Advances in the Applications of Marine Climatology

Total Page:16

File Type:pdf, Size:1020Kb

Advances in the Applications of Marine Climatology WORLD METEOROLOGICAL INTERGOVERNMENTAL OCEANOGRAPHIC ORGANIZATION COMMISSION (OF UNESCO) JOINT WMO/IOC TECHNICAL COMMISSION FOR OCEANOGRAPHY AND MARINE METEOROLOGY ADVANCES IN THE APPLICATIONS OF MARINE CLIMATOLOGY The Dynamic Part of the WMO Guide to the Applications of Marine Meteorology WMO/TD-No. 1081 2003 JCOMM Technical Report No. 13 WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (OF UNESCO) ADVANCES IN THE APPLICATIONS OF MARINE CLIMATOLOGY The Dynamic Part of the WMO Guide to the Applications of Marine Meteorology WMO/TD-No. 1081 2003 JCOMM Technical Report No. 13 N O T E The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS FOREWORD . v ACKNOWLEDGEMENTS . vi INTRODUCTION . vii SECTION 1 MARINE DATABASE ENHANCEMENTS . 1 COADS updates and the blend with the UK Met Office Marine Data Bank . 3 The Kobe Collection: newly digitized Japanese historical surface marine meteorological observations . 11 An archive of underway surface meteorology data from WOCE . 20 SECTION 2: EVALUATION OF MARINE DATA SOURCES . 26 The accuracy of marine surface winds from ships and buoys . 27 Report on Beaufort equivalent scales . 41 Evaluation of ocean winds and waves from voluntary observing ship data . 53 Evaluation of NCEP reanalysis surface marine wind fields for ocean wave hindcasts . 68 SECTION 3: METADATA AND DATA QUALITY . 87 Improving global flux climatology: the role of metadata . 89 Establishing more truth in true winds . 98 Quality control in recent and pending COADS releases . 116 SECTION 4: DEVELOPMENT AND USE OF SATELLITE MARINE DATABASES . 125 An intercomparison of voluntary observing, satellite data, and modelling wave climatologies . 127 The joint calibration of altimeter and in situ wave heights . 139 On the use of in situ and satellite wave measurements for evaluation of wave hindcasts . 149 Scatterometry data sets: high quality winds over water . 159 SECTION 5: ANALYSIS OF CLIMATE VARIABILITY AND CHANGE . 175 Outlier detection in gridded ship data sets . 177 A methodology for integrating wave data from different sources permitting a multiscale description of wave climate variability . 187 Reduced space approach to the optimal analysis of historical marine observations: accomplishments, difficulties, and prospects . 199 Analysis of wave climate trends and variability . 217 SECTION 6: USER REQUIREMENTS FOR CLIMATE INFORMATION . 227 Offshore industry requirements and recent metocean technology developments . 229 Specific contributions to the observing system: sea surface temperatures . 234 Importance of marine data to seasonal forecasting in Australia . 242 iii FOREWORD The Commission for Marine Meteorology (CMM), now known as the Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM), agreed at its twelfth session (Havana, Cuba, 10–20 March 1997) that the Guide to the Applications of Marine Climatology (WMO-No. 781) should, in future, comprise two distinct sections, namely a static part and a dynamic part, to enhance its utility and facilitate the updating process. The static part, the existing Guide, WMO-No. 781, would remain unchanged, while the dynamic part would be updated approximately every four years. In keeping with this agreement, the session supported a proposal to convene a self-funding workshop to provide input for the dynamic part of the Guide. The workshop, CLIMAR99 – WMO International Workshop on Advances in Marine Climatology, took place in September 1999 in Vancouver, British Colombia, Canada, and was hosted by the Meteorological Service of Canada, with additional sponsorship from WMO, NOAA’s Office of Global Programs (OGP) and the National Weather Service (NWS), NOAA, USA. Several papers presented to the workshop were subsequently peer-reviewed. The first session of JCOMM (Akureyri, Iceland, 19–29 June 2001) recommended that these papers, as well as a paper on Beaufort equivalent scales by Mr Ralf Lindau (Germany), which was requested by the twelfth session of CMM, be published as the dynamic part of the Guide. The present technical document contains all of these papers, reproduced in their revised form following the peer review process. It thus essentially represents the dynamic part of the Guide to the Applications of Marine Climatology. It is intended that this dynamic component should be updated again on the basis of papers presented at a second CLIMAR workshop. The coordination and organization of CLIMAR99, as well as the compilation of this report, were undertaken largely by Mr Val Swail (Canada). On behalf of WMO, I would like to express my gratitude and appreciation to Mr Swail and to all those who contributed to the workshop and this report. (G.O.P. Obasi) Secretary-General v ACKNOWLEDGEMENTS Among the many to whom thanks are due, first and foremost are those who have contributed their time and effort in preparing for the CLIMAR99 Workshop and compiling this report, for example, Val Swail (Canada), Joe Elms (USA), Henry Diaz (USA) and all the authors of the papers contained in this report. Also to be thanked are the individuals who have