets into populations of approximately 4 × 104 flowering wild beets over an area of 4000 km2 (Bartsch & We assayed allozyme diversity in 69 wild and cultivated Schmidt 1997; Bartsch & Brand 1998). Beta accessions. We obtained samples from seed com- We used allozymes to characterize the genetic vari- panies (mostly diploid, but also one triploid, sugar beet ation within accessions of cultivated beet (sugar beet, material), from international plant genetic resource collec- Swiss chard, and red beet), accessions of wild sea beet tions or from collecting directly from wild populations adjacent to the cultivated beet seed production region of (Table 1a,b). Accessions were selected to represent a wide northeastern Italy, and accessions of wild sea beet from geographical range of wild beets (Fig.
Recommended publications
  • Tolerance of Vegetable Crops to Salinity M.C
    Scientia Horticulturae 78 (1999) 5±38 Tolerance of vegetable crops to salinity M.C. Shannon*, C.M. Grieve U.S. Salinity Laboratory, Department of Agriculture, Agricultural Research Service, 450 W. Big Springs Road, Riverside, CA 92507, USA Abstract Global constraints on fresh water supplies and the need to dispose of agricultural, municipal, and industrial waste waters have intensified interest in water reuse options. In many instances, the value of the water is decreased solely because of its higher salt concentration. Although quantitative information on crop salt tolerance exists for over 130 crop species, there are many vegetables which lack definitive data. Vegetable crops are defined as herbaceous species grown for human consumption in which the edible portions consist of leaves, roots, hypocotyls, stems, petioles, and flower buds. The salt tolerance of vegetable species is important because the cash value of vegetables is usually high compared to field crops. In this review some general information is presented on how salinity affects plant growth and development and how different measurements of salinity in solution cultures, sand cultures, and field studies can be reconciled to a common basis. The salt tolerance of vegetables has been condensed and reported in a uniform format based on the best available data. Discrepancies and inconsistencies exist in some of the information due to differences in cultivars, environments, and experimental conditions. For a great number of species little or no useful information exists and there is an obvious need for research. Published by Elsevier Science B.V. Keywords: Salt tolerance; Ion composition Contents 1. Introduction ............................................................ 7 1.1.
    [Show full text]
  • EC Directive 92/43 on the Conservation of Natural Habitats and of Wild Fauna and Flora Citation for Special Area of Conservation (SAC)
    EC Directive 92/43 on the Conservation of Natural Habitats and of Wild Fauna and Flora Citation for Special Area of Conservation (SAC) Name: Chesil and the Fleet Unitary Authority/County: Dorset SAC status: Designated on 1 April 2005 Grid reference: SY630795 SAC EU code: UK0017076 Area (ha): 1631.63 Component SSSI: Chesil Beach and The Fleet SSSI, Portland Harbour Shore SSSI, West Dorset Coast SSSI Site description: The Fleet is the largest example of a lagoonal habitat in England and has features of both lagoonal inlets and percolation lagoons. It is bordered by the fossil shingle barrier beach structure of Chesil Beach, through which sea water percolates into the lagoon, but most of its water exchange occurs through the narrow channel that links it to Portland Harbour. A low freshwater input produces fully saline conditions throughout most of the Fleet, with reduced salinity occurring only in the west. The lagoon is extremely sheltered from wave action and has weak tidal streams, except in the eastern narrows and entrance channel. The tidal range is much smaller and temperature range far greater than on the open coast. The lagoon supports extensive populations of two species of eelgrass Zostera and three species of tasselweed Ruppia, including the rare spiral tasselweed R. cirrhosa, and a diverse fauna that includes a number of nationally rare and scarce species. The 28 km-long shingle bar of Chesil Beach, with the contiguous Portland Harbour shore, is an extensive representative of perennial vegetation of stony banks, and most of it is relatively undisturbed by human activities. Much of the shingle bar is subject to wash-over and percolation in storm conditions and is therefore sparsely vegetated.
