The Chemical and Preservative Properties of Sulfur Dioxide Solution for Brining Fruit

Total Page:16

File Type:pdf, Size:1020Kb

The Chemical and Preservative Properties of Sulfur Dioxide Solution for Brining Fruit The Chemical and Preservative Properties of Sulfur Dioxide Solution for Brining Fruit Circular of Information 629 June 1969 Agricultural Experiment Station, Oregon State University, Corvallis The Chemical and Preservative Properties of Sulfur Dioxide Solution for Brining Fruit C. H. PAYNE, D. V. BEAVERS, and R. F. CAIN Department of Food Science and Technology Sweet cherries and other fruits are preserved in sul- control are given in papers by Waiters et al. (1963) and fur dioxide solutions for manufacture into maraschino, Yang et al. (1966). cocktail, and glace fruit. The sulfur dioxide solution, Sulfur dioxide and calcium are directly related to commonly called brine, may be prepared from liquid brined cherry quality. Improper use of these chemicals sulfur dioxide, sodium bisulfite, or sodium metabisulfite may result in cherries that are soft, poorly bleached, or using alkali or acid to control pH. Calcium salts such as spoiled due to fermentation. It is the purpose of this calcium hydroxide, calcium carbonate, and calcium chlo- circular to show how the basic chemical and preservative ride are added to the brine to prevent cracking and pro- components of brine solutions are afifected during prep- mote firming of the fruit tissue through interaction with aration, storage, and use. pectic materials. Directions for brine preparation and Chemical Properties of Sulfur Dioxide Solutions When sulfur dioxide or materials containing sulfur range of sulfur dioxide concentrations, the relative dis- dioxide (bisulfite or metabisulfite) are dissolved in tribution of the sulfur dioxide ionic forms is constant. water, three types of chemical substances are formed: Within the initial pH range used for brining cher- sulfurous acid (H2SO3),1 bisulfite (HSO3"), and sulfite ries, there is a predominance of calcium bisulfite (SO~). The amount of each substance formed depends (Ca(HS03)2) and sulfurous acid (HjSOs), both upon the pH (hydrogen ion concentration) of the solu- forms being water soluble. However, calcium sulfite tion, which is regulated by the amount of sulfur dioxide (CaSOs), which is highly insoluble, precipitates as the present and/or by addition of acid or alkali. The effect pH of the brine is adjusted upward, giving the brine a of pH upon the ionic forms of sulfur dioxide is shown milky-white appearance. This usually occurs within a in Figure 1. Brine solutions containing sulfur dioxide range of pH 2.8-3.2, varying with the sulfur dioxide exhibit the same general equilibrium characteristics; concentration and temperature of the sulfur dioxide so- their chemical properties are somewhat dififerent, how- lution. For example, lower sulfur dioxide concentrations ever, since brine solutions form insoluble calcium sulfite. and/or cool brine temperatures shift the precipitation The chemical reaction for sulfur dioxide-calcium brine point of calcium sulfite and permit adjustment of brine is given below. to higher pH values. Formation of white calcium su'fite precipitate indicates excessive use of alkali and should be Ca(OH), Ca(OH) 2 avoided. Cherries placed in brine solutions containing S0 + H 0^±H SO ^± Ca (HSCM^CaSOjJH-H.O 2 2 2 s calcium sulfite or solutions with an initial pH above 3.2 Addition of alkali raises the pH and shifts the reac- may be inadequately bleached and are subject to crack- tion to the right, while lowering the pH with acid forces ing and spoilage. Brines prepared with insufficient alkali a shift to the left. An increase or decrease in tempera- (pH below 2.5) lose excessive amounts of sulfur dioxide ture will bring about a left or right shift respectively. to the atmosphere during brining and this may cause For any given pH and temperature within a limited cracking and softening of the fruit. The alkali/acid ad- justment of brines should be such that the sulfurous 1 Experiments in recent years have tended to disprove the ex- acid portion is approximately half neutralized to give a istence of HvSO:. molecules, or at least show they are present in infinitcsimally small concentrations in aqueous sulfur dioxide theoretically complete conversion of sulfurous acid solutions. The term sulfurous acid (H-SO.