Calreticulin in Phagocytosis and Cancer: Opposite Roles in Immune Response Outcomes

Total Page:16

File Type:pdf, Size:1020Kb

Calreticulin in Phagocytosis and Cancer: Opposite Roles in Immune Response Outcomes Apoptosis (2019) 24:245–255 https://doi.org/10.1007/s10495-019-01532-0 REVIEW Calreticulin in phagocytosis and cancer: opposite roles in immune response outcomes Alejandro Schcolnik‑Cabrera1 · Bernardo Oldak3 · Mandy Juárez1 · Mayra Cruz‑Rivera2 · Ana Flisser2 · Fela Mendlovic2,3 Published online: 30 March 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Calreticulin (CRT) is a pleiotropic and highly conserved molecule that is mainly localized in the endoplasmic reticulum. Recently, CRT has gained special interest for its functions outside the endoplasmic reticulum where it has immunomodula- tory properties. CRT translocation to the cell membrane serves as an “eat me” signal and promotes efferocytosis of apoptotic cells and cancer cell removal with completely opposite outcomes. Efferocytosis results in a silenced immune response and homeostasis, while removal of dying cancer cells brought about by anthracycline treatment, ionizing-irradiation or photo- dynamic therapy results in immunogenic cell death with activation of the innate and adaptive immune responses. In addi- tion, CRT impacts phagocyte activation and cytokine production. The effects of CRT on cytokine production depend on its conformation, species specificity, degree of oligomerization and/or glycosylation, as well as its cellular localization and the molecular partners involved. The controversial roles of CRT in cancer progression and the possible role of the CALR gene mutations in myeloproliferative neoplasms are also addressed. The release of CRT and its influence on the different cells involved during efferocytosis and immunogenic cell death points to additional roles of CRT besides merely acting as an “eat me” signal during apoptosis. Understanding the contribution of CRT in physiological and pathological processes could give us some insight into the potential of CRT as a therapeutic target. Keywords Calreticulin · Apoptosis · Phagocytosis · Cancer · Immunogenic cell death · Immune response Introduction involved in Ca2+ homeostasis; it regulates diverse cellular functions and acts as a lectin-like chaperone with specificity Calreticulin (CRT) is a 46 kDa soluble protein that local- for monoglucosylated oligosaccharide in asparagine-linked izes primarily to the endoplasmic reticulum (ER) and is glycoproteins that contributes to their correct folding in the highly conserved in all species. Two of the major functions ER [1–3]. The structure of CRT comprises three domains: of the ER are Ca 2+ sequestration and glycoprotein assem- The N-terminal globular domain, a flexible proline-rich P bly and secretion; CRT has a crucial role in both. CRT is intermediate arm-like domain and a C domain at the car- boxyl terminal. The N terminal of the molecule is predicted to be a highly folded globular structure, with eight anti-par- Schcolnik-Cabrera Alejandro and Oldak Bernardo contributed allel β sheets connected by loops, its amino acid sequence equally to the present work. is extremely conserved and binds Zn2+ [4]. It contains three cysteine residues conserved from higher plants to humans * Fela Mendlovic [email protected] that are responsible for the correct folding of the protein. This domain can interact with α integrins and with the DNA 1 División de Investigación Básica, Instituto Nacional de binding site of steroid receptors [5, 6]. The P domain con- Cancerología, Ciudad de México, Mexico sists of an extended region stabilized by three anti-parallel 2 Departamento de Microbiología y Parasitología, Facultad β strands [7] and includes a proline-rich sequence with two de Medicina, Universidad Nacional Autónoma de México, sets of three highly conserved repeats. This region binds Ciudad de México, Mexico 2+ Ca with high affinity (K = 1 μM), and together with the 3 d Facultad de Ciencias de la Salud, Universidad Anáhuac N domain, is essential for the lectin-like chaperone function México Norte, Huixquilucan, Estado De México, Mexico Vol.:(0123456789)1 3 246 Apoptosis (2019) 24:245–255 [3]. The C domain binds Ca 2+ with high capacity due to condensation and biochemical alterations such as activation its acidic nature, with