    [Show full text]
  • South Gare Plant List 01July2019
    South Gare Plant List - 1st July 2019 Scien9fic name English Name Achillea millefolium Yarrow Agros9s stolonifera Creeping Bent Alisma plantago-aqua9ca Water-plantain Alliaria pe9olata Garlic Mustard Allium vineale Crow Garlic Ammophila arenaria Marram Anacamp9s pyramidalis Pyramidal Orchid Anisantha sterilis Barren Brome Anthyllis vulneraria Kidney Vetch An9rrhinum major Snapdragon Arcum minus Lesser Burdock Armeria mari9ma Thri Arrhenatherum ela9us False Oat-grass Artemisa mari9ma Sea Wormwood Artemisa vulgaris Mugwort Asplenium adiantum-nigrum Black Spleenwort Aster tripolium Sea Aster Astragalus danicus Purple Milk-Vetch Atriplex hulmeana Stace p144 Atriplex prostrata x A.liVoralis Atriplex laciniata Frosted Orache Atriplex liVoralis Grass-leaved Orache Atriplex prostrata Spear-leaved Orache Bellis perennis Daisy Bergenia crassifolia Elephant's-ears Beta vulgaris Sea Beet Blackstonia perfoliata Yellow-wort Bolboschoenus mari9mus Sea Club-rush BriZa media Quaking-grass Bromus hordaceous So Brome Buddleia davidii BuVerfly-Bush Cakile mari9ma Sea Rocket Calystegia silva9ca Large Bindweed Campanula rotundifolia Harebell Capsella bursa-pastoris Shepherd's-purse Cardamine pratensis Cuckooflower Carduus nutans Musk Thistle Carex arenaria Sand Sedge Carex binerva Green ribbed Sedge Carex demissa Common Yellow Sedge Carex flacca Glaucous Sedge Carex hirta Hairy Sedge Carlina vulgaris Carline Thistle Catapodium marinum Sea Fern-grass !1 Catapodium rigidum Fern-grass Centaurea nigra Common Knapweed Centaurea scabiosa Greater Knapweed Centaurium
    [Show full text]
  • Beets Beta Vulgaris
    Beets Beta vulgaris Entry posted by Yvonne Kerr Schick, Hamilton Horizons student in College Seminar 235 Food for Thought: The Science, Culture, and Politics of Food, Spring 2008. (Photo from flilkcr.com) Scientific Classification1 Kingdom: Plantae Division: Magnoliophyta Class: Magnoliopsida Order: Caryophyllales Family: Chenopodiaceae Genis: Beta Species: vulgaris Binomial name Beta vulgaris Etymology The beet is derived from the wild beet or sea beet (Beta maritima) which grows on the coasts of Eurasia.2 Ancient Greeks called the beet teutlion and used it for its leaves, both as a culinary herb and medicinally. The Romans also used the beet medicinally, but were the first to cultivate the plant for its root. They referred to the beet as beta.3 Common names for the beet include: beetroot, chard, European sugar beet, red garden beet, Harvard beet, blood turnip, maangelwurzel, mangel, and spinach beet. Botanical Description The beetroot, commonly called the beet, is a biennial plant that produces seeds the second year of growth and is usually grown as an annual for the fleshy root and young 1 Wikipedia Foundation, Inc., website: http://en.wikipedia.org/wiki/Beets. 2 A Modern Herbal website: http://www.botanical.com/botanical/mgmh/b/beetro28.html. 3 Health Diaries website: http://www.healthdiaries.com/eatthis/25-facts-about-beets.html. leaves. The Beta vulgaris has three basic varieties: chard, grown specifically for its leaves; beets, grown for its bulbous root, with edible leaves (with varieties in white, yellow and red roots); and sugar beets, grown for making sugar from the long, thick root. The beet is a root vegetable with purple-green variegated leaves.
    [Show full text]
  • The Sea Beet (Beta Vulgaris L. Ssp. Maritima) of the Adriatic Coast As Source of Resistance for Sugar Beet
    Vol. 3 (3) :77 - 82 (2001) LETTER TO THE EDITOR The Sea Beet (Beta vulgaris L. ssp. maritima) of the Adriatic Coast as Source of Resistance for Sugar Beet Piergiorgio Stevanato 1, Marco De Biaggi l, George N. Skaracis 2, Mauro Colombo 1, Giuseppe Mandolino and Enrico Biancardi 1 llstituto Sperimentale per le Colture Industriali, Bologna, Rovigo, Viale Amendola, 82-C.P., 45100 Italy ZHellenic Sugar Industry, Thessaloniki, Greece INTRODUCTION Beta (Oldemeyer, 1954; Johnson et al., 1961). In 1965 Savitsky and Price obtained a significant quantity of The crosses among different species of the Genus hybrids 2n,.3n, and 4n with species of the Section Beta, Beta has played an important role in the breeding of without passing through bridging hosts. In short, the sugar beet (Beta vulgaris L. subsp, vulgaris). In lack of vitality found in interspecific crosses with the interspecific crosses, the first problem is in obtaining Section Procumbentes can be resolved by crosses viable F1 plants. between sea beet and Beta procumbens, which can Crosses with cultivated beet, listed by Lange et al., produce viable F 1 hybrids. These hybrids can be used in 1999, in the Section Beta (syn. Vulgares), were carried subsequent crosses with cultivated beet (Oldemeyer et out using species belonging to the Sections Corollinae al., 1956). and Procumbentes. Similar work have not been carried Further experiments by Savitsky in 1973 and 1975 out with the Beta nana, the only specie of the fourth and transferred an alien gene-carrying chromosome for last Section Nanae. Obviously, slight difficulties were resistance to cyst nematode from the Beta procumbens encountered in crossing the species and subspecies of to the sugar beet.