contributed without being named specifically. Workshop participants and session chairs are thanked for their important contribution to the workshop discussions and/or effective manage- ment of the workshop programme. Members of the former WMO Commission for Marine Meteorology and its Subgroup on Marine Climatology are also thanked for their support. The cooperation and support given to CLIMAR99 by the following organiza- tions is gratefully acknowledged: the Meteorological Service of Canada; the Office of Global Programs, NOAA (USA), and its Environmental Services Data and Information Management program; the National Weather Service, NOAA (USA); and the University Corporation for Atmospheric Research (USA). Last but not least, thanks are due to the support staff of the above-mentioned organizations for their patient efforts in preparing for the Workshop and compil- ing this report, in particular Eileen Jeffers (Canada), Maria Carney (Canada) and the technical editing staff of the WMO Secretariat. vi INTRODUCTION PURPOSE AND The purpose of this report is to provide all Members with access to new technol- BACKGROUND OF THIS ogy related to marine climatology and emerging issues such as climate change. REPORT The WMO Guide to the Applications of Marine Climatology (WMO-No. 781) was published in early 1995. However, much of the material in the Guide was written based on knowledge and information available up until around 1992. Since then, there has been a significant amount of research carried out by national agencies in a number of Member countries. Initiatives such as the Comprehensive Ocean- Atmosphere Data Set (COADS) Wind Workshop in 1994 (held in Kiel, Germany) have also contributed much valuable information on marine climatology. As a result, the Subgroup on Marine Climatology of the former WMO Commission for Marine Meteorology (CMM), in developing a plan and proce- dures to maintain the Guide as up-to-date as possible, decided to adopt the basic approach now being implemented for the Guide to Climatological Practices, namely that it would comprise two parts: (i) A static part, which would be expected to remain valid over a relatively long time- frame, and which could be maintained as a hard-copy publication; (ii) A second, more dynamic part covering matters relating to new technologies and emerging issues such as climate change which could be made available in digital form on the World Wide Web. The Subgroup on Marine Climatology proposed that the most effective way to provide up-to-date information for the dynamic part of the Guide would be through a WMO-sponsored workshop, to be held in 1999, focusing on specific technologies and issues, the Proceedings of which would be made available initially on the World Wide Web, and eventually in hard copy. The issues of particular importance at that time were deemed to be climate change and impacts on the marine industry, the use of satellite data in climate applications, and issues related to retrospective data, metadata and the production of long-term homoge- neous data sets for climate analysis. At the twelfth session of CMM (Havana, Cuba, 10-20 March 1997), a recom- mendation was made for WMO to organize a self-funding workshop, to serve primarily as a means for generating appropriate input for the dynamic part of the Guide to the Applications of Marine Climatology. The Commission requested the president of CMM, and the chairman of the Subgroup, in consultation with the Secretary-General, to take the necessary actions for convening the Workshop, in particular the task of finding a host country and potential external sponsors. Subsequently, Canada volunteered to host the Workshop and appointed Mr Val Swail to take the lead in its organiza- tion. An informal meeting was held on 18 September 1997 in Toledo, Spain, immediately after the Workshop on Digitization and Preparation of Historical Surface Marine Data and Metadata, to initiate the planning of the Workshop. A Workshop Organizing Committee, consisting of Mr Val Swail (Canada, Chair), Mr Joe Elms (USA), Mr Henry Diaz (USA)
Recommended publications
  • Comparing Historical and Modern Methods of Sea Surface Temperature
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrology and Hydrology and Earth System Earth System Sciences Sciences Discussions Open Access Ocean Sci., 9, 683–694, 2013 Open Access www.ocean-sci.net/9/683/2013/ Ocean Science doi:10.5194/os-9-683-2013 Ocean Science Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Solid Earth Solid Earth Discussions Comparing historical and modern methods of sea surface Open Access Open Access The Cryosphere The Cryosphere temperature measurement – Part 1: Review of methods, Discussions field comparisons and dataset adjustments J. B. R. Matthews School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada Correspondence to: J. B. R. Matthews ([email protected]) Received: 3 August 2012 – Published in Ocean Sci. Discuss.: 20 September 2012 Revised: 31 May 2013 – Accepted: 12 June 2013 – Published: 30 July 2013 Abstract. Sea surface temperature (SST) has been obtained 1 Introduction from a variety of different platforms, instruments and depths over the past 150 yr.