more than 35 aspartic and glutamic of proteases and fragmentation of DNA [11]. The uptake acid residues, which function as multiple low-affinityCa 2+ and removal of apoptotic cells by phagocytes, or efferocytic binding sites and terminates with the ER retrieval signal [8, cells, is known as “efferocytosis”, and is driven through 9] (Fig. 1). several signals that flag the dying cell to be recognized With the discovery of CRT in compartments beyond the and engulfed [12]. In fact, early in the apoptotic program, ER, immunogenic roles and additional functions have been cells display molecular “eat me” signals on their surface to revealed. Among the functions that have gained particular alert phagocytes that they must be removed [11]. Nowa- interest in the last years are its role in promoting efferocyto- days, CRT is recognized as one of such signals. The first sis, in the clearance of dying cells by macrophages, and in report about CRT involvement in apoptosis was published the immunogenic cell death (ICD) of cancer cells induced by Ogden et al., who described that CRT has an important under specific treatments. In the present paper, the recent role in apoptotic Jurkat T cell clearance, driven by its ability findings on the role of CRT during these crucial functions of to bind to the innate immune protein CD91 (also known as myeloid-derived monocytic cells will be addressed. the low-density protein receptor-related protein, LRP-1), as well as to C1q and the mannose-binding lectin (MBL) [13]. Although C1q and MBL are involved in complement acti- Calreticulin and efferocytosis vation, they also attach to apoptotic cells by their globular domains to facilitate the ingestion by macrophages. After Phagocytosis is an essential process for a wide variety of C1q or MBL attachment, CRT binds to the collagenous entities, from unicellular organisms that use it as a means tails of both proteins, and to CD91 on the macrophage cell for nutrition, to multicellular organisms that depend on surface to promote the engagement of this receptor. These this complex process for correct function of the immune series of events initiate macropinocytosis that results in the response through the activation of phagocytes. Moreover, engulfment of the apoptotic cell [13]. CRT functions at both phagocytosis is important for resolution of inflammation via sides of the phagocytic or efferocytic synapse, at the surface the uptake of apoptotic cells, as well as for the maintenance of the apoptotic cell ready to be engulfed, as well as on of tissue homeostasis and protection against neoplastic cells. the phagocyte membrane and in the milieu surrounding the Failure in the clearance of apoptotic cells has been associ- phagocytic synapse. ated with autoimmunity, as it leads to pathologic inflamma- tory responses and induction of proinflammatory cytokine CRT on the apoptotic cell surface release [10]. Apoptosis, or programed cell death, is an ATP-depend- Phosphatidylserine (PS) is one of the best characterized mol- ent cellular process characterized by certain morpho- ecules that mediate phagocytosis, located in the inner leaflet logical changes, including membrane blebbing, nuclear of the cell membrane of living cells. Shortly upon induction Fig. 1 CRT structure and domain interactions. CRT has three structural domains, each one interacts with different molecular partners and has diverse functions 1 3 Apoptosis (2019) 24:245–255 247 of apoptosis, PS translocates to the outer leaflet of the cell with a decrease in CD47 [26], a molecule whose interac- membrane and serves as an “eat me signal”. CRT, normally tion with signal regulatory protein (SIRP)-α (also known localized in the ER lumen, also translocates to the outer cell as CD172a) in macrophages prevents phagocytosis of via- membrane where, along with PS, promotes phagocytosis of ble cells, through the activation of the immunoreceptor apoptotic cells but not its adhesion to phagocytes. Recently, tyrosine-based inhibition motifs (ITIMs) [27]. In addition, CRT on apoptotic cells was shown to bind to PS through its engulfment of viable cells, in particular neutrophils, by a C-terminal acidic domain in a calcium-dependent manner, mechanism termed programmed cell phagocytosis (PrCP) and serves as a PS-anchor factor that cooperates with other has been reported. The authors