Development of the Concept of Agroecology in Europe: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae
CURRICULUM VITAE BRIAN C. CAMPBELL Present Position: Associate Professor, Berry College, Director, Environmental Studies Program Evans Hall 212, Mount Berry, GA, 30149-0081 Email: [email protected] Phone Number W: (706) 368-6996 Citizenship: United States of America Languages: English and Spanish Research Program: Agricultural Biodiversity Conservation and Food Sovereignty in Floyd County, GA, and Visual Environmental Anthropology in the US Southern Highlands (Ozarks, Appalachia) and Belize, Central America RESEARCH APPROACHES, INTERESTS, REGIONS Agroecology, Applied, Community-Based, Ethnoecology, Political Ecology, Visual Anthropology Agrarianism, Agrobiodiversity, Environmentalism, Food Sovereignty, Justice, Methods, Sustainability Andes, Appalachia, Central America, Ozark Highlands EDUCATION 2005 Ph.D., Cultural Anthropology, University of Georgia, Athens, GA Concentrations: Agricultural Anthropology, Environmentalism, Ethnoecology 2002 Conservation Ecology and Sustainable Development, Graduate Certification University of Georgia Institute of Ecology 1994-1998 B.A., Summa Cum Laude, Truman State University, Kirksville, MO Majors: English, Anthropology Minors: Spanish, International Studies 1996 Attended Universidad Nacional de Costa Rica, Heredia, C.R., Central America PROFESSIONAL AND ACADEMIC EXPERIENCE 2018 Development of “Food, Ecology and Culture in Greece” Study Abroad course and 6-week summer and semester courses at the American Farm School / Perrotis College, Thessaloniki, Greece 2016 Tenured at Berry College, Mount Berry, -
Natural Resource Management Among Small-Scale Farmers in Semi-Arid Lands: Building on Traditional Knowledge and Agroecology
Annals of Arid Zone 44(3&4): 365-385, 2005 Natural Resource Management among Small-scale Farmers in Semi-arid Lands: Building on Traditional Knowledge and Agroecology Miguel A. Altieri1 and Vìctor M. Toledo2 1 Department of Environmental Science Policy and Management, University of California, Berkeley, USA 2 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autònoma de Mèxico Abstract: Although risk and uncertainty dominate the lives of most rural inhabitants of the semi-arid regions of the world, many farmers have been able to develop durable farming systems through the use of innovative soil and water management systems and the use of locally adapted crop species and varieties. In this paper we provide examples of farming systems developed by traditional farmers well adapted to the local conditions of the semi-arid environment, enabling farmers to generate sustained yields meeting their subsistence needs, despite harsh conditions and low use of external inputs. Part of this performance is linked to the ingenious soil and water conservation systems but also to the high levels of agrobiodiversity exhibited by traditional agroecosystems, which in turn positively influences agroecosystem function. We also give examples of projects aimed at assisting rainfed resource-poor farmers in the development of a variety of practical techniques and strategies to enhance production and resiliency in the midst of resource constraints typical of semi-arid environments. Many of these efforts use elements of modern science but that build upon -
Environmental Significance of Riparian Agroecosystems with Special Reference to Influence on Wetland Livelihood
[ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Environmental Significance of Riparian Agroecosystems with special reference to Influence on Wetland Livelihood Dr. Reshma J.K.1 & Dr. Allan Thomas2 1Asst. Professor and Head, PG Department of Environmental Sciences All Saints’ College, Thiruvananthapuram, Kerala. 2Asst. Professor and Head, Department of Extension College of Agriculture, Vellayani, Kerala. Received: February 12, 2019 Accepted: March 24, 2019 INTRODUCTION Riparian Agroecosystem (Agriculture + Ecosystem = Agroecosystem) is construed as a spatially and functionally coherent unit of agricultural activity along river banks, subsuming both biotic & abiotic components, their respective interaction as well. An agroecosystem appends the region that is stuffed in by agricultural activity, prodigally by changes to the complexity ofspecies assemblagesandenergy flows, as well as to the net nutrient balance. Traditionally an agroecosystem, particularly one managed intensively, is epitomized as having a simpler species composition and simpler energy and nutrient flows which makes it unique from other "natural" ecosystems. Moreover, agroecosystems are often confederated with elevated nutrient input, as in the case of forest gardens, probably the world's oldest and most resilient agroecosystemswhich is balanced byeutrophication of consociated ecosystems not directly engaged in agriculture. Substaintial components of Agroecosystem derive all its energy requirements from solar input along with atmospheric and human inputs that come from outside the system, which are referred to as “consumption and markets. Some of the unparagoned features of agroecosystems are monoculture, use of genetically modified organisms and artificially selected crops, row crops, increased soil aeration, simplification of biodiversity and maintenance at an early succession state. -
Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2020 Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah Tiffany K. Woods Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Design Commons, and the Landscape Architecture Commons Recommended Citation Woods, Tiffany K., "Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah" (2020). All Graduate Theses and Dissertations. 7904. https://digitalcommons.usu.edu/etd/7904 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CULTURAL ECOSYSTEM SERVICES OF AGROECOSYSTEMS ALONG THE WASATCH FRONT, UTAH by Tiffany K. Woods A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Bioregional Planning Approved: __________________________ __________________________ Brent Chamberlain, Ph.D. Arthur J. Caplan, Ph.D. Major Professor Committee Member __________________________ __________________________ Sarah C. Klain, Ph.D. Janis L. Boettinger, Ph.D. Committee Member Acting Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright Tiffany K. Woods 2020 All Rights Reserved iii ABSTRACT Cultural ecosystem services of agroecosystems along the Wasatch Front, Utah by Tiffany K. Woods, Master of Science Utah State University, 2020 Major Professor: Brent Chamberlain, Ph.D. Department: Landscape Architecture and Environmental Planning Agroecosystems, including peri-urban systems, are important providers of a range of services. However, management of these systems has generally been based on the market value of crops, neglecting to capture the broader public goods that ecosystem services provide to stakeholders. -
Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions
Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances In Ecological Research, Vol. 49 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From David A. Bohan, Alan Raybould, Christian Mulder, Guy Woodward, Alireza Tamaddoni-Nezhad, Nico Bluthgen, Michael J.O. Pocock, Stephen Muggleton, Darren M. Evans, Julia Astegiano, François Massol, Nicolas Loeuille, Sandrine Petit, Sarina Macfadyen, Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions. In Guy Woodward and David A. Bohan, editors: Advances In Ecological Research, Vol. 49, Amsterdam, The Netherlands: Academic Press, 2013, pp. 1-67. ISBN: 978-0-12-420002-9 © Copyright 2013 Elsevier Ltd Elsevier Author's personal copy CHAPTER ONE Networking Agroecology: -
Designing Agroecological Transitions; a Review Michel Duru, Olivier Therond, Mehand Fares
Designing agroecological transitions; A review Michel Duru, Olivier Therond, Mehand Fares To cite this version: Michel Duru, Olivier Therond, Mehand Fares. Designing agroecological transitions; A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2015, 35 (4), pp.0. 10.1007/s13593-015-0318-x. hal-01340332 HAL Id: hal-01340332 https://hal.archives-ouvertes.fr/hal-01340332 Submitted on 30 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Agron. Sustain. Dev. (2015) 35:1237–1257 DOI 10.1007/s13593-015-0318-x REVIEW ARTICLE Designing agroecological transitions; A review Michel Duru1,2 & Olivier Therond1,2 & M’hand Fares1,2 Accepted: 28 May 2015 /Published online: 1 July 2015 # INRA and Springer-Verlag France 2015. This article is published with open access at Springerlink.com Abstract Concerns about the negative impacts of agriculture, (2) the pathway of the transition and (3) the re- productivist agriculture have led to the emergence of two quired adaptive governance structures and management strat- forms of ecological modernisation of agriculture. The first, egies. We conclude by analysing key challenges of designing efficiency-substitution agriculture, aims to improve input use such a complex transition, developing multi-actor and multi- efficiency and to minimise environmental impacts of modern domain approaches based on a combination of scientific and farming systems. -
Scaling up Agroecology to Achieve the Sustainable Development Goals