    [Show full text]
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Aristotle University of Thessaloniki School of Geology Department of Meteorology and Climatology
    1 ARISTOTLE UNIVERSITY OF THESSALONIKI SCHOOL OF GEOLOGY DEPARTMENT OF METEOROLOGY AND CLIMATOLOGY School of Geology 541 24 – Thessaloniki Greece Tel: 2310-998240 Fax:2310995392 e-mail: [email protected] 25 August 2020 Dear Editor We have submitted our revised manuscript with title “Fast responses on pre- industrial climate from present-day aerosols in a CMIP6 multi-model study” for potential publication in Atmospheric Chemistry and Physics. We considered all the comments of the reviewers and there is a detailed response on their comments point by point (see below). I would like to mention that after uncovering an error in the set- up of the atmosphere-only configuration of UKESM1, the piClim simulations of UKESM1-0-LL were redone and uploaded on ESGF (O'Connor, 2019a,b). Hence all ensemble calculations and Figures were redone using the new UKESM1-0-LL simulations. Furthermore, a new co-author (Konstantinos Tsigaridis), who has contributed in the simulations of GISS-E2-1-G used in this work, was added in the manuscript. Yours sincerely Prodromos Zanis Professor 2 Reply to Reviewer #1 We would like to thank Reviewer #1 for the constructive and helpful comments. Reviewer’s contribution is recognized in the acknowledgments of the revised manuscript. It follows our response point by point. 1) The Reviewer notes: “Section 1: Fast response vs. slow response discussion. I understand the use of these concepts, especially in view of intercomparing models. Imagine you have to talk to a wider audience interested in the “effective response” of climate to aerosol forcing in a naturally coupled climate system.
    [Show full text]
  • Geography and Atmospheric Science 1
    Geography and Atmospheric Science 1 Undergraduate Research Center is another great resource. The center Geography and aids undergraduates interested in doing research, offers funding opportunities, and provides step-by-step workshops which provide Atmospheric Science students the skills necessary to explore, investigate, and excel. Atmospheric Science labs include a Meteorology and Climate Hub Geography as an academic discipline studies the spatial dimensions of, (MACH) with state-of-the-art AWIPS II software used by the National and links between, culture, society, and environmental processes. The Weather Service and computer lab and collaborative space dedicated study of Atmospheric Science involves weather and climate and how to students doing research. Students also get hands-on experience, those affect human activity and life on earth. At the University of Kansas, from forecasting and providing reports to university radio (KJHK 90.7 our department's programs work to understand human activity and the FM) and television (KUJH-TV) to research project opportunities through physical world. our department and the University of Kansas Undergraduate Research Center. Why study geography? . Because people, places, and environments interact and evolve in a changing world. From conservation to soil science to the power of Undergraduate Programs geographic information science data and more, the study of geography at the University of Kansas prepares future leaders. The study of geography Geography encompasses landscape and physical features of the planet and human activity, the environment and resources, migration, and more. Our Geography integrates information from a variety of sources to study program (http://geog.ku.edu/degrees/) has a unique cross-disciplinary the nature of culture areas, the emergence of physical and human nature with pathway options (http://geog.ku.edu/geography-pathways/) landscapes, and problems of interaction between people and the and diverse faculty (http://geog.ku.edu/faculty/) who are passionate about environment.
