Radiolabelled Molecules for Brain Imaging with PET and SPECT • Peter Brust Radiolabelled Molecules for Brain Imaging with PET and SPECT

Total Page:16

File Type:pdf, Size:1020Kb

Radiolabelled Molecules for Brain Imaging with PET and SPECT • Peter Brust Radiolabelled Molecules for Brain Imaging with PET and SPECT Radiolabelled Molecules for Brain Imaging with PET and SPECT Radiolabelled • Peter Brust Molecules for Brain Imaging with PET and SPECT Edited by Peter Brust Printed Edition of the Special Issue Published in Molecules www.mdpi.com/journal/molecules Radiolabelled Molecules for Brain Imaging with PET and SPECT Radiolabelled Molecules for Brain Imaging with PET and SPECT Editor Peter Brust MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Peter Brust Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf Germany Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Molecules (ISSN 1420-3049) (available at: https://www.mdpi.com/journal/molecules/special issues/PET SPECT). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-720-7 (Hbk) ISBN 978-3-03936-721-4 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Preface to ”Radiolabelled Molecules for Brain Imaging with PET and SPECT” ......... ix Bright Chukwunwike Uzuegbunam, Damiano Librizzi and Behrooz Hooshyar Yousefi PET Radiopharmaceuticals for Alzheimer’s Disease and Parkinson’s Disease Diagnosis, the Current and Future Landscape Reprinted from: Molecules 2020, 25, 977, doi:10.3390/molecules25040977 .............. 1 Liqun Kuang, Deyu Zhao, Jiacheng Xing, Zhongyu Chen, Fengguang Xiong and Xie Han Metabolic Brain Network Analysis of FDG-PET in Alzheimer’s Disease Using Kernel-Based Persistent Features Reprinted from: Molecules 2019, 24, 2301, doi:10.3390/molecules24122301 ............. 37 Maria Elisa Serrano, Guillaume Becker, Mohamed Ali Bahri, Alain Seret, Nathalie Mestdagh, Jo¨el Mercier, Fr´ed´eric Mievis, Fabrice Giacomelli, Christian Lemaire, Eric Salmon, Andre´ Luxen and Alain Plenevaux Evaluating the In Vivo Specificity of [18F]UCB-H for the SV2A Protein, Compared with SV2B and SV2C in Rats Using microPET Reprinted from: Molecules 2019, 24, 1705, doi:10.3390/molecules24091705 .............. 51 Cornelius K. Donat, Henrik H. Hansen, Hanne D. Hansen, Ronnie C. Mease, Andrew G. Horti, Martin G. Pomper, Elina T. L’Estrade, Matthias M. Herth, Dan Peters, Gitte M. Knudsen and Jens D. Mikkelsen In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [125I]Iodo-ASEM and [18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors Reprinted from: Molecules 2020, 25, 1425, doi:10.3390/molecules25061425 ............. 63 Ping Bai, Sha Bai, Michael S. Placzek, Xiaoxia Lu, Stephanie A. Fiedler, Brenda Ntaganda, Hsiao-Ying Wey and Changning Wang A New Positron Emission Tomography Probe for Orexin Receptors Neuroimaging Reprinted from: Molecules 2020, 25, 1018, doi:10.3390/molecules25051018 .............. 83 Susann Schroder,¨ Thu Hang Lai, Magali Toussaint, Mathias Kranz, Alexandra Chovsepian, Qi Shang, Sladjana Duki´c-Stefanovi´c, Winnie Deuther-Conrad, Rodrigo Teodoro, Barbara Wenzel, Rare¸s-Petru Moldovan, Francisco Pan-Montojo and Peter Brust PET Imaging of the Adenosine A2A Receptor in the Rotenone-Based Mouse Model of Parkinson’s Disease with [18F]FESCH Synthesized by a Simplified Two-Step One-Pot Radiolabeling Strategy Reprinted from: Molecules 2020, 25, 1633, doi:10.3390/molecules25071633 .............. 