    [Show full text]
  • SY004177.Pdf
    SITE SYNOPSIS SITE NAME: BILLS ROCKS SPA SITE CODE: 004177 The Bills Rocks are a group of three rocks lying close together, approximately 10 km south of Moyteoge Head on Achill Island, Co. Mayo. The islands are composed of metamorphic rock and are drift-covered. They rise precipitously to a height of approximately 35 m. The two larger islands have flattish tops which are covered by a sward of Thrift (Armeria maritima). Other plant species present include Sea Beet (Beta vulgaris subsp. maritima) and Spear-leaved Orache (Atriplex prostrata). The sea area to a distance of 500 m from the islands, where Puffins forage and socialise, is included. The site is a Special Protection Area (SPA) under the E.U. Birds Directive, of special conservation interest for the following species: Storm Petrel and Puffin. The site supports a nationally important Puffin population, with an estimated 1,500 pairs in 2001. Puffin is known to have nested here since the early 1800s; numbers have been considerably higher in the past, as, for instance, in 1939 when well over 5,000 pairs were estimated to occur. The rocks also support an important Storm Petrel colony, with an estimate of 500-1,000 pairs occurring. A range of other seabirds breed, though all in relatively low numbers. A survey carried out in 2001 gave the following results: Fulmar (108 pairs), Kittiwake (105 pairs), Shag (5 pairs), Razorbill (20 pairs) and Great Black-backed Gull (18 pairs). Compared to a survey carried out in 1967 bird numbers have changed considerably – Fulmar has increased markedly (7 pairs in 1967), but the other species have shown decreases: Kittiwake (174 pairs in 1967), Shag (21 pairs in 1967), Razorbill (c.100 pairs in 1967) and Great Black-backed Gull (60 pairs in 1967).
    [Show full text]
  • LANDGUARD PLANT LIST Latin Name English Name Earliest Record Latest Record Equisetum Arvense Field Horsetail 1987 2004 Pteridium
    LANDGUARD PLANT LIST Latin name English name Earliest record Latest record Equisetum arvense Field horsetail 1987 2004 Pteridium aquilinum Bracken 1985 2010 Pteridium aquilinum ssp. aquilinum Bracken 2010 2010 Asplenium adiantum-nigrum Black spleenwort 1979 1997 Asplenium trichomanes Maidenhair spleenwort 1985 1986 Asplenium trichomanes ssp. quadrivalens Maidenhair spleenwort 1985/6 1997 Asplenium ruta-muraria Wall-rue 1985 2010 Dryopteris filix-mas Male fern 1985 2010 Nymphaea sp. Water-lily 2010 2010 Ranunculus acris Meadow buttercup 1969 1969 Ranunculus repens Creeping buttercup 1969 2004 Ranunculus bulbosus Bulbous buttercup 1979 2011 Ranunculus sardous Hairy buttercup 1981 2011 Ranunculus parviflorus Small-flowered buttercup 1981 2011 Ranunculus sceleratus Celery-leaved buttercup 1979 2011 Ranunculus ficaria ssp. ficaria Lesser celandine 2004 2004 Ranunculus baudotii Brackish water-crowfoot 1981 1981 Aquilegia vulgaris Columbine 2011 2011 Thalictrum minus Lesser meadow-rue 1984 2010 Papaver somniferum Opium poppy ssp hortense 1981 2011 Papaver somniferum ssp. somniferum Opium poppy 2010 2010 Papaver rhoeas Common poppy 1979 2011 Papaver dubium Long-headed poppy 1982 1997 Glaucium flavum Yellow horned-poppy 1909 2011 Chelidonium majus Greater celandine 1988 1998 Fumaria capreolata ssp. Babingtonii Ramping fumitory ssp. Babingtonii 1950-1973 2011 Fumaria officinalis Common fumitory 1969 2011 Urtica dioica Common nettle 1970 2011 Urtica urens Small nettle 1979 2011 Quercus ilex Evergreen oak 1985 2010 Alnus glutinosa Alder 1997 2010 Carpobrotus edulis Hottentot-fig 1990 2996 Chenopodium rubrum Red goosefoot 1935 2011 Chenopodium polyspermum Many-seeded goosefoot 1980 1996 Chenopodium vulvaria Stinking goosefoot 1936-1989 2011 Chenopodium ficifolium Fig-leaved goosefoot 1984 1998 Chenopodium opulifolium Grey goosefoot 1938 1938 Chenopodium album agg.