showed that macrophages PS-binding molecules, such as C1q [14, 15]. Induction of are the source of CRT on the surface of the living neutro- apoptosis by UVB irradiation results in the mobilization phils to be engulfed, and that CRT binds to asialoglycans of CRT to the outer cell membrane even before PS trans- exposed on the neutrophil surface [25, 28]. These findings location [16]. CRT also interacts with C1q for the uptake suggest that PrCP could be a more general phenomenon of apoptotic cells [17–19]. The globular domain of CRT involving other cell types involved in tissue homeostasis. interacts with the globular and the collagen-like regions of C1q on the surface of PS-positive cells at the early stages of apoptosis [20]. In turn, C1q binds to the phosphoserine CRT on the phagocyte surface group of PS through its globular domain, acting as a bridg- ing molecule [21]. CRT binds to PS with a ten-fold higher CRT on the surface of apoptotic or viable cells is able to affinity as compared to C1q binding, interfering with the interact with CD91 on
Recommended publications
  • Calreticulin Controlling the Membrane Translocation of Immunogenicity Of
    ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin This information is current as of September 25, 2021. Michel Obeid J Immunol 2008; 181:2533-2543; ; doi: 10.4049/jimmunol.181.4.2533 http://www.jimmunol.org/content/181/4/2533 Downloaded from References This article cites 26 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/181/4/2533.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology ERP57 Membrane Translocation Dictates the Immunogenicity of Tumor Cell Death by Controlling the Membrane Translocation of Calreticulin1 Michel Obeid2 Several pieces of experimental evidence indicate the following: 1) the most efficient antitumor treatments (this principle applies on both chemotherapy and radiotherapy) are those that induce immunogenic cell death and are able to trigger a specific antitumor immune response; and 2) the immunogenicity of cell death depends very closely on the plasma membrane quantity of calreticulin (CRT), an endoplasmic reticulum (ER) stress protein exposed to the cell membrane after immunogenic treatment.
    [Show full text]
  • The Impact of Endogenous Annexin A1 on Glucocorticoid Control of Infl Ammatory Arthritis
    Basic and translational research Ann Rheum Dis: first published as 10.1136/annrheumdis-2011-201180 on 5 May 2012. Downloaded from EXTENDED REPORT The impact of endogenous annexin A1 on glucocorticoid control of inß ammatory arthritis Hetal B Patel,1 Kristin N Kornerup,1 AndreÕ LF Sampaio,1 Fulvio DÕAcquisto,1 Michael P Seed,1 Ana Paula Girol,2 Mohini Gray,3 Costantino Pitzalis,1 Sonia M Oliani,2 Mauro Perretti1 ▶ Additional (Þ gures and tables) ABSTRACT Annexin A1 (AnxA1) is an effector of resolution.4 are published online only. To view Objectives To establish the role and effect of Highly expressed in immune cells (eg, polymorpho- these Þ les please visit the journal nuclear cells and macrophages), this protein is exter- online (http://ard.bmj.com/ glucocorticoids and the endogenous annexin A1 (AnxA1) content/early/recent). pathway in inß ammatory arthritis. nalised to exert paracrine and juxtacrine effects, the vast majority of which are mediated by the formyl- 1William Harvey Research Methods Ankle joint mRNA and protein expression Institute, Barts and The London of AnxA1 and its receptors were analysed in peptide receptor type 2 (FPR2/ALX ([Lipoxin A4 School of Medicine, London UK naive and arthritic mice by real-time PCR and receptor]) or FPR2, in rodents).5 Intriguingly, FPR2/ 2Department of Biology; 6 immunohistochemistry. Inß ammatory arthritis was ALX is also the lipoxin A4 receptor indicating the Instituto de Bioci•ncias, Letras +/+ existence of important – yet not fully appreci- e Ci•ncias Exatas (IBILCE), S‹o induced with the K/BxN arthritogenic serum in AnxA1 −/− ated – networks in resolution.7 Paulo State University, S‹o JosŽ and AnxA1 mice; in some experiments, animals Another receptor do Rio Preto, Brazil were treated with dexamethasone (Dex) or with human is also advocated to mediate the effects of AnxA1, 3Medical Research Council recombinant AnxA1 or a protease-resistant mutant the formyl-peptide receptor type 1 or FPR1 (FPR1 Centre for Inß ammation, (termed SuperAnxA1).