93 Rien Ritawidya, Friedrich-Alexander Ludwig, Detlef Briel, Peter Brust and Matthias Scheunemann Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors Reprinted from: Molecules 2019, 24, 2791, doi:10.3390/molecules24152791 .............109 v Rien Ritawidya, Barbara Wenzel, Rodrigo Teodoro, Magali Toussaint, Mathias Kranz, Winnie Deuther-Conrad, Sladjana Dukic-Stefanovic, Friedrich-Alexander Ludwig, Matthias Scheunemann and Peter Brust Radiosynthesis and Biological Investigation of a Novel Fluorine-18 Labeled Benzoimidazotriazine-Based Radioligand for the Imaging of Phosphodiesterase 2A with Positron Emission Tomography Reprinted from: Molecules 2019, 24, 4149, doi:10.3390/molecules24224149 ..............131 Paul Cumming, J´anosMarton, Tuomas O. Lilius, Dag Erlend Olberg and Axel Rominger A Survey of Molecular Imaging of Opioid Receptors Reprinted from: Molecules 2019, 24, 4190, doi:10.3390/molecules24224190 ..............149 Jan-Michael Werner, Philipp Lohmann, Gereon R. Fink, Karl-Josef Langen and Norbert Galldiks Current Landscape and Emerging Fields of PET Imaging in Patients with Brain Tumors Reprinted from: Molecules 2020, 25, 1471, doi:10.3390/molecules25061471 .............185 Lindsey R. Drake, Ansel T. Hillmer and Zhengxin Cai Approaches to PET Imaging of Glioblastoma Reprinted from: Molecules 2020, 25, 568, doi:10.3390/molecules25030568 ..............211 vi About the Editor Peter Brust Prof., Dr., is a biologist. He received his M.S. in Immunology in 1981 and his Ph.D. in Neuroscience from Leipzig University in 1986. He worked as a postdoctoral fellow at Montreal Neurological Institute and Johns Hopkins University, Baltimore, from 1990 to 1991. He joined the Research Center Rossendorf (now known as Helmholtz-Zentrum Dresden-Rossendorf, HZDR) in 1992 and headed the Department of Biochemistry. Since 2002, he has been working in Leipzig, first at the Institute of Interdisciplinary Isotope Research and, after an operational transfer in 2010, again at the HZDR, where he leads the Department of Neuroradiopharmaceuticals. His main research interest is in radiotracer development for brain imaging with positron emission tomography, including brain tumor imaging (glioblastoma, brain metastases), imaging of blood–brain barrier transport of radiopharmaceuticals, and neuroimaging of the cholinergic system, second-messenger systems, and neuromodulatory processes. He has authored around 300 peer-reviewed publications and is the owner of numerous patents. vii Preface to ”Radiolabelled Molecules for Brain Imaging with PET and SPECT” Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are in vivo molecular imaging methods which are widely used in nuclear medicine for diagnosis and treatment follow-up of many major diseases. These methods use target-specific molecules as probes, which are labeled with radionuclides of short half-lives that are synthesized prior to the imaging studies. These probes are called radiopharmaceuticals. Their design and development is a rather interdisciplinary process covering many different disciplines of natural sciences and medicine. In addition to their diagnostic and therapeutic applications in the field of nuclear medicine, radiopharmaceuticals are powerful tools for in vivo pharmacology during the process of preclinical drug development to identify new drug targets, investigate pathophysiology, discover potential drug candidates, and evaluate the in vivo pharmacokinetics and pharmacodynamics of drugs. The use of PET and SPECT for brain imaging is of special significance since the brain controls all the body’s functions by processing information from the whole body and the outside world. It is the source of thoughts, intelligence, memory, speech, creativity, emotion, sensory functions, motion control and other important body functions. Protected