-t) as it is used in this (H2SO.,) to calcium bisulfite (Ca(HSO:,)2). In reality, paper descrihes undissociated sulfur dioxide in aqueous solutions. complete conversion to calcium bisulfite is never at- 90-- o(\] CO 80 UJ u QC 70 U. I < 60 H O h- 50 U. o H 40 Z UJ O 30 tr UJ Q. 20 10- Figure 1. Effect of pH on distribution of sulfur dioxide in solution. tained since the three forms overlap (Figure 1) to give condition is upset, calcium sulfite begins to precipitate some sulfurous acid and calcium sulfite. However, half- and continues to do so until equilibrium is restored. neutralization of the brine solution gives an optimal sul- Onset of precipitation may be detected by monitoring furous acid-calcium bisulfite ratio by minimizing cal- levels of sulfur dioxide, calcium, and pH. Appreciable cium sulfite formation and sulfur dioxide volatilization. changes in one or more of these factors will affect Adjusting the pH to give a clear brine does not pre- brined fruit quality. vent precipitation of calcium sulfite indefinitely. Small Variation in initial pH of brine solution within the amounts of calcium sulfite are formed in all brine solu- range of 2.5 to 3.3 and sulfur dioxide concentration tions^ but they remain temporarily soluble in a super- within 0.75 to 1.50% has little effect on retention of cal- saturated condition. Supersaturated solutions are un- cium and sulfur dioxide. There is a gradual decrease in stable and susceptible to temperature changes, seeding, concentration at all levels, with brine containing higher and nucleation of the precipitate by foreign solid mate- initial calcium and sulfur levels maintaining slightly rial introduced into the brine. Once the super.saturated higher levels throughout storage. Elevated temperatures are the primary cause of brine mental brine containing sodium bisulfite and calcium instability during storage, drastically reducing the level chloride was acidified to pH 3.0 with citric acid and held of calcium ions (Figure 2) and sulfur dioxide (Figure eight weeks at 70° F. It retained essentially all of its 3). High temperatures also lower the pH. Low pH calcium and twice as much sulfur dioxide as a control coupled with reduced calcium levels may cause cracking sodium bisulfite brine acidified with hydrochloric acid. and softening of brined fresh fruit. Brines prepared Brines often are prepared in advance and held for and stored at cooler temperature (40° F) are more re- extended periods of time prior to use. This appears to sistant to deterioration. Calcium and sulfur dioxide be an undesirable practice due to brine instability. In losses incurred during storage should be corrected be- view of the changes occurring in brines during storage, fore fresh fruit is brined to assure high quality brined it is recommended that brines be used within 48 hours cherries. following preparation. If this is not convenient and ex- Brines should be prepared and used fresh to provide tended brine storage is necessary, calcium and sulfur maximum firming, bleaching, and preservation. A rapid dioxide losses should be determined and the brine re- method of preparation was given by Weast (1940). It adjusted to desired concentrations before brining fresh provides rapid preparation of brine by introducing fruit. liquid sulfur dioxide into a lime suspension. Using this Recommended levels of calcium ion in fresh brines procedure, brine can be prepared much faster than by range from 3,000 to 5,000 ppm, depending upon the va- the method of adding alkali slurry to sulfur dioxide riety and maturity of fruit. Additional calcium in the solutions. Both methods of preparation have essentially form of calcium chloride may be added to assist in firm- the same storage characteristics in terms of stability. ing the cherry. Brekke et al. (1966) suggest that calcium In laboratory brining trials at Oregon State Univer- also serves to inhibit enzymatic softening. They report sity, improved storage of brines has been achieved that addition of 2% calcium chloride by weight of fruit through use of chemicals which prevent precipitation of above the usual amount of calcium salts prevents enzy- calcium sulfite. Citric acid and citrate salts improve brine matic and non-enzymatic softening in brined cherries. stability by sequestering calcium ions and thus prevent- A rapid method for determination of calcium in brines ing formation of insoluble calcium sulfite. An experi- and brine adjustment is given later in this publication. o H Z LU U CC LJ CL Figure 2. Changes in calcium content with time at different temperatures. 