    [Show full text]
  • Earth System Climatology (ESS200A)
    EarthEarth SystemSystem ClimatologyClimatology (ESS200A)(ESS200A) Course Time Lectures: Tu, Th 9:00-10:20 Discussion: 3315 Croul Hall Text Book The Earth System, 2nd Edition, Kump, Kasting, and Crane, Prentice-Hall Global Physical Climatology, Hartmann; Academic Press Meteorology Today, 7th Edition, Ahrens, Brooks Cool. Grade Homework (40%), Final (60%) Homework Issued and due every Thursday ESS200A Prof. Jin-Yi Yu ESS200A Prof. Jin-Yi Yu CourseCourse DescriptionDescription A general description of the Earth climate system and its subcomponents: the atmosphere, ocean, land surface, ice, and solid earth. ESS200A Prof. Jin-Yi Yu SyllabusSyllabus Week 1 - Global Energy Balance Week 3-4: Ocean Planetary Energy Balance Basic Structure and Dynamics Greenhouse Effect Surface Ocean Circulation: Wind-Driven Atmospheric Composition and Structure Deep Ocean Circulation: Density-Driven Role of Cloud Week 4: Land Surface and Cryosphere Week 2 - Atmospheric General Circulation Land Surface Properties (Soil and Vegetation) Hydrostatic Balance Surface Energy and Water Balance General Circulation in the Troposphere Sea Ice and Land Ice General Circulation in the Stratosphere Climate Roles of Land Surface and Ice Jetstreams Regional Circulation Systems Week 5 – Climate Change and Variation Week 2-3 - Weather Past Climate Change Air Masses and Fronts Short-term Climate variation (ENSO, NAO) Mid-Latitude Cyclones Ozone Hole Tropical Hurricane *** FINAL (October 27, Thursday) *** ESS200A Prof. Jin-Yi Yu GlobalGlobal EnergyEnergy CycleCycle Planetary energy balance Energy absorbed by Earth = Energy emitted by Earth Role of the atmosphere Greenhouse effect Role of oceans Polarward energy transport Role of land surface not significant due to its low heat capacity (from Climate Change 1995) ESS200A Prof.
    [Show full text]
  • The Unnamed Atlantic Tropical Storms of 1970
    944 MONTHLY WEATHER REVIEW Vol. 99, No. 12 UDC 551.515.23:661.507.35!2:551.607.362.2(261) “1970.08-.lo” THE UNNAMED ATLANTIC TROPICAL STORMS OF 1970 DAVID B. SPIEGLER Allied Research Associates, Inc., Concord, Mass. ABSTRACT A detailed analysis of conventional and aircraft reconnaissance data and satellite pictures for two unnamed Atlantic Ocean cyclones during 1970 indicates that the stqrms were of tropical nature and were probably of at least minimal hurricane intensity for part of their life history. Prior to becoming a hurricane, one of the storms exhibited characteristics not typical of any of the recognized classical cyclone types [i.e., tropical, extratropical, and subtropical (Kona)]. The implications of this are discussed and the concept of semitropical cyclones as a separate cyclone category is advanced. 6. INTRODUCTION ing recognition of hybrid-type storms provides additional support for the recommendation. During the 1970 tropical cyclone season, tn7o storms occurred that were not given names at the time. The 2. UNNAMED STORM NO. I-AUG. Q3-$8, 6970 National Hurricane Center (NHC) monitored their prog- ress and issued bulletins throughout their life history but A mell-organized tropical disturbance noted on satellite they mere not officially recognized as tropical cyclones of pictures during August 8, south of the Cape Verde Islands tropical storm or hurricane intensity. In their annual post- in the far eastern tropical Atlantic, intensified to ti strong season summary of the hurricane season, NHC discusses depression as it moved westmarcl. On Thursday, August 13, these storms in some detail (Simpson and Pelissier 1971) some further intensification of the system appeared to be but thej- are not presently included in the official list of taking place while the depression was about 250 mi 1970 tropical storms.