by the skull and the blood–brain barrier, the brain is somehow a privileged organ with regard to nutrient supply, immune response, and accessibility for diagnostic and therapeutic measures. Invasive procedures are rather limited for the latter purposes. Therefore, noninvasive imaging with PET and SPECT has gained high importance for a great variety of brain diseases, including neurodegenerative diseases, motor dysfunctions, stroke, epilepsy, psychiatric diseases, and brain tumors. This Special Issue focuses on radiolabeled molecules that are used for these purposes, with special emphasis on neurodegenerative diseases and brain tumors. Molecular imaging of neurodegeneration has become a useful noninvasive clinical tool to early detect pathophysiological changes in the brain and is regarded to be of special importance for prognostic purposes, therapeutic decision making, and therapy follow-up. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are regarded as the most common and known neurodegenerative disorders, with a growing impact especially in countries with rapidly increased life expectancies during the last decades. Misfolded proteins such as β-amyloid, τ-protein, α-synuclein together with neuronal dystrophy characterize the main pathology of these diseases. Furthermore, multiple neurotransmitter systems are affected and involved in the cellular pathology. The initial review written by Uzuegbunam, Librizzi, and Yousefi provides an overview of the currently available PET radiopharmaceuticals, examining the timeline and important moments that led to the development
Recommended publications
  • Family Preclinical PET Imaging Systems
    Family Preclinical PET imaging systems PET/MRI PET/CT MEDISO Medical Imaging Systems Tradition in research and development Mediso Medical Imaging Systems is a global company with headquarters in the European Union in Budapest, Hungary. Mediso is a dynamic manufacturer of nuclear medicine and modern hybrid imaging equipment, which it supplies and supports to healthcare, research institutes and industry worldwide. The company was founded in 1990 and is world leading in R&D and commercialization of cutting edge preclinical and clinical medical imaging systems. Latest awards 2014 - Industrial Innovation Award 2012 - Frost & Sullivan 2012 European Preclinical Imaging New Product Innovation Award 2011 - Grand Prize of Innovation 2010 2008 - Frost & Sullivan 2008 European Medical Imaging Entrepreneurial Company of the Year Award 2006 - Grand Prize of Innovation 2006 University and clinical diagnostic partners Mediso have developed special partnership with pre-clinical imaging contract research organizations and leading molecular imaging centers in both preclinical and clinical field around the world. Partnerships with Karolinska Institutet (Sweden), King’s College London (UK), University of Tübingen (Germany), WWU, Münster (Germany), Semmelweis University and CROmed in preclinical imaging field. University of Debrecen Medical School, Hungarian National Institute of Neuroscience and Scanomed in clinical area represents a key drive to Mediso’s research and developments. www.cromedresearch.com www.scanomed.hu Customer focused support Mediso-affiliated subsidiaries and world-wide distributor network with strong factory support ensure direct contact with our customers and quick, professional response to their requests not only in technical but also in application related issues. We at Mediso are proud to serve physicians and researchers at sites with more than 170 preclinical and 1100 clinical installed systems in 90 countries.