    [Show full text]
  • Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells Through Intracellular Oxidative Stress
    International Journal of Molecular Sciences Article Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress Abraham Lin 1, Billy Truong 1, Sohil Patel 1, Nagendra Kaushik 2, Eun Ha Choi 2, Gregory Fridman 1, Alexander Fridman 1 and Vandana Miller 1,* 1 C. & J. Nyheim Plasma Institute, Drexel University, Philadelphia, PA 19104, USA; [email protected] (A.L.); [email protected] (B.T.); [email protected] (S.P.); [email protected] (G.F.); [email protected] (A.F.) 2 Plasma Bioscience Research Center, Kwangwoon University, Seoul 139791, Korea; [email protected] (N.K.); [email protected] (E.H.C.) * Correspondence: [email protected]; Tel.: +1-215-571-4074 Academic Editor: Hsueh-Wei Chang Received: 1 March 2017; Accepted: 28 April 2017; Published: 3 May 2017 Abstract: A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin.
    [Show full text]
  • Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer
    cells Article Annexin A1 Expression Is Associated with Epithelial–Mesenchymal Transition (EMT), Cell Proliferation, Prognosis, and Drug Response in Pancreatic Cancer Masanori Oshi 1,2 , Yoshihisa Tokumaru 1,3 , Swagoto Mukhopadhyay 1, Li Yan 4, Ryusei Matsuyama 2, Itaru Endo 2 and Kazuaki Takabe 1,2,5,6,7,8,* 1 Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] (M.O.); [email protected] (Y.T.); [email protected] (S.M.) 2 Department of Gastroenterological Surgery, Yokohama City University School of Medicine, Yokohama, Kanagawa 236-0004, Japan; [email protected] (R.M.); [email protected] (I.E.) 3 Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan 4 Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; [email protected] 5 Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan 6 Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo the State University of New York, Buffalo, NY 14263, USA 7 Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan Citation: Oshi, M.; Tokumaru, Y.; 8 Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan Mukhopadhyay, S.; Yan, L.; * Correspondence: [email protected]; Tel.: +1-716-8-455-540; Fax: +1-716-8-451-668 Matsuyama, R.; Endo, I.; Takabe, K. Annexin A1 Expression Is Associated Abstract: Annexin A1 (ANXA1) is a calcium-dependent phospholipid-binding protein overexpressed with Epithelial–Mesenchymal in pancreatic cancer (PC).
    [Show full text]
  • The Atf6β-Calreticulin Axis Promotes Neuronal Survival Under Endoplasmic Reticulum Stress and Excitotoxicity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 1 The ATF6β-calreticulin axis promotes neuronal survival under 2 endoplasmic reticulum stress and excitotoxicity 3 4 Dinh Thi Nguyen1, Thuong Manh Le1, Tsuyoshi Hattori1, Mika Takarada-Iemata1, 5 Hiroshi Ishii1, Jureepon Roboon1, Takashi Tamatani1, Takayuki Kannon2, 6 Kazuyoshi Hosomichi2, Atsushi Tajima2, Shusuke Taniuchi3, Masato Miyake3, Seiichi 7 Oyadomari3, Shunsuke Saito4, Kazutoshi Mori4, Osamu Hori1* 8 9 10 1.Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa 11 University, Kanazawa, Japan 12 2.Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive 13 Medical Sciences, Kanazawa University, Kanazawa, Japan 14 3.Division of Molecular Biology, Institute for Genome Research, Institute of Advanced 15 Medical Sciences, Tokushima University, Tokushima, Japan 16 4.Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan 17 18 19 Running title: Neuroprotective role of the ATF6β-calreticulin axis 20 21 22 23 24 25 26 * Corresponding author: 27 Dr. Osamu Hori 28 Department of Neuroanatomy, Kanazawa University Graduate School of Medical 29 Sciences, 30 13-1 Takara-Machi, Kanazawa City, 31 Ishikawa 920-8640, Japan 32 Tel: +81-76-265-2162 33 Fax: +81-76-234-4222 34 E-mail: [email protected] 35 36 37 38 39 Key words: neurodegeneration, Ca2+ homeostasis, ER stress 40 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429116; this version posted February 2, 2021.