    [Show full text]
  • Automated Underway Oceanic and Atmospheric Measurements from Ships
    AUTOMATED UNDERWAY OCEANIC AND ATMOSPHERIC MEASUREMENTS FROM SHIPS Shawn R. Smith (1), Mark A. Bourassa (1), E. Frank Bradley (2), Catherine Cosca (3), Christopher W. Fairall (4), Gustavo J. Goni (5), John T. Gunn (6), Maria Hood (7), Darren L. Jackson (8), Elizabeth C. Kent (9), Gary Lagerloef (6), Philip McGillivary (10), Loic Petit de la Villéon (11), Rachel T. Pinker (12), Eric Schulz (13), Janet Sprintall (14), Detlef Stammer (15), Alain Weill (16), Gary A. Wick (17), Margaret J. Yelland (9) (1) Center for Ocean-Atmospheric Prediction Studies, Florida State University, Tallahassee, FL 32306-2840, USA, Emails: [email protected], [email protected] (2) CSIRO Land and Water, PO Box 1666, Canberra, ACT 2601, AUSTRALIA, Email: [email protected] (3) NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA 98115, USA, Email: [email protected] (4) NOAA/ESRL/PSD, R/PSD3, 325 Broadway, Boulder, CO 80305-3328, USA, Email: [email protected] (5) USDC/NOAA/AOML/PHOD, 4301 Rickenbacker Causeway, Miami, FL 33149, USA, Email: [email protected] (6) Earth and Space Research, 2101 Fourth Ave., Suite 1310, Seattle, WA, 98121, USA, Emails: [email protected], [email protected] (7) Intergovernmental Oceanographic Commission UNESCO, 1, rue Miollis, 75732 Paris Cedex 15, FRANCE, Email: [email protected] (8) Cooperative Institute for Research in Environmental Sciences, NOAA/ESRL/PSD, 325 Broadway, R/PSD2, Boulder, CO 80305, USA, Email: [email protected] (9) National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK, Emails: [email protected],
    [Show full text]
  • A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2017 A Climatology of Tropical Cyclone Size in the Western North Pacific Using an Alternative Metric Thomas B. (Thomas Brian) McKenzie III Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A CLIMATOLOGY OF TROPICAL CYCLONE SIZE IN THE WESTERN NORTH PACIFIC USING AN ALTERNATIVE METRIC By THOMAS B. MCKENZIE III A Thesis submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science 2017 Copyright © 2017 Thomas B. McKenzie III. All Rights Reserved. Thomas B. McKenzie III defended this thesis on March 23, 2017. The members of the supervisory committee were: Robert E. Hart Professor Directing Thesis Vasubandhu Misra Committee Member Jeffrey M. Chagnon Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii To Mom and Dad, for all that you’ve done for me. iii ACKNOWLEDGMENTS I extend my sincere appreciation to Dr. Robert E. Hart for his mentorship and guidance as my graduate advisor, as well as for initially enlisting me as his graduate student. It was a true honor working under his supervision. I would also like to thank my committee members, Dr. Vasubandhu Misra and Dr. Jeffrey L. Chagnon, for their collaboration and as representatives of the thesis process. Additionally, I thank the Civilian Institution Programs at the Air Force Institute of Technology for the opportunity to earn my Master of Science degree at Florida State University, and to the USAF’s 17th Operational Weather Squadron at Joint Base Pearl Harbor-Hickam, HI for sponsoring my graduate program and providing helpful feedback on the research.
    [Show full text]
  • The Climatological Revolution of the Eighteenth Century (Until 2016) Franz Mauelshagen Over the Last Decade Or So, the History O
    The Climatological Revolution of the Eighteenth Century (until 2016) Franz Mauelshagen Over the last decade or so, the history of meteorology and climatology has developed rapidly, pushed, to some degree, by the question of anthropogenic global warming and its scientific foundations. Naturally, much of this research focuses on the nineteenth and twentieth centuries, while the early days of climatology around 1800 are still somewhat obscure. Reviewing the literature reveals that, up to this point, studies in the history of climate ideas and climate science before 1800 have focused exclusively on meteorology, turning the history of climatology into a by-product of technological progress in meteorological measurement (instruments, their standardization and homogenization) and data collection from about 1700 onwards. This approach has taken for granted that “climate” has always been a meteorological category—an assumption that does not withstand the test. In the context of Antique geography, from which the idea emerged, “climate” referred to a new method of determining the location of a certain place on the globe; the term’s invention parallels the invention of geography, in which context it continued to have little to do with meteorology or the atmosphere. Apparently, the traditional geographic definition of “climate” remained stable well into the eighteenth century. This raises the question of why “climate” finally emerged from its niche in geography to represent the abstract and complex “statistics of weather.” The answer will come from a thorough study of the early modern geographic tradition, particularly the development of physical geography from Varenius to Humboldt, which will change the narrative as well as the chronology of the emergence of climatology as a scientific discipline.
