Aeronautics (AERO) Courses 1

Total Page:16

File Type:pdf, Size:1020Kb

Aeronautics (AERO) Courses 1 Aeronautics (AERO) Courses 1 AERO 027 2 Units AERONAUTICS (AERO) Airport Certification and Operations Lecture: 36 contact hours COURSES This course covers airport certification and operations including applicability, definitions, certificate requirements, and process, Airport AERO 015 2 Units Certification Manual (ACM), record keeping, personnel requirements, Nano Composite Technology markings, signs, and lighting, airport emergency plan, wildlife hazard Lecture: 18 contact hours management, and unmanned aerospace vehicles (UAV)(drones) issues. Lab: 54 contact hours Associate Degree Applicable This course is an introduction to Nano Composite Structures including the AERO 034 3 Units manufacturing, uniqueness, strength and repair methods in the aviation Civil Aviation Management and Laws field and any related fields using composites technology. Lecture: 54 contact hours Associate Degree Applicable This course covers the history of civil aviation in the United States AERO 021 3 Units including: federal legislation on civil aviation, international treaties and Aviation Fundamentals agreements relevant to civil aviation, and regulations pertaining to the Lecture: 54 contact hours management of airports, air carriers, general aviation, international air This course is an introduction to the basic principles of aeronautics, aircraft transport, and the air cargo industry. structure and operations including space, rocketry and aeronautical Associate Degree Applicable occupations. AERO 040 4 Units Associate Degree Applicable Instrument Ground School AERO 022 6 Units Lecture: 54 contact hours Private Pilot Ground School Lab: 54 contact hours Lecture: 108 contact hours This course examines the fundamentals of instrument flight in the Air This course offers complete preparation for the Federal Aviation Traffic Control (ATC) system and factors that can affect the operation Administration (FAA) private pilot written examination including including aerodynamics, navigation, flight planning, and communication. aerodynamics, weight and balance, airports and airspace, meteorology, The subject matter is reinforced by flying various procedures in flight using aviation services, flight information publications, federal air simulators. This course can be used as a method to meet the Federal regulations, navigation, radio navigation aids, cross-country flight planning, Aviation Administration (FAA) requirements for the ground instruction physiology of flight, and airborne emergencies. portion of a Biennial Flight Review (BFR) as specified in Federal Aviation Associate Degree Applicable Regulations (FAR) 61.56. AERO 024 3 Units Associate Degree Applicable Aircraft Powerplants AERO 046 3 Units Lecture: 54 contact hours Aviation Weather This course is designed to familiarize the student with the operating Lecture: 54 contact hours principles and construction highlights of both reciprocating and jet This course covers the aspects of weather as they relate to aircraft aircraft engines including internal combustion engines, jet propulsion operation and safety. Includes: Basic and hazardous weather, atmospheric engines, aircraft fuels and fuel systems, electrical and ignition systems, winds, pressure systems as associated with weather, cloud formation, air lubricants and lubrication systems, propellers, engine instrument and masses and fronts, thunderstorms, turbulence and icing, fog, haze and control systems, engine inspection, operation and troubleshooting. smoke, high altitude, arctic and tropical weather, interpretation of weather Associate Degree Applicable reports, forecast, charts and maps. AERO 025 2 Units Associate Degree Applicable Flight Safety AERO 050 5 Units Lecture: 36 contact hours General/Calculations and Basic Electricity Airframe and Powerplant This course is an in-depth study of flight safety including: organizations Technologies contributing to flight safety, Pilot and passenger responsibilities, Lecture: 90 contact hours emergency radio procedures, pilot resources, ground safety, mid-air Corequisite: AERO 050L collisions, weather and night flight hazards and precautions, emergency This course provides training for the General requirements of the Aviation procedures, medical factors, human factors, and crash investigation and Maintenance Technician Certificate. Areas of study include familiarization liability. of basic hand tools, applications of mathematics, basic physics, certain Associate Degree Applicable Federal Aviation Regulations (FARs), basic electricity including application AERO 026 3 Units of Ohm's Law, electrical terms, units of measure, types of electrical circuits, Airframe Structures reading and interpreting electrical diagrams, and electrical components Lecture: 54 contact hours familiarization. (Formerly AERO 100) This course is designed to familiarize the aviator or prospective pilot Associate Degree Applicable with the fundamentals of aircraft design and construction including: aircraft structural components, fundamentals of aerodynamics and flight, materials and hardware, ice and rain protection, hydraulic and pneumatic systems, landing gear systems, fire protection systems, electrical systems, instrument systems, weight and balance control, and blue print reading. Associate Degree Applicable 2 Aeronautics (AERO) Courses AERO 050L 2 Units AERO 053 6 Units General Laboratory/Calculations And Basic Electricity Airframe and Airframe Maintenance - Systems and Components Powerplant Technologies Lecture: 108 contact hours Lab: 108 contact hours Corequisite: AERO 053L Corequisite: AERO 050 This course provides training for the Airframe requirements of the This course provides training for the General requirements of the Aviation Airframe Maintenance Technician Certificate and the Aviation Maintenance Maintenance Technician Certificate. The content includes the use of basic Technician Certificate. Topics of study include aircraft welding, electrical hand tools, applications of mathematics, basic physics, certain Federal circuits, and basic aircraft systems for power, landing, brakes warning Aviation Regulations (FARs), basic electricity including application of instrumentation, autopilot, cabin atmosphere control, ice and rain control, Ohm’s Law, use of a volt/ohm meter, interpret electrical circuit diagrams, fire protection and communications. (Formerly AERO 103) service and inspection of batteries. (Formerly AERO 100L) Associate Degree Applicable Associate Degree Applicable AERO 053L 5 