    [Show full text]
  • Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance As a Prognostic Biomarker in Ovarian
    cells Review Calreticulin—Multifunctional Chaperone in Immunogenic Cell Death: Potential Significance as a Prognostic Biomarker in Ovarian Cancer Patients Michal Kielbik *, Izabela Szulc-Kielbik and Magdalena Klink Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland; [email protected] (I.S.-K.); [email protected] (M.K.) * Correspondence: [email protected]; Tel.: +48-42-27-23-636 Abstract: Immunogenic cell death (ICD) is a type of death, which has the hallmarks of necroptosis and apoptosis, and is best characterized in malignant diseases. Chemotherapeutics, radiotherapy and photodynamic therapy induce intracellular stress response pathways in tumor cells, leading to a secretion of various factors belonging to a family of damage-associated molecular patterns molecules, capable of inducing the adaptive immune response. One of them is calreticulin (CRT), an endoplasmic reticulum-associated chaperone. Its presence on the surface of dying tumor cells serves as an “eat me” signal for antigen presenting cells (APC). Engulfment of tumor cells by APCs results in the presentation of tumor’s antigens to cytotoxic T-cells and production of cytokines/chemokines, which activate immune cells responsible for tumor cells killing. Thus, the development of ICD and the expression of CRT can help standard therapy to eradicate tumor cells. Here, we review the physiological functions of CRT and its involvement in the ICD appearance in malignant dis- ease. Moreover, we also focus on the ability of various anti-cancer drugs to induce expression of surface CRT on ovarian cancer cells. The second aim of this work is to discuss and summarize the prognostic/predictive value of CRT in ovarian cancer patients.
    [Show full text]
  • Comparative Analysis of a Teleost Skeleton Transcriptome Provides Insight Into Its Regulation
    Accepted Manuscript Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation Florbela A. Vieira, M.A.S. Thorne, K. Stueber, M. Darias, R. Reinhardt, M.S. Clark, E. Gisbert, D.M. Power PII: S0016-6480(13)00264-5 DOI: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 Reference: YGCEN 11541 To appear in: General and Comparative Endocrinology Please cite this article as: Vieira, F.A., Thorne, M.A.S., Stueber, K., Darias, M., Reinhardt, R., Clark, M.S., Gisbert, E., Power, D.M., Comparative analysis of a teleost skeleton transcriptome provides insight into its regulation, General and Comparative Endocrinology (2013), doi: http://dx.doi.org/10.1016/j.ygcen.2013.05.025 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Comparative analysis of a teleost skeleton transcriptome 2 provides insight into its regulation 3 4 Florbela A. Vieira1§, M. A. S. Thorne2, K. Stueber3, M. Darias4,5, R. Reinhardt3, M. 5 S. Clark2, E. Gisbert4 and D. M. Power1 6 7 1Center of Marine Sciences, Universidade do Algarve, Faro, Portugal. 8 2British Antarctic Survey – Natural Environment Research Council, High Cross, 9 Madingley Road, Cambridge, CB3 0ET, UK.