SCALING UP AGROECOLOGY TO ACHIEVE THE SUSTAINABLE DEVELOPMENT GOALS 2ND FAO INTERNATIONAL SYMPOSIUM ON AGROECOLOGY By Kim Assaël From 3 to 5 April 2018 FAO has hosted the 2nd International Symposium on Agroecology: Scaling-up Agroecology to achieve the (SDGs). Building on the first Symposium and the subsequent regional workshops, the Symposium on Agroecology focused the transition of Agroecology from dialogue to action, by sharing ideas and experiences, while discussing policies and actions that can support agroecology in achieving the SDGs and accompany the decade of Family Farming (2019-2028) and the Decade of Action on Nutrition (2016-2025). About 400 participants were attended, from policy- makers and governments, agroecology practitioners and civil society representatives, to members from academia and research, the private sector and representatives from the regional meetings. Even with it almost 700 were the effective participants and plenary rooms have been changed at the last minute to make space to all participants. Key elements and actions to support scaling up agroecology have been intensively discussed as the multiple benefits of agroecology are an important path for meeting the 2030 Agenda objectives and addressing the interlinked challenges. The key facts underpinning the big advantages of agroecology are summarized in the FAO website: Agroecology relies on ecosystem services to improve productivity. The knowledge and practices of farmers and food producers from all over the world are at the core of agroecology. Agroecology can address the root causes of hunger, poverty and inequality. Agroecology combines farmers’ knowledge with modern science in innovative ways. Agroecology provides local solutions for global challenges. -
Functional Agrobiodiversity and Agroecosystem Services in Sustainable Wheat Production
Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review Ambrogio Costanzo, Paolo Bàrberi To cite this version: Ambrogio Costanzo, Paolo Bàrberi. Functional agrobiodiversity and agroecosystem services in sus- tainable wheat production. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2014, 34 (2), pp.327-348. 10.1007/s13593-013-0178-1. hal-01234799 HAL Id: hal-01234799 https://hal.archives-ouvertes.fr/hal-01234799 Submitted on 27 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agron. Sustain. Dev. (2014) 34:327–348 DOI 10.1007/s13593-013-0178-1 REVIEW ARTICLE Functional agrobiodiversity and agroecosystem services in sustainable wheat production. A review Ambrogio Costanzo & Paolo Bàrberi Accepted: 6 September 2013 /Published online: 27 September 2013 # INRA and Springer-Verlag France 2013 Abstract Agrobiodiversity can improve the sustainability of Contents cropping systems in a context of low external inputs and 1. Introduction unpredictable climate change. Agrobiodiversity strategies to 2. State-of-the-art strategies for using agrobiodiversity in grow wheat are breeding ad hoc cultivars for organic and low- sustainable wheat production input systems, wheat–legume intercrops and living mulches, 3. -
Agroecology What It Is and What It Has to Offer
Agroecology What it is and what it has to offer Laura Silici Issue Paper Food and agriculture Keywords: June 2014 Agroecology, Small-scale farming, Food sovereignty, Agro-biodiversity About the authors Laura Silici, Researcher, IIED Natural Resources Group, Agroecology team [email protected] Acknowledgements The author is extremely grateful to Barbara Adolph, Krystyna Swiderska and Seth Cook (IIED) for their significant contributions to the draft; to Patrick Mulvany (UK Food Group) and Bruce Ferguson (El Colegio de la Frontera Sur) for reviewing the paper; and to Fiona Hinchcliffe for her valuable editorial advice. Produced by IIED’s Natural Resources Group The aim of the Natural Resources Group is to build partnerships, capacity and wise decision-making for fair and sustainable use of natural resources. Our priority in pursuing this purpose is on local control and management of natural resources and other ecosystems. Published by IIED, June 2014 Laura Silici, 2014. Agroecology: What it is and what it has to offer. IIED Issue Paper. IIED, London. Product code: 14629IIED ISBN: 978-1-78431-065-3 Printed on recycled paper with vegetable-based inks. Photo credit: CIMMYT using Creative Commons International Institute for Environment and Development 80-86 Gray’s Inn Road, London WC1X 8NH, UK Tel: +44 (0)20 3463 7399 Fax: +44 (0)20 3514 9055 email: [email protected] www.iied.org @iied www.facebook.com/theIIED Download more publications at www.iied.org/pubs ISSUE PAPER In a context of a changing climate and growing concerns for more healthy food systems, agroecology is gaining momentum as a scientific discipline, sustainable farming approach and social movement. -
The Relationships Between Organic Farming and Agroecology
The relationships between organic farming and agroecology Bellon, S.1, Lamine1, C., Ollivier, G.1 , de Abreu, L. S.2 Key words: Agroecology – Alternative agriculture – Organic food and farming – Comparative analysis - Interdisciplinarity Abstract While acknowledging an extension of agroecology in the organic sector and a growing influence of agroecology in the academic world, we explore their relationships. These relationships cannot be reduced to an opposition between a scientific field and a practical domain. A Brazilian case study based on the analysis of researchers and social actors trajectories exemplifies the diversity of existing relations, whether inclusive or exclusive. With a literature review, this allows characterising the