    [Show full text]
  • Enrico Biancardi · Leonard W. Panella · J. Mitchell Mcgrath Editors Beta Maritima the Origin of Beets Second Edition Beta Maritima Enrico Biancardi • Leonard W
    Enrico Biancardi · Leonard W. Panella · J. Mitchell McGrath Editors Beta maritima The Origin of Beets Second Edition Beta maritima Enrico Biancardi • Leonard W. Panella • J. Mitchell McGrath Editors Beta maritima The Origin of Beets Second Edition 123 Editors Enrico Biancardi Leonard W. Panella Formerly Stazione Sperimentale Crop Research Laboratory di Bieticoltura Department of Soil and Crop Sciences Rovigo, Italy Colorado State University (Formerly USDA-ARS) J. Mitchell McGrath Fort Collins, CO, USA USDA-ARS, Sugar Beet and Bean Research Michigan State University East Lansing, MI, USA ISBN 978-3-030-28747-4 ISBN 978-3-030-28748-1 (eBook) https://doi.org/10.1007/978-3-030-28748-1 1st edition: © Springer Science+Business Media, LLC 2012 2nd edition: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020 All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication.
    [Show full text]
  • Genetic Diversity Among Cultivated Beets (Beta Vulgaris) Assessed Via Population-Based Whole Genome Sequences
    Genetic diversity among cultivated beets (Beta vulgaris) assessed via population-based whole genome sequences J. Mitchell McGrath ( [email protected] ) USDA-ARS Midwest Area https://orcid.org/0000-0002-7365-9901 Paul J. Galewski Michigan State University Research article Keywords: sugar beet, table beet, fodder beet, leaf beet, chard, genome wide analysis, crop diversity, crop differentiation Posted Date: October 9th, 2019 DOI: https://doi.org/10.21203/rs.2.15867/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 2nd, 2020. See the published version at https://doi.org/10.1186/s12864-020-6451-1. Page 1/19 Abstract Diversication on the basis of utilization is a hallmark of Beta vulgaris (beet). Crop improvement and management activities are segregated by crop type, preserving unique genome diversity and differentiation, with occasional introgressions between diverged lineages for specic traits. Full interfertility is typically retained in crosses between these groups and more traits may be accessible if the genetic basis of crop type lineage were known, along with available genetic markers to effect ecient transfer (e.g., via backcrossing). Beta vulgaris L. (2n =18) is a species complex composed of diverged lineages (e.g., crop types), including table, leaf (chard), fodder, and sugar beet. Using population genetic and statistical methods with whole genome sequence data from pooled samples of 23 beet cultivars and breeding lines, relationships were determined between populations based on identity-by-state and shared genetic variation among lineages. Distribution of genetic variation within and between crop types showed extensive shared (e.g.
    [Show full text]
  • Download (773Kb)
    Original citation: Rozema, J., Cornelisse, D., Zhang, Y., Li, H., Bruning, B., Katschnig, Diana, Broekman, R., Ji, B. and van Bodegom, P.. (2014) Comparing salt tolerance of beet cultivars and their halophytic ancestor : consequences of domestication and breeding programmes. AOB Plants, 7. plu083. http://dx.doi.org/10.1093/aobpla/plu083 Permanent WRAP url: http://wrap.warwick.ac.uk/71261 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] http://wrap.warwick.ac.uk Research Article SPECIAL ISSUE: Physiology and Ecology of Halophytes — Plants Living in Salt-Rich Environments Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication Downloaded from and breeding programmes Jelte Rozema1*, Danny Cornelisse1, Yuancheng Zhang2, Hongxiu Li2, Bas Bruning1, Diana Katschnig1, Rob Broekman1, Bin Ji1 and Peter van Bodegom1 http://aobpla.oxfordjournals.org/ 1 Systems Ecology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands 2 Chang ‘an Agricultural Institute, Dong Ying, Shandong, PR China Received: 25 April 2014; Accepted: 25 November 2014; Published: 9 December 2014 Guest Editor: Tim J.