    [Show full text]
  • Brain Imaging
    Publications · Brochures Brain Imaging A Technologist’s Guide Produced with the kind Support of Editors Fragoso Costa, Pedro (Oldenburg) Santos, Andrea (Lisbon) Vidovič, Borut (Munich) Contributors Arbizu Lostao, Javier Pagani, Marco Barthel, Henryk Payoux, Pierre Boehm, Torsten Pepe, Giovanna Calapaquí-Terán, Adriana Peștean, Claudiu Delgado-Bolton, Roberto Sabri, Osama Garibotto, Valentina Sočan, Aljaž Grmek, Marko Sousa, Eva Hackett, Elizabeth Testanera, Giorgio Hoffmann, Karl Titus Tiepolt, Solveig Law, Ian van de Giessen, Elsmarieke Lucena, Filipa Vaz, Tânia Morbelli, Silvia Werner, Peter Contents Foreword 4 Introduction 5 Andrea Santos, Pedro Fragoso Costa Chapter 1 Anatomy, Physiology and Pathology 6 Elsmarieke van de Giessen, Silvia Morbelli and Pierre Payoux Chapter 2 Tracers for Brain Imaging 12 Aljaz Socan Chapter 3 SPECT and SPECT/CT in Oncological Brain Imaging (*) 26 Elizabeth C. Hackett Chapter 4 Imaging in Oncological Brain Diseases: PET/CT 33 EANM Giorgio Testanera and Giovanna Pepe Chapter 5 Imaging in Neurological and Vascular Brain Diseases (SPECT and SPECT/CT) 54 Filipa Lucena, Eva Sousa and Tânia F. Vaz Chapter 6 Imaging in Neurological and Vascular Brain Diseases (PET/CT) 72 Ian Law, Valentina Garibotto and Marco Pagani Chapter 7 PET/CT in Radiotherapy Planning of Brain Tumours 92 Roberto Delgado-Bolton, Adriana K. Calapaquí-Terán and Javier Arbizu Chapter 8 PET/MRI for Brain Imaging 100 Peter Werner, Torsten Boehm, Solveig Tiepolt, Henryk Barthel, Karl T. Hoffmann and Osama Sabri Chapter 9 Brain Death 110 Marko Grmek Chapter 10 Health Care in Patients with Neurological Disorders 116 Claudiu Peștean Imprint 126 n accordance with the Austrian Eco-Label for printed matters.
    [Show full text]
  • ID-75-77 If the United States Is to Develop an Effective International
    UN1TED STATES REPO@F !FfyT’?f?8T CONGRESSOfb7J+ JUL 3 I ?wl llillllllllllillll1lll1lll~llll~~l LM096967 “-...-. x-- If The Un’ited States Is To Develop An Effective International Narcotics Control Program, Much More Must Be Done In this Feport GAO examines U.S. diplomatic actions and other activities aimed at halting International production and trafficking of illicit narcotics and at stopping their flow into the United States. BY THE COMPTROLLER GENERAL OF THE UNITED STATES @ ID-75-77 COMPTROLLER GENERAL OF THE UNITED STATES WASHINGTON. D.C. X’S48 E-175425 To the President of the Senate and the br Speaker of the House of Representatives This report examines U.S. international narcotics control efforts and discusses improvements needed in opera- tions, activities, and related policies and objectives. We made our review pursuant to the Budget and Accounting Act, 1921 (31 U.S.C. 53), and the Accounting and Auditing Act of 1950 (31 U.S.C. 67). We are sending copies of this report to the Director, Office of Management and Budget; the Secretary of State; the Attorney General; and the Administrator, Agency for Inter- national Development. Comptroller General of the United States r- t Contents Page DIGEST i CHAPTER 1 INTRODUCTION AND BACKGROUND General overview Funding Cabinet Committee Scope of review 2 U.S. OPIUM POLICY 8 U.S. opium policy unclear 8 Evolution of an alleged opium shortage 10 Increasing medicinal opiate supplies 13 Agency comments and our evaluation 18 Conclusions 22 Recommendation 22 3 ILLICIT NARCOTICS PRODUCTION AND TRAFFICKING
    [Show full text]
  • Interactions Fonctionnelles Entre Récepteurs À Peptide RF-Amide Et Caractérisation De Ligands Bifonctionnels Des Récepteurs Mu Opioïde Et NPFF
    UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE des Sciences de la Vie et de la Santé UMR 7242 -Biotechnologie et signalisation cellulaire THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITE DE STRASBOURG Discipline : Pharmacologie Etude des interactions fonctionnelles entre les récepteurs à peptide RF-amide et caractérisation de ligands bifonctionnels des récepteurs mu opioïde et NPFF Présentée et soutenue par Armand DRIEU LA ROCHELLE Le 12 avril 2018 JURY Dr. SIMONIN Frédéric, Directeur de recherche, université de Strasbourg Directeur de Thèse Dr MORISSET-LOPEZ Séverine, Chargé de recherche, CBM, Orléans Rapporteur externe Dr. BELTRAMO Massimiliano, Directeur de recherche, Centre INRA Val de Loire Rapporteur externe Pr. GAVERIAUX-RUFF Claire, Professeur de l’université de Strasbourg Examinateur interne Remerciements Je souhaite tout d’abord adresser mes remerciements aux membres du jury pour avoir accepté d’évaluer mon travail, Dr. Séverine Morisser-Lopez, Pr. Claire Gavériaux-Ruff, Dr. Massimiliano Beltramo et Dr. Didier Rognan. Je voudrais également remercier Frédéric Simonin pour m’avoir accueilli dans son équipe, et pour son soutien dans la préparation du concours de l’école doctorale en Master 2. Merci pour le partage de tes connaissances, tant sur les mécanismes de l’hyperalgésie induite par les opiacés que sur les orchidées sauvages d’Alsace, merci pour ta disponibilité et pour l’autonomie que tu m’as accordée dans ces divers projets. Ma gratitude et ma reconnaissance vont à Brigitte Ilien, ton exigence et ta rigueur accompagnées de ta bonne humeur resteront un exemple pour moi. Merci à toi pour ces longues conversations de pharmacologie moléculaire, en particulier sur le FRET, qui m’ont tant appris et m’auront permis de construire un regard critique sur ce travail de thèse.
    [Show full text]
  • 1823 Add More PET Radiopharmaceuticals For
    18 CP-1823 - Add more PET Radiopharmaceuticals for Alzheimer's Disease​ Page 1​ 1 Status​ Assigned​ 2 Date of Last Update​ 2018/07/17​ 3 Person Assigned​ David Clunie​ 4 mailto:[email protected]​ 5 Submitter Name​ David Clunie​ 6 mailto:[email protected]​ 7 Submission Date​ 2018/05/10​ 8 Correction Number CP-1823​ 9 Log Summary: Add more PET Radiopharmaceuticals for Alzheimer's Disease​ 10 Name of Standard​ 11 PS3.16​ 12 Rationale for Correction:​ 13 Codes are needed for more PET Alzheimer's tau and synaptic density radiotracers.​ 14 For UCB-J, see Chen M-K et al. Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron​ 15 Emission Tomographic Imaging. JAMA Neurol. 2018 Jul 16. https://jamanetwork.com/journals/jamaneurology/fullarticle/2687472​ 16 Correction Wording:​ 17 - Assigned -​ 48 CP-1823 - Add more PET Radiopharmaceuticals for Alzheimer's Disease​ Page 2​ 1 Amend DICOM PS3.16 as follows (changes to existing text are bold and underlined for additions and struckthrough for removals):​ 2 CID 4021 PET Radiopharmaceutical​ 43 Resources:​ HTML | FHIR JSON | FHIR XML | IHE SVS XML​ 65 Type:​ Extensible​ 87 Version:​ 20180327yyyymmdd​ 109 UID:​ 1.2.840.10008.6.1.305​ 11 Table CID 4021. PET Radiopharmaceutical​ 12 Coding​ Code Value​ Code Meaning​ SNOMED-CT​ UMLS​ Other Names​ 13 Scheme​ Concept ID​ Concept​ 14 Designator​ Unique ID​ 15 DCM​ 126752​ 28H1 ^89^Zr​ 16 DCM​ 126713​ 2FA F^18^​ FA-85380​ 17 DCM​ 126751​ 7D12 ^89^Zr​ 18 DCM​ 126750​ 7E11 ^89^Zr​ 19 SRT​ C-B1043​ Acetate C^11^​ 129513004​
    [Show full text]
  • Radiopharmaceuticals in Neurological and Psychiatric Disorders