    [Show full text]
  • Intracellular Ca2&Plus
    Cell Death and Differentiation (2009) 16, 1126–1134 & 2009 Macmillan Publishers Limited All rights reserved 1350-9047/09 $32.00 www.nature.com/cdd Intracellular Ca2 þ operates a switch between repair and lysis of streptolysin O-perforated cells EB Babiychuk*,1, K Monastyrskaya1, S Potez1 and A Draeger1 Pore-forming (poly)peptides originating from invading pathogens cause plasma membrane damage in target cells, with consequences as diverse as proliferation or cell death. However, the factors that define the outcome remain unknown. We show 2 þ 2 þ that in cells maintaining an intracellular Ca concentration [Ca ]i below a critical threshold of 10 lM, repair mechanisms seal 2 þ 2 þ off ‘hot spots’ of Ca entry and shed them in the form of microparticles, leading to [Ca ]i reduction and cell recovery. Cells 2 þ that are capable of preventing an elevation of [Ca ]i above the critical concentration, yet are unable to complete plasma 2 þ membrane repair, enter a prolonged phase of [Ca ]i oscillations, accompanied by a continuous shedding of microparticles. 2 þ When [Ca ]i exceeds the critical concentration, an irreversible formation of ceramide platforms within the plasma membrane 2 þ and their internalisation drives the dying cells beyond the ‘point of no return’. These findings show that the extent of [Ca ]i elevation determines the fate of targeted cells and establishes how different Ca2 þ -dependent mechanisms facilitate either cell survival or death. Cell Death and Differentiation (2009) 16, 1126–1134; doi:10.1038/cdd.2009.30; published online 27 March 2009 Plasma membrane pores formed by cytotoxic proteins modulators, which, in turn, amplify an ongoing inflammatory and peptides disrupt the permeability barrier in a target response.3,11 The authors further hypothesised that a more 2 þ cell.
    [Show full text]
  • Killing Cancer Cells, Twice with One Shot
    Cell Death and Differentiation (2014) 21, 1–2 & 2014 Macmillan Publishers Limited All rights reserved 1350-9047/14 www.nature.com/cdd Editorial Killing cancer cells, twice with one shot ME Bianchi*,1 Cell Death and Differentiation (2014) 21, 1–2; doi:10.1038/cdd.2013.147 I can still remember lecturing that chemotherapy and radio- shows that transglutaminase (TG) 2, a protein with several therapy are effective because they kill cancer cells. That was complex activities, can prevent calreticulin exposure on the simple enough, and when I wanted to make it a bit more cell surface, and therefore TG2-overexpressing cancer cells complex, I ventured into explaining how they mainly killed can escape activation of the immune system.9 cancer cells because they divided much more than other cells, Curiously, calreticulin is also surface exposed by spermato- and how the killing involved apoptosis. Things have moved on zoa, both in mammals and nematodes, to facilitate fertiliza- quite a bit since then. Evidence accumulated in the past few tion. Following the phylogenetic trail to its widest extent, years indicates that some anti-cancer drugs do not kill cancer Sukkurwala et al.10 show that yeast calreticulin, CNE1 protein, cells, but merely push them into senescence, some do kill is surface exposed following ER stress, and facilitates yeast cells but not via apoptosis, and some do kill cells via apoptosis mating too.10 The binding of yeast pheromone a-factor to its G but that is not the main ingredient in their efficacy. protein-coupled receptor (GPCR) induces CNE1 surface The main theme of this issue is that dying cancer cells presentation.
    [Show full text]
  • Annexin A1 Is a New Functional Linker Between Actin Filaments and Phagosomes During Phagocytosis
    578 Research Article Annexin A1 is a new functional linker between actin filaments and phagosomes during phagocytosis Devang M. Patel1, Syed Furquan Ahmad1, Dieter G. Weiss1, Volker Gerke2 and Sergei A. Kuznetsov1,* 1Institute of Biological Sciences, Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein Straße 3, Rostock 18059, Germany 2Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Straße 56, Münster 48149, Germany *Author for correspondence ([email protected]) Accepted 19 October 2010 Journal of Cell Science 124, 578-588 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jcs.076208 Summary Remodelling of the actin cytoskeleton plays a key role in particle internalisation and the phagosome maturation processes. Actin- binding proteins (ABPs) are the main players in actin remodelling but the precise role of these proteins in phagocytosis needs to be clarified. Annexins, a group of ABPs, are known to be present on phagosomes. Here, we identified annexin A1 as a factor that binds to isolated latex bead phagosomes (LBPs) in the presence of Ca2+ and facilitates the F-actin–LBP interaction in vitro. In macrophages the association of endogenous annexin A1 with LBP membranes was strongly correlated with the spatial and temporal accumulation of F-actin at the LBP. Annexin A1 was found on phagocytic cups and around early phagosomes, where the F-actin was prominently concentrated. After uptake was completed, annexin A1, along with F-actin, dissociated from the nascent LBP surface. At later stages of phagocytosis annexin A1 transiently concentrated only around those LBPs that showed transient F-actin accumulation (‘actin flashing’).