    [Show full text]
  • General Information Product List
    General Information Product List ENGLISH VERSION 5.11 OBLIGATORY FROM: MAY 2021 TABLE OF CONTENTS 1 INTEGRATED FARM ASSURANCE (IFA) STANDARD 3 1.1 SCOPE: CROPS BASE 3 1.1.1 Sub-Scope: Fruit and Vegetables – Specialty Crops 3 1.1.2 Sub-Scope: Combinable Crops – Field Crops 5 1.1.3 Sub-Scope: Flowers and Ornamentals 6 1.1.4 Sub-Scope: Hop 8 1.1.5 Sub-Scope: Tea 8 1.1.6 Sub-Scope: Plant Propagation Material 8 1.2 SCOPE: LIVESTOCK BASE 31 1.2.1 Sub-Scope: Ruminant Base 31 1.2.2 Sub-Scope: Pigs 31 1.2.3 Sub-Scope: Poultry 31 1.2.4 Sub-Scope: Turkey 31 1.3 SCOPE: AQUACULTURE 33 2 COMPOUND FEED MANUFACTURING (CFM) STANDARD 38 3 CHAIN OF CUSTODY (COC) STANDARD 38 4 CROPS FOR PROCESSING (CFP) STANDARD 40 5 EDITION UPDATE REGISTER 41 Code ref.: Product list v5.11_May21; English version Publication date: May 2021 Page 2 of 53 GLOBALG.A.P. PRODUCT LIST 1 INTEGRATED FARM ASSURANCE (IFA) STANDARD This ‘GLOBALG.A.P. Product List’ also covers all products for the localg.a.p. Primary Farm Assurance (PFA) standard, the Produce Safety Assurance standard and the Harmonized Produce Safety Standard (HPSS), the Integrated Farm Assurance benchmarked schemes and checklists (Resembling and Equivalent), GLOBALG.A.P. standards (e.g., Livestock Transport standard, Crops for Processing standard, Chain of Custody standard, Compound Feed Manufacturing standard, etc.) and add-ons. A list with translations of all the products included in the following lists is available at the following link: https://www.globalgap.org/.content/.galleries/documents/GLOBALGAP_product_upload_sheet_en.xlsx NOTE: This list is not exhaustive and new products can be added on request to and after approval by the GLOBALG.A.P.
    [Show full text]
  • Beetroot: a Super Food Yashwant Kumar*
    Beetroot: A Super Food Yashwant Kumar* *Assistant Professor, Department of FPT, Bilaspur University, Bilaspur, Chhattisgarh, India ABSTRACT: The Beetroot is the taproot portion of the beet plant. It is an excellent food which impart very important role for the development and growth of human body. It also act as fruits as well as vegetables. Fresh form of beetroot consumed generally as a salad. Other than as a food, it play another role as a natural colorant in textile industries and as a medicinal plant to cure the various illness. Key-words: Beetroot, Beta vulgaris, Super food, Medicinal plant, and Chukander. INTRODUCTION Beetroot (Beta vulgaris L.) is crop belonging to the Chenopodiaceae family having, bright crimson colour. It is famous for its juice value and medicinal properties; and known by several common names like beet, chard, spinach beet. sea beet. garden beet, white beet and Chukander (in Hindi). Beetroot gives the best value from June to November, and for storing, the beetroot leaves should be cut 50 mm above the root. They will keep for 4-5 days when refrigerated in the vegetable crisper. Beetroot 'Boltardy' is one of the best varieties which produce large round shaped tender roots of deep red colour and fresh sweet flavour. Beetroot 'Burpees Golden' is globe shaped and golden orange in color. It is biennials if roots are grown for seed. It was not cultivated until the 3rd century and not developed until the 19th century by German and French breeders. Beetroot is the name used by the British and some other English speaking countries including Australia and the New Zealand for the vegetable that Americans in the USA call beets a type of food.
    [Show full text]