1.5 O I.0-- O 0.5- cr u o.o 20 30 DAYS Figure 3. Changes in sulfur dioxide content with time at different temperatures. Preservative Properties of Sulfur Dioxide Solutions Preservation of cherries and other brined fruit is more effective than bisulfite in controlling yeasts and made possible through the use of sulfur dioxide. The molds (Rehm and Wittmann, 1962). In fact, many in- preservative effect of sulfur dioxide is not permanent vestigators believe that the bisulfite and sulfite forms and is reduced or lost when the sulfur dioxide content is have little or no preservative properties. Rehm and Witt- lowered due to volatilization, oxidation to the sulfate ion, mann (1962) mentioned that the most common orga- precipitation as calcium sulfite, or combination with nisms are inhibited by 200 to 300 ppm sulfite, but with fruit_constituents as orgariic-bisulfite compounds. The notable exceptions. It is the more resistant microbial pH of sulfur dioxide solutions is perhaps the most im- strains that cause difficulty in commercial practice. Cruess portant single factor affecting preservation. (1932) found that at pH 3.5, two to four times as much Sulfur dioxide solutions are effective preservatives sulfur dioxide was required to inhibit microbial growth only at relatively low pH values (high hydrogen ion as at pH 2.5.
Recommended publications
  • Enhanced Heterogeneous Uptake of Sulfur Dioxide on Mineral Particles Through Modification of Iron Speciation During Simulated Cloud Processing
    Atmos. Chem. Phys., 19, 12569–12585, 2019 https://doi.org/10.5194/acp-19-12569-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing Zhenzhen Wang1, Tao Wang1, Hongbo Fu1,2,3, Liwu Zhang1, Mingjin Tang4, Christian George5, Vicki H. Grassian6, and Jianmin Chen1 1Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai, 200433, China 2Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China 3Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 5University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France 6Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA Correspondence: Hongbo Fu ([email protected]) and Jianmin Chen ([email protected]) Received: 7 May 2019 – Discussion started: 5 June 2019 Revised: 7 August 2019 – Accepted: 5 September 2019 – Published: 9 October
    [Show full text]
  • Record of Decision; JEA Circulating Fluidized Bed Combustor Project
    76614 Federal Register / Vol. 65, No. 236 / Thursday, December 7, 2000 / Notices Recordkeeping burden. OMB invites would be cost-shared by DOE and JEA specific to the proposals under public comment. (formerly the Jacksonville Electric consideration. Dated: December 1, 2000. Authority) under DOE's Clean Coal The DOE strategy has three principal elements. The first element involved John Tressler, Technology (CCT) Program. The project would demonstrate circulating fluidized preparation of a comprehensive Leader Regulatory Information Management, Programmatic EIS for the CCT Program Office of the Chief Information Officer. bed (CFB) combustion technology at JEA's existing Northside Generating (DOE/EIS±0146, November 1989) to Office of Educational Research and Station in Jacksonville, Florida. After address the potential environmental Improvement careful consideration of the potential consequences of widespread commercialization of each of 22 Type of Review: New. environmental impacts, along with successfully demonstrated clean coal Title: Education Longitudinal Study program goals and objectives, DOE has technologies. of 2002 (ELS 2002). decided that it will provide approximately $73 million in federal The second element involved Frequency: Annually. preparation of a pre-selection, project- Affected Public: Not-for-profit funding support (about 24% of the total cost of approximately $309 million) to specific environmental review of institutions; State, Local, or Tribal proposed CCT projects based on project- Gov't, SEAs or LEAs. design, construct, and demonstrate the CFB technology proposed by JEA. specific environmental data and Reporting and Recordkeeping Hour analyses in accordance with DOE NEPA Burden: Responses: 51,597. Burden FOR FURTHER INFORMATION CONTACT: To regulations (10 CFR 1021.216). For the Hours: 59,497.