Units AERO 051 5 Units Airframe Maintenance Laboratory - Systems and Components General/Materials and Servicing Airframe and Powerplant Technologies Lab: 270 contact hours Lecture: 90 contact hours Corequisite: AERO 053 Corequisite: AERO 051L This course provides training for the Airframe requirements of the This course provides training for the General requirements of the Aviation Airframe Maintenance Technician Certificate and the Aviation Maintenance Maintenance Technician Certificate. Areas of instruction include aircraft Technician Certificate. Topics of instruction include aircraft welding, weight and balance control, basic drafting, aircraft fluid lines and fittings, electrical circuits, and basic aircraft systems for power, landing, brakes aircraft hardware, materials, non-destructive testing processes, corrosion warning instrumentation, auto pilot, cabin atmosphere control, ice and rain control, aircraft cleaning and ground operations and handling. (Formerly control, fire protection and communications. (Formerly AERO 103L) AERO 101) Associate Degree Applicable Associate Degree Applicable AERO 054 6 Units AERO 051L 2 Units Powerplant Maintenance - Reciprocating Engine Overhaul General Laboratory/Materials and Servicing Airframe and Powerplant Lecture: 108 contact hours Technologies Corequisite: AERO 054L Lab: 108 contact hours This course provides training for the Powerplant requirements of Corequisite: AERO 051 the Powerplant Maintenance Technician Certificate and the Aviation This course provides training for the General requirements of the Aviation Maintenance Technician Certificate. Topics of study include reciprocating Maintenance Technician Certificate. Areas of instruction include aircraft engine theory, overhaul, inspections, lubricating systems, indicating weight and balance control, basic drafting, aircraft fluid lines, fittings, systems, fire protection systems, and engine fuel systems. (Formerly AERO aircraft hardware, materials, non-destructive testing processes, corrosion 104) control, aircraft cleaning, and ground operations and handling. (Formerly Associate Degree Applicable AERO 101L) AERO 054L 5 Units Associate Degree Applicable Powerplant Maintenance Laboratory - Reciprocating Engine Overhaul AERO 052 6 Units Lab: 270 contact hours Airframe Maintenance - Structures Corequisite: AERO 054 Lecture: 108 contact hours This course provides training for the Powerplant requirements of Corequisite: AERO 052L the Powerplant Maintenance Technician Certificate and the Aviation This course provides training for the Airframe requirements of the Maintenance Technician Certificate. Topics of study include reciprocating Airframe Maintenance Technician Certificate and the Aviation Maintenance engine theory, overhaul, inspections, lubricating systems, indicating Technician Certificate. Areas of instruction include airframe structures, systems, fire protection systems, and engine fuel systems. (Formerly AERO aircraft covering, aircraft finishing, theory of flight, assembly and rigging, 104L) structural repair, aircraft inspection, and aircraft fuel systems.
Recommended publications
  • Remote Pilot – Small Unmanned Aircraft Systems Study Guide
    F FAA-G-8082-22 U.S. Department of Transportation Federal Aviation Administration Remote Pilot – Small Unmanned Aircraft Systems Study Guide August 2016 Flight Standards Service Washington, DC 20591 This page intentionally left blank. Preface The Federal Aviation Administration (FAA) has published the Remote Pilot – Small Unmanned Aircraft Systems (sUAS) Study Guide to communicate the knowledge areas you need to study to prepare to take the Remote Pilot Certificate with an sUAS rating airman knowledge test. This Remote Pilot – Small Unmanned Aircraft Systems Study Guide is available for download from faa.gov. Please send comments regarding this document to [email protected]. Remote Pilot – Small Unmanned Aircraft Systems Study Guide i This page intentionally left blank. Remote Pilot – Small Unmanned Aircraft Systems Study Guide ii Table of Contents Introduction ........................................................................................................................... 1 Obtaining Assistance from the Federal Aviation Administration (FAA) .............................................. 1 FAA Reference Material ...................................................................................................................... 1 Chapter 1: Applicable Regulations .......................................................................................... 3 Chapter 2: Airspace Classification, Operating Requirements, and Flight Restrictions .............. 5 Introduction ........................................................................................................................................
    [Show full text]
  • Easy Access Rules for Auxiliary Power Units (CS-APU)
    APU - CS Easy Access Rules for Auxiliary Power Units (CS-APU) EASA eRules: aviation rules for the 21st century Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders. EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards. To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities. The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective. Published February 20181 1 The published date represents the date when the consolidated version of the document was generated. Powered by EASA eRules Page 2 of 37| Feb 2018 Easy Access Rules for Auxiliary Power Units Disclaimer (CS-APU) DISCLAIMER This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related acceptable means of compliance. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
    [Show full text]
  • ALT / VS Selector/Alerter
    ALT / VS Selector / Alerter PN 01279-( ) Pilot’s Operating Handbook ENT ALT SEL ALR DH VS BARO S–TEC * Asterisk indicates pages changed, added, or deleted by List of Effective Pages current revision. Retain this record in front of handbook. Upon receipt of a Record of Revisions revision, insert changes and complete table below. Revision Number Revision Date Insertion Date/Initials 1st Ed. Oct 26, 00 2nd Ed. Jan 15, 08 3rd Ed. Jun 24, 16 3rd Ed. Jun 24, 16 i S–TEC Page Intentionally Blank ii 3rd Ed. Jun 24, 16 S–TEC Table of Contents Sec. Pg. 1 Overview...........................................................................................................1–1 1.1 Document Organization....................................................................1–3 1.2 Purpose..............................................................................................1–3 