    International Conference on Clinical PET-CT and Molecular Imaging (IPET 2015 ): PET-CT in the era of multimodality imaging and image-guided therapy October, 05-09, 2015, Vienna Radiopharmaceuticals in Neurological and Psychiatric Disorders Emilia Janevik Faculty of Medical Sciences Goce Delcev – Stip, Republic of Macedonia Everything that healthcare providers do has a real, meaningful impact on human life Nuclear medicine is the only imaging modality that depend of the injected radiopharmaceutical Every radiopharmaceutical that is administrated holds far more than just a radionuclide Radiopharmaceuticals want it to deliver confidence, efficiency and a higher standard of excellence. And above all, renewed hope for each patient’s future Radiopharmaceuticals for planar imaging, (SPECT), (PET), PET-CT or SPECT-CT fusion imaging PET-MRI is currently being developed for clinical application Understanding the utilization of radiopharmaceuticals for neurological and psychiatric disorders First contact…Projects related to International Atomic Energy Agency - IAEA: 1.(technical cooperation) 1995-1997 Preparation and QC od Technetium 99m Radiopharmaceuticals 99mTc - HMPAO DIAGNOSTIC APPLICATION OF SPECT RADIOPHARMACEUTICALS IN NEUROLOGY AND PSYCHIATRY The principal application areas for brain imaging include: - evaluation of brain death - brain imaging to assess the absence of cerebral blood flow - epilepsy - cerebrovascular disease - neuronal function - cerebrospinal fluid (CSF) dynamics - brain tumours Primarily technetium agents, including - nondiffusible tracers 99mTc-pertechnetate, 99mTc pentetate (Tc- DTPA) and 99mTc-gluceptate (Tc-GH) - diffusible tracers 99mTc-exametazime, hexamethylpropyleneamine oxime - (Tc-HMPAO) and 99mTc-bicisate, ethylcysteinate dimer (Tc-ECD) - Evaluation of brain death - brain imaging to assess the absence of cerebral blood flow Cerebral delivery of radiotracer Major arteries that distribute Major veins that drain blood to the brain after i.v.
    [Show full text]
  • Interview ™ FUSION Multimodality Image Processing Workstation for Clinical Applications
    InterView ™ FUSION multimodality image processing workstation for clinical applications Visualizing and post processing your clinical SPECT-CT-PET-MRI images InterView ™ FUSION InterView™ FUSION is a multi-modal visualization and evaluation software. Developed by Mediso, built on state-of-the-art technologies, novel image processing algorithms and tools for evaluating different medical imaging modalities. Multi-modal registration and fusion of SPECT, PET, CT and MRI studies is a core functionality of InterView™ FUSION. Evaluation can be performed with the help of several specialized viewers and automated algorithms. Statistical measurements by ROIs, VOIs are available, as well as SUV representation for PET and even SPECT images. A wide range of function-specialized tools provide a well-detailed, fast and easy evaluation of medical images combined with advanced visualizations and interactions with flexible workspaces. Special segmentation methods provide quick and easy extraction of organs/regions from images. Basic arithmetic operations as well as spatial and frequency domain filters are also available. 2 Multiple workspaces, Toolbars, Toolboxes Workspaces act like virtual screens organized on separate tabs. Whenever you are out of space on your screen, just open a new workspace and continue your work. Inter-workspace synchronization will be under your control to keep your work consistent. Features - Add/remove workspace - User-defined layouts on workspaces, customizable User-Toolbars, Toolboxes - Quick duplication of a viewer to a new workspace - Quick workspace closing - Inter-workspace synchronization of viewer arguments such as palette values and cursor position - Multi-workspace handling, saving up to maximum 16 workspaces 3 Flexible layout management InterView™ FUSION layouts help organizing your viewers and provide saving and loading your own layouts.