    [Show full text]
  • 1 the Volumetric Determination of Hydroxylamine
    VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. I363 [CONTRIBUTION FROM THE CHEMICAL LABORATORYOF THE UNIVERSITY OF CALIFORNIA.1 THE VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. BY WILLIAMC. BRAY,MIBUM E. SIMPSONAND ANNA A. MACKENZIE. Received July 17, 1919 In the present investigation 3 volumetric methods of determining hydroxylamine in aqueous solution have been studied : The titanous salt method,' in which the hydroxylamine is reduced by excess titanous salt in acid solution with exclusion of air, and the excess titrated with permanganate. 2NH20H + Ti2(S04)3 = (NH4)2S04 + 4TiOS04 + HzS04. (I) The ferric salt method,2 in which the hydroxylamine is oxidized in an acid solution by excess of a ferric salt, the mixture is boiled and the fer- rous salt formed titrated with permanganate. 2NH20H + 2Fe@04)3 = N2O + 4FeS04 + 2H2S04 + H20. (2) The iodine method,3 in which the hydroxylamine is oxidized by iodine in a neutral solution, e. g., in the presence of disodium phosphate. 2NH20H + 212 = N2O + 4HI + H2O (3) or 2NH20H + 213- = N20 + 61- + 4H+ + HzO. Our first experiments, with the iodine method, yielded irregular results which could not be interpreted until the concentration of the hydroxyl- amine solution was accurately determined. An examination of the literature showed a rather unsatisfactory state of affairs. The advocates of the ferric sulfate method furnish evidence that it is perfectly reliable, but Leuba4 gives detailed experimental data to prove the contrary, and Adams5 states that he could not obtain reproducible results with it. The investigators who have used the iodine method consider it to be fairly satisfactory, but some of them state that it is not very accurate, and Rupp and Maeder6 have recently concluded that correct results are obtained only by a compensation of errors.
    [Show full text]
  • So2 and Wine: a Review
    OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SO2 AND WINE: A REVIEW 1 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW WARNING This document has not been submitted to the step procedure for examining resolutions and cannot in any way be treated as an OIV resolution. Only resolutions adopted by the Member States of the OIV have an official character. This document has been drafted in the framework of Expert Group “Food safety” and revised by other OIV Commissions. This document, drafted and developed on the initiative of the OIV, is a collective expert report. © OIV publications, 1st Edition: March 2021 (Paris, France) ISBN 978-2-85038-022-8 OIV - International Organisation of Vine and Wine 35, rue de Monceau F-75008 Paris - France www.oiv.int 2 MARCH 2021 OIV COLLECTIVE EXPERTISE DOCUMENT SO2 AND WINE: A REVIEW SCOPE The group of experts « Food safety » of the OIV has worked extensively on the safety assessment of different compounds found in vitivinicultural products. This document aims to gather more specific information on SO2. This document has been prepared taking into consideration the information provided during the different sessions of the group of experts “Food safety” and information provided by Member States. Finally, this document, drafted and developed on the initiative of the OIV, is a collective expert report. This review is based on the help of scientific literature and technical works available until date of publishing. COORDINATOR OIV - International Organisation of Vine and Wine AUTHORS Dr. Creina Stockley (AU) Dr. Angelika Paschke-Kratzin (DE) Pr.
    [Show full text]
  • SO2 Removal by NH3 Gas Injection: Effects of Temperature and Moisture Content
    Ind. Eng. Chem. Res. 1994,33, 1231-1236 1231 SO2 Removal by NH3 Gas Injection: Effects of Temperature and Moisture Content Hsunling Bai' Institute of Environmental Engineering, National Chiao- Tung University, Hsin-Chu, Taiwan, R.O.C. Pratim Biswas and Tim C. Keener Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221 -0071 The removal of SO2 by NH3 gas injection at various temperatures and moisture contents has been studied experimentally. The product compositions of the NH3-SO2-HzO vapor reactions were also reported. A thermodynamic analysis was carried out to predict the SO2 removal as well as the product compositions. Both the experimental results and thermodynamic analysis indicated that SO2 removal and the product compositions are sensitive to the reaction temperature. Moisture content, once in large excess of the stoichiometric requirement, does not have a strong effect on the product compositions but plays an important role in the SO2 removal. Introduction conditions. Stromberger (1984) used X-ray diffraction and identified the product particles to be (NH&S04 Sulfur dioxide removal from flue gases is a goal of many crystals. air pollution engineers. Significant efforts in the develop- ment of new flue gas desulfurization (FGD) technologies Although a number of studies on the removal of SO2 are being made. Major processes related to FGD tech- from flue gases by NH3 injection have been conducted, nologies include water scrubbing, metal ion solutions, there is disagreement on the operating condition (such as catalytic oxidation, dry or semidry adsorption, wet lime temperature) that a high removal efficiency can be or limestone scrubbing, double alkali process, and ammonia obtained.