    [Show full text]
  • Comprehensive Proteome Profiling of Glioblastoma-Derived Extracellular Vesicles Identifies Markers for More Aggressive Diseas
    J Neurooncol DOI 10.1007/s11060-016-2298-3 LABORATORY INVESTIGATION Comprehensive proteome profiling of glioblastoma-derived extracellular vesicles identifies markers for more aggressive disease Duthika M. Mallawaaratchy1 · Susannah Hallal2,3 · Ben Russell2,3 · Linda Ly3 · Saeideh Ebrahimkhani2,3 · Heng Wei3,4 · Richard I. Christopherson1 · Michael E. Buckland2,3,4 · Kimberley L. Kaufman1,3,4 Received: 14 February 2016 / Accepted: 9 October 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Extracellular vesicles (EVs) play key roles in membrane protrusions with proteolytic activity, are asso- glioblastoma (GBM) biology and represent novel sources of ciated with more aggressive disease and are sites of EV biomarkers that are detectable in the peripheral circulation. release. Gene levels corresponding to invasion-related EV Despite this notionally non-invasive approach to assess proteins showed that five genes (annexin A1, actin-related GBM tumours in situ, a comprehensive GBM EV protein protein 3, integrin-β1, insulin-like growth factor 2 recep- signature has not been described. Here, EVs secreted by tor and programmed cell death 6-interacting protein) were six GBM cell lines were isolated and analysed by quan- significantly higher in GBM tumours compared to normal titative high-resolution mass spectrometry. Overall, 844 brain in silico, with common functions relating to actin poly- proteins were identified in the GBM EV proteome, of merisation and endosomal sorting. We also show that Cavi- which 145 proteins were common to EVs secreted by all tron Ultrasonic Surgical Aspirator (CUSA) washings are a cell lines examined; included in the curated EV compen- novel source of brain tumour-derived EVs, demonstrated dium (Vesiclepedia_559; http://microvesicles.org).
    [Show full text]
  • Stress-Induced Inflammation Evoked by Immunogenic Cell Death Is
    www.nature.com/cdd ARTICLE OPEN Stress-induced inflammation evoked by immunogenic cell death is blunted by the IRE1α kinase inhibitor KIRA6 through HSP60 targeting Nicole Rufo1,2, Dimitris Korovesis3,Sofie Van Eygen1,2, Rita Derua4, Abhishek D. Garg 1, Francesca Finotello5, Monica Vara-Perez1,2, ž 6,7 2,8 9 7,10 11 6 Jan Ro anc , Michael Dewaele , Peter A. de Witte , Leonidas G. Alexopoulos✉ , Sophie Janssens , Lasse Sinkkonen , Thomas Sauter6, Steven H. L. Verhelst 3,12 and Patrizia Agostinis 1,2 © The Author(s) 2021 Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/ proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments. Bioinformatics-driven pathway analysis indicated that immunogenic treatments instigated a NF-κB/AP-1-inflammatory stress response, which dissociated from both cell death and UPR. This stress-induced inflammation was specifically abolished by the IRE1α-kinase inhibitor KIRA6. Supernatants from immunogenic chemotherapy and KIRA6 co-treated cancer cells were deprived of proinflammatory/chemoattractant factors and failed to mobilize neutrophils and induce dendritic cell maturation. Furthermore, KIRA6 significantly reduced the in vivo vaccination potential of dying cancer cells responding to immunogenic chemotherapy. Mechanistically, we found that the anti-inflammatory effect of KIRA6 was still effective in IRE1α-deficient cells, indicating a hitherto unknown off-target effector of this IRE1α-kinase inhibitor.
    [Show full text]