specific attributes of both organic agriculture and agroecology. We discuss them in the light of current challenges for organic farming research and development. Introduction Both organic farming (OF) and agroecology (AE) claim they can contribute to many challenges faced by agriculture today. Among these are the interrelated challenges of providing food security and preserving the environment. Apart from common objectives, both OF and AE also refer to ecology and question the prevalent technological model designed during the XXth century. However, albeit AE can be considered as scientifically rooted and equipped for a holistic study of agroecosystems, at least three main interpretations of AE are possible: as a scientific field, as a social movement or as an agricultural practice (Wezel et al., 2009). Likewise, diversity also exists within organic farming, which cannot be summarised into a set of certified practices (Sylvander et al., 2006). Since there is a continuous confusion about both terms (Francis, 2009), we intend to contribute to clarify the relationships between OF and AE, while opening a debate and suggesting guidelines for research agendas. -
PROMOTING AGROECOLOGY the Most Effective Way to Achieve Sustainable Food Security and Nutrition for All in a Changing Climate
© Tine Frank - Soudan du Sud Frank Tine © PROMOTING AGROECOLOGY The most effective way to achieve sustainable food security and nutrition for all in a changing climate In 2017, at least 795 million people are facing chronic food This food system doesn’t address the joint challenges of food insecurity and half of the world’s population suffers from and nutrition security and climate change. Instead of this, it has malnutrition, while the total agriculture output produces enough a great responsibility in environmental degradation, collapse calories to feed 12 billion1. of biodiversity, pressure on natural resources, greenhouse gas emissions. It also has tremendous social impacts such as the loss Small scale farmers produce 80% of our food2 but remain the of traditional and locally adapted know-hows; concentration of most affected by food and nutrition insecurity and are the least wealth, exclusion of the most vulnerable, non-communicable supported by their governments. diseases and malnutrition in its different forms3. Climate change adds a new set of threats to food security: increased Agroecology proposes a comprehensive answer to these frequency of natural disasters, changes in local climate conditions, challenges and contributes to the realization of the Right to Food increased intensity of cyclical meteorological events, accelerated by offering a new basis for sustainable food systems, resilient desertification, floods, submersion, heat and cold waves, new pests agricultural livelihoods and good nutrition. and diseases. These phenomena will reduce crop productivity and nutrient density of crops. In this context, small scale farmers, infant children and women in particular, and the poorest, are the Therefore, Action Against Hunger stands for the promotion most vulnerable. -
A New Perspective of Agroecosystem in 21St Century
Biomed J Sci & Tech Res DOI: 10.26717/BJSTR.2017.01.000137 Amit Kesarwani. Biomed J Sci & Tech Res ISSN: 2574-1241 Review Article Open Access A New Perspective of Agroecosystem in 21st Century Amit Kesarwani* and DS Pandey Department of Agronomy, India Received: June 08, 2017; Published: June 16, 2017 *Corresponding author: Amit Kesarwani, Department of Agronomy, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India-263145; Tel: ; Email: Abstract Land is a living legend, including all eroded and forest land that all would contribute to agriculture. In a wider perspective, a long-term and loss prevention is the only option to meet our growing requirement. Integrated water resource management approach for irrigated croppingview will systemshave to beper taken unit toof manageagriculture our water soil, plant use holds and bio-resources. key to both food Sustainable and environmental intensification security. of agriculture For harnessing productivity effective enhancement ecosystem is the needs of hour. based production, enhanced water use efficiency, promoting balanced use of nutrients and water and soil biota test based technology adoption Keywords: Agro ecology; Water management; Precision farming; Nanotechnology; Sustainable agriculture Introduction term productivity considering the ecological agriculture for Ecology is the study which represents the relationship among sustainability. living things and their environment. It has been termed as such In some areas the challenge is to revert the systems that location. Ecosystems are naturally self-sustaining process with have already undergone modernization and where farmers biotic and a biotic factors interacting with other in a specific experience high environmental and economic costs due to chain and nutrient recycling.