    [Show full text]
  • Sulfite: Here, There, Everywhere
    Sulfite: Here, There, Everywhere Max T. Baker, PhD Associate Professor Department of Anesthesia University of Iowa Inadvertent Exposures Combustion of fossil fuels, Air pollutant Large quantities as sulfur dioxide are expelled from volcanos Kilauea on the Big Island Small quantities endogenously formed in mammals from sulfur-containing amino acid metabolism Deliberate Exposures As Preservative- Wine, Beer (dates to Roman times From burning sulfur candles) Fruits and Vegetables (reduce browning, extend shelf-life) Pharmaceuticals1 Reductant - Antioxidant - Antimicrobial What are Sulfites? Oxidized Forms of the Sulfur Atom Sulfur Dioxide, MW = 64, bp = - 10oC (gaseous) Sulfur (IV) - Oxidation state of 4 S = Atomic number 16 – electrons/shell, 2,8,6 Sodium Dioxide Readily Hydrates2 Sulfur Carbon Dioxide Dioxide (irritant) H O H2O 2 Sulfurous Unstable Carbonic low acid species acid pH high pH Bisulfite Bicarbonate anion anion Sulfite Carbonate dianion dianion Forms radical Doesn’t form radical Bisulfite Can Combine with SO2 to form Metabisulfite + excess Bisulfite Metabisulfite (disulfite, pyrosulfite) “Sulfite” usually added to drugs as sodium or potassium salts of: Sulfite, Bisulfite, or Metabisulfite Endogenous to Mammals Small quantities formed from sulfur-containing amino acid metabolism - cysteine, methionine3 + - + H2O + 2H + 2 e Sulfite Sulfate Rapidly detoxified by sulfite oxidase (SOX) to form sulfate – a two electron oxidation, molybdenum dependent Two Confirmed Sulfite Toxicities Neurological abnormalities from genetic sulfite oxidase deficiency3 Allergic reactions from exogenous exposure4 Oral, parenteral, inhalational exposure: dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhea to life- threatening anaphylactic and asthmatic reactions “The overall prevalence of sulfite sensitivity in the general population is unknown and probably low. Sulfite sensitivity is seen more frequently in asthmatic than in nonasthmatic people." - FDA Prevalence – 3-10% are sulfite sensitive among asthmatic subjects.
    [Show full text]
  • A Fundamental Evaluation of the Atmospheric Pre-Leaching Section of the Nickel-Copper Matte Treatment Process
    A FUNDAMENTAL EVALUATION OF THE ATMOSPHERIC PRE-LEACHING SECTION OF THE NICKEL-COPPER MATTE TREATMENT PROCESS by RODRICK MULENGA LAMYA Dissertation presented for the Degree of DOCTOR OF PHILOSOPHY (Extractive Metallurgical Engineering) in the Department of Process Engineering at the University of Stellenbosch, South Africa Promoter Prof. L. Lorenzen STELLENBOSCH March 2007 DECLARATION I the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ............................................... Date: ....................................................... Copyright © 2007 Stellenbosch University All rights reserved i SYNOPSIS Nickel-Copper sulphide ores are the most important Platinum Group Metal bearing ores. The South African deposits are exceptionally rich in the platinum group metals (PGMs) and production of the PGMs is the primary purpose of treating these ores. The methods used in the recovery of the PGMs from the nickel-copper ores generally consists of ore concentration by physical techniques, pyrometallurgical concentration and hydrometallurgical extraction of the base metals followed by the PGMs. Pyrometallurgical concentration produces Ni-Cu matte, which is treated by hydrometallurgical processes to recover the nickel, copper, cobalt and the precious metals. In this study, the leaching behaviour of a Ni–Cu matte in CuSO4–H2SO4 solution during the repulping (pre-leach) stage at Impala Platinum Refineries was studied. The repulping stage is basically a non–oxidative atmospheric leach stage, in which nickel, iron and cobalt are partially dissolved, while the copper is precipitated. To understand the nature of the leaching process during this stage of the base metal refining operation, the effects of variations in the key process variables such as temperature, stirring rate, particle size, pulp density, residence time, initial copper and acid concentrations were investigated.