    [Show full text]
  • IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals
    IAEA-TECDOC-1968 IAEA-TECDOC-1968 IAEA TECDOC SERIES Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals IAEA-TECDOC-1968 Production and Quality Control of Fluorine-18 Labelled Radiopharmaceuticals International Atomic Energy Agency Vienna @ PRODUCTION AND QUALITY CONTROL OF FLUORINE-18 LABELLED RADIOPHARMACEUTICALS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GEORGIA OMAN ALBANIA GERMANY PAKISTAN ALGERIA GHANA PALAU ANGOLA GREECE PANAMA ANTIGUA AND BARBUDA GRENADA PAPUA NEW GUINEA ARGENTINA GUATEMALA PARAGUAY ARMENIA GUYANA PERU AUSTRALIA HAITI PHILIPPINES AUSTRIA HOLY SEE POLAND AZERBAIJAN HONDURAS PORTUGAL BAHAMAS HUNGARY QATAR BAHRAIN ICELAND REPUBLIC OF MOLDOVA BANGLADESH INDIA ROMANIA BARBADOS INDONESIA RUSSIAN FEDERATION BELARUS IRAN, ISLAMIC REPUBLIC OF RWANDA BELGIUM IRAQ SAINT LUCIA BELIZE IRELAND SAINT VINCENT AND BENIN ISRAEL THE GRENADINES BOLIVIA, PLURINATIONAL ITALY SAMOA STATE OF JAMAICA SAN MARINO BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BRUNEI DARUSSALAM KENYA SEYCHELLES BULGARIA KOREA, REPUBLIC OF SIERRA LEONE BURKINA FASO KUWAIT SINGAPORE BURUNDI KYRGYZSTAN SLOVAKIA CAMBODIA LAO PEOPLE’S DEMOCRATIC SLOVENIA CAMEROON REPUBLIC SOUTH AFRICA CANADA LATVIA SPAIN CENTRAL AFRICAN LEBANON SRI LANKA REPUBLIC LESOTHO SUDAN CHAD LIBERIA SWEDEN CHILE LIBYA CHINA LIECHTENSTEIN SWITZERLAND COLOMBIA LITHUANIA SYRIAN ARAB REPUBLIC COMOROS LUXEMBOURG TAJIKISTAN CONGO MADAGASCAR THAILAND COSTA RICA MALAWI TOGO CÔTE D’IVOIRE
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0221277 A1 Menzaghi Et Al
    US 20140221277A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0221277 A1 Menzaghi et al. (43) Pub. Date: Aug. 7, 2014 (54) METHOD FOR ELEVATING PROLACTIN IN tion No. 12/300,595, filed on Apr. 22, 2009, now Pat. MAMMALS No. 8,217,000, filed as application No. PCT/US2007/ 012285 on May 22, 2007. (71)71) ApplicantsApplicants: MStFrederi Le.g.,M hi, RVe, S. SterNY E.(US) ); (60) Provisional application No. 60/808,677, filed on May (US); Derek T. Chalmers, Riverside, CT 26, 2006. (US) Publication Classification (72) Inventors: Frederique Menzaghi, Rye, NY (US); (51) Int. Cl. Michael E. Lewis, West Chester, PA A638/07 (2006.01) (US); Derek T. Chalmers, Riverside, CT A6II 45/06 (2006.01) (US) (52) U.S. Cl. CPC ................. A61 K38/07 (2013.01); A61K 45/06 (73) Assignee: CARATHERAPEUTICS, INC., (2013.01) SHELTON, CT (US) USPC ............................. 514/4.7: 514/7.3; 514/11.5 (21) Appl. No.: 14/087,142 (57) ABSTRACT Methods for elevating and stabilizing prolactin levels in a (22) Filed: Nov. 22, 2013 mammal including methods of treating disorders and condi tions associated with reduced serum levels of prolactin are O O provided. Also provided are methods of using certain Syn Related U.S. Application Data thetic tetrapeptide amides which are peripherally selective (63) Continuation of application No. 13/543,128, filed on kappa opioid receptor agonists to elevate or stabilize serum Jul. 6, 2012, now abandoned, Continuation of applica prolactin levels. Patent Application Publication Aug. 7, 2014 Sheet 1 of 7 US 2014/0221277 A1 Figure 1: Arithmetic Mean Changes from Baseline (Pre dose) in Serum Prolactin Concentrations Following a 1 hour IV Infusion in Male Subjects (Part A) O 2 A.