    [Show full text]
  • GEOG 321: Climatology
    Geography 321: Climatology Spring 2018, 4:00-5:20p, Monday and Wednesday, 220 Chapman (CRN 32334) Instructor: Patrick J. Bartlein, 154 Condon Hall, x6-4967, [email protected], OH: Th 2:00-3:30p. GTF: TBA Overview: The climate system is a set of environmental systems including the atmosphere, ocean, and biosphere, that are coupled to one another and vary over time and space, and climatology is the study of that system. This course covers the basics of energy and moisture in the climate system, atmospheric circulation processes and patterns, and the spatial and temporal variations of climate, including those produced by human action. The course will also trace the development of our understanding of the physical basis of climatology, the development of conceptual and numerical models of climate, and how complex systems like the Earth’s climate system are studied. Text: No textbook; .pdfs and URLs will be posted on Canvas, including links to current assessments of climate variations. We will also use entries from the Encyclopedia of Atmospheric Sciences (2nd Ed), available electronically from the UO Library [link]. Prerequisites: Geog 141 (or similar preparation, with consent of instructor) Web Pages: Course web page: http://canvas.uoregon.edu/ Weather and climate page: http://geog.uoregon.edu/weather/ Supplemental materials page, syllabus, etc.: http://geog.uoregon.edu/bartlein/courses/geog321/ Grading: 100 pts. total. Two examinations (20 pts each, weeks 5 and 10), four quizzes (5 pts each), plus completion of ten exercises that involve the analysis of information from the Internet that illustrates the day-to-day and seasonal variations of weather and climate (4 pts each, 40 pts total for the exercises).
    [Show full text]
  • Introduction to Climatology
    © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE Inc. © Eyewire, OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER 1Introduction to Climatology © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION those specializingNOT FOR in glaciology, SALE OR as wellDISTRIBUTION as special- Chapter at a Glance ized physical geographers, geologists, and ocean- Meteorology and Climatology ographers. The biosphere, which crosscuts the Scales in Climatology lithosphere, hydrosphere, cryosphere, and atmo- Subfields of Climatology sphere, includes the zone containing all life forms © Jones & BartlettClimatic Learning, Records andLLC Statistics © Joneson the& Bartlettplanet, including Learning, humans. LLC The biosphere NOT FOR SALE SummaryOR DISTRIBUTION NOT FORis examined SALE by OR specialists DISTRIBUTION in the wide array of life Key Terms sciences, along with physical geographers, geolo- Review Questions gists, and other environmental scientists. Questions for Thought The atmosphere is the component of the system © Jones & Bartlett Learning, LLCstudied by climatologists ©and Jones meteorologists. & Bartlett Ho- Learning, LLC NOT FOR SALE OR DISTRIBUTIONlistic interactions betweenNOT the FORatmosphere SALE and OR DISTRIBUTION Climatology may be described as the scientific each combination of the “spheres” are important study of the behavior of the atmosphere—the contributors to the climate (Table 1.1), at scales thin gaseous layer surrounding Earth’s surface— from local to planetary. Thus, climatologists must integrated over time. Although this definition is draw on knowledge generated in several natural © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC certainly acceptable, it fails to capture fully the and sometimes social scientific disciplines to un- NOTscope FOR of SALE climatology.
    [Show full text]
  • Geologic, Climatic, and Vegetation History of California
    GEOLOGIC, CLIMATIC, AND VEGETATION HISTORY OF CALIFORNIA Constance I. Millar I ntroduction The dawning of the “Anthropocene,” the era of human-induced climate change, exposes what paleoscientists have documented for decades: earth’s environment—land, sea, air, and the organisms that inhabit these—is in a state of continual flux. Change is part of global reality, as is the relatively new and disruptive role humans superimpose on environmental and climatic flux. Historic dynamism is central to understanding how plant lineages exist in the present—their journey through time illuminates plant ecology and diversity, niche preferences, range distributions, and life-history characteristics, and is essential grounding for successful conservation planning. The editors of the current Manual recognize that the geologic, climatic, and vegetation history of California belong together as a single story, reflecting their interweaving nature. Advances in the sci- ences of geology, climatology, and paleobotany have shaken earlier interpretations of earth’s history and promoted integrated understanding of the origins of land, climate, and biota of western North America. In unraveling mysteries about the “what, where, and when” of California history, the respec- tive sciences have also clarified the “how” of processes responsible for geologic, climatic, and vegeta- tion change. This narrative of California’s prehistory emphasizes process and scale while also portraying pic- tures of the past. The goal is to foster a deeper understanding of landscape dynamics of California that will help toward preparing for changes coming in the future. This in turn will inform meaningful and effective conservation decisions to protect the remarkable diversity of rock, sky, and life that is our California heritage.
    [Show full text]