    [Show full text]
  • Reregistration Eligibility Decision (RED) for Inorganic Sulfites
    Reregistration Eligibility Decision – Inorganic Sulfites May 2007 Reregistration Eligibility Decision Inorganic Sulfites Special Review and Reregistration Division Office of Pesticide Programs U.S. Environmental Protection Agency 1801 South Bell Street Arlington, VA 22202 Introduction The Environmental Protection Agency (EPA) has completed its Reregistration Eligibility Decision (RED) for the inorganic sulfites case, which includes the chemicals sulfur dioxide and sodium metabisulfite. This assessment provides information to support the issuance of a Reregistration Eligibility Decision for inorganic sulfites. EPA’s pesticide reregistration process provides for the review of older pesticides (those initially registered prior to November 1984) under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) to ensure that they meet current scientific and regulatory standards. In this document, EPA presents the results of its review of the potential human health effects of dietary, drinking water and occupational/bystander exposure to inorganic sulfites, as well as its ecological risk findings. Evaluations performed by the World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Agency for Toxic Substances and Disease Registry (ATSDR) were relied upon for this assessment, in addition to peer-reviewed evaluations performed by the Cosmetic Ingredient Review (CIR), the Organization for Economic Cooperation and Development-Screening Information Data Set (OECD-SIDS) and from other open literature sources. Based on this assessment, the Agency has determined that products containing sulfur dioxide or sodium metabisulfite are eligible for reregistration provided the necessary label changes are made. As a result of this assessment, one tolerance has been reassessed. I. Use Information The inorganic sulfites reregistration case includes the chemicals sulfur dioxide (CAS No.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Use of SO2 in High-Ph Wines Sulfur Dioxide Dosage
    Purdue extension FS-52-W Commercial Winemaking Production Series Use of SO2 in High-pH Wines Sulfur dioxide dosage By Christian Butzke Wine pH and alcohol destroy the vitamin thiamin, which is essential for the growth of Enology Professor How much free sulfur dioxide (SO2) must a winemaker add or measure to prevent Brettanomyces yeast and certain wine Department of Food Science malolactic fermentation or Brettanomyces bacteria. Only proper concentrations of Purdue University growth if a wine’s pH is 3.95? The answer free SO2 provide additional capacity to bind more products of oxidative aging, [email protected] is between 79 and 112 mg/L, depending on the alcohol content of the wine. The to cleave thiamin, or to kill unwanted SO -sensitive microbes. Brettanomyces requirements for free SO2 concentrations 2 in wine increase exponentially with pH, thrives at higher pH, at temperatures so at pH 4.0 they are 10 times higher greater than 55˚F, in larger ullages, and than at pH 3.0. This does not leave room at residual yeast nutrient levels. Luckily for rule-of-thumb or routine sulfite the thiamin break-up — given proper additions/adjustments. Sulfites added amounts of free bisulfite — occurs faster at a higher pH. Ethanol acts synergistically to wine in the form of either SO2 gas or potassium metabisulfite salt exist and enhances the bacteria-killing effect essentially in two forms: ionized bisulfite of molecular SO2, so high-alcohol wines require less SO protection (see dosage (free SO2) and sulfur dioxide gas 2 charts based on wine alcohol content (molecular SO2).