    [Show full text]
  • The Effect of Harvest Date and Pre-Storage Drying Methods On
    AN ABSTRACT OF THE THESIS OF Majid Seddigh for the degree of Master of Science in Crop Science presented on April 4, 1980 Title: The Effect of Harvest Date and Pre Storage Drying_ Methods on Capsule Thebaine Yield, Seed Oil Yield and Seed Germination of Two Accessions of Papaver Vacteatum Andl. Abstract approved: Redacted for privacy r Gary 00. Jollf A field study was conducted in 1978 and 1979 at the Hyslop Crop Science Field Laboratory near Corvallis, Oregon, to determine the opti- mum capsule harvest date of Papaver bracteatum Lind. for thebaine yield and oil yield, while maintaining an acceptable percentage of seed ger- mination. Accessions PI 383309 and PI 381607 were chosen for this study because of their superior yield characteristics. The effects of pre-storage drying of harvested plant materials on the yields and seed germination were studied in the second year of the experiment. Both accessions responded similarly to all treatments. The effects of harvest dates on the yield components and seed germination were com- parable in the two years of the study except for the seed yield.The difference for the seed yield was due to earlier capsule maturity in 1979 that resulted in earlier seed shattering in that year. Drying of the harvested plant materials in a dryer immediately after harvest did not significantly affect the oil and thebaine yields or the percentage of seed germination. Although the data for the thebaine concentration of the capsules in 1978 were of questionable accuracy, capsule thebaine yield was not significantly different for the harvest dates later than four weeks after petal opening.
    [Show full text]
  • High Throughput PET/CT Imaging Using a Multiple Mouse Imaging System
    bioRxiv preprint doi: https://doi.org/10.1101/602391; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. High Throughput PET/CT Imaging Using a Multiple Mouse Imaging System Authors: Hannah E. Greenwood1,2, Zoltan Nyitrai3, Gabor Mocsai3, Sandor Hobor3, Timothy H. Witney2* Affiliations: 1Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK. 2Department of Imaging Chemistry and Biology, School of Biomedical Engineering and & Imaging Sciences, King’s College London, London, UK 3Mediso Medical Imaging Systems, Budapest, Hungary. *Corresponding author: Timothy H. Witney Department of Imaging Chemistry and Biology, School of Biomedical Engineering and & Imaging Sciences, King’s College London, London, UK. Email: [email protected] Tel: +44 (0)20 7188 7188 ext. 56327 First author: Hannah Greenwood, PhD student. Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK and Department of Imaging Chemistry and Biology, School of Biomedical Engineering and & Imaging Sciences, King’s College London, London, UK. Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/602391; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Word count: 3478 Financial Support: This study was funded through a Wellcome Trust and Royal Society Sir Henry Dale Fellowship (107610/Z/15/Z) and a CRUK UCL Centre Non-Clinical Training Award (A23233) to Timothy H.
    [Show full text]
  • PET Radiochemistry for the Investigation of the Biology of Pain and Inflammation
    PET Radiochemistry for the Investigation of the biology of pain and inflammation A thesis submitted to the University of Manchester for the degree of PhD in the Faculty of Medical and Human Sciences 2015 Michael Fairclough School of Medicine Institute of Population Health, Imaging Sciences Contents Abbreviations ............................................................................................................. 9 List of Figures ........................................................................................................... 14 List of Tables ............................................................................................................ 19 List of Equations ...................................................................................................... 21 Abstract ..................................................................................................................... 22 Declaration ................................................................................................................ 23 Copyright Statement ................................................................................................ 23 Dedication ................................................................................................................. 24 CHAPTER 1: Introduction (Part 1) – The endogenous opiate system ............... 25 Pain in Rheumatoid Arthritis ................................................................................. 25 The Pain Matrix.....................................................................................................
    [Show full text]