    [Show full text]
  • DNA Methylation Analysis: Choosing the Right Method
    biology Review DNA Methylation Analysis: Choosing the Right Method Sergey Kurdyukov 1,* and Martyn Bullock 2 Received: 8 July 2015; Accepted: 22 December 2015; Published: 6 January 2016 Academic Editor: Melanie Ehrlich 1 Genomics Core facility, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia 2 Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-299-264-756 Abstract: In the burgeoning field of epigenetics, there are several methods available to determine the methylation status of DNA samples. However, choosing the method that is best suited to answering a particular biological question still proves to be a difficult task. This review aims to provide biologists, particularly those new to the field of epigenetics, with a simple algorithm to help guide them in the selection of the most appropriate assay to meet their research needs. First of all, we have separated all methods into two categories: those that are used for: (1) the discovery of unknown epigenetic changes; and (2) the assessment of DNA methylation within particular regulatory regions/genes of interest. The techniques are then scrutinized and ranked according to their robustness, high throughput capabilities and cost. This review includes the majority of methods available to date, but with a particular focus on commercially available kits or other simple and straightforward solutions that have proven to be useful. Keywords: DNA methylation; 5-methylcytosine; CpG islands; epigenetics; next generation sequencing 1. Introduction DNA methylation in vertebrates is characterized by the addition of a methyl or hydroxymethyl group to the C5 position of cytosine, which occurs mainly in the context of CG dinucleotides.
    [Show full text]
  • Sulfur Dioxide and Some Sulfites, Bisulfites and Metabisulfites
    SULFUR DIOXIDE AND SOME SULFITES, BISULFITES AND METABISULFITES 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Synonyms and structural and molecular data Sulfr dioxi Chem. Abstr. Serv Reg. No.: 7446-09-5 Replaced CAS Nos.: 8014-94-6; 12396-99-5; 83008-56-4; 89125-89-3 Chem. Abstr. Name; Sulfur dioxide IUPAC Systematic Name: Sulfur dioxide Synonyms: Sulfurous acid anhydride; sulfurous anhydride; sulfurous oxide; sulfur oxide (S02); sulfur superoxide; sulphur dioxide 0=8=0 S02 MoL. wt: 64.07 Sodium sulfte Chem. Abstr. Serv Reg. No.: 7757-83-7 Altemate CAS No.: 10579-83-6 Replaced CAS No.: 68135-69-3 Chem. Abstr. Name: Sulfurous acid, di sodium salt IUPAC Systematic Name: Sulfurous acid, disodium salt Synonyms: Anhydrous sodium sulfite; disodium sulfite; sodium sulphite o 1/ Na · 0 - 8 - 0 · Na Na2S0J MoL. wt: 126.04 Sodium bisulfe Chem. Abstr. Serv Reg. No.: 7631-90-5 Replaced CAS Nos.: 57414-01-4; 69098-86-8; 89830-27-3; 91829-63-9 Chem. Abstr. Name: Sulfurous acid, monosodium salt IUPAC Systematic Name: Sulfurous acid, monosodium salt -131- 132 lARe MONOGRAPHS VOLUME 54 Synonyms: Hydrogen sulfite sodium; monosodium sulfite; sodium acid sulfite; sodium bisulphite; sodium hydrogen sulfite; sodium sulfite (NaHS03) o Il HO - S - a · Na NaHS03 MoL. wt: 104.06 Sodium metabisulfte Chem. Abstr. Serv Reg. No.: 7681-57-4 Altemate CAS No.: 7757-74-6 Replaced CAS No.: 15771-29-6 Chem. Abstr. Name: Disulfurous acid, disodium salt IUPAC Systematic Name: Pyrosulfurous acid, disodium salt Synonyms: Disodium disulfite; disodium metabisulfite; disodium pyrosulfite; sodium disulfite; sodium metabisulphite; sodium pyrosulfite oIl Il0 Na · 0- S - a - S - a · Na .Na2S20S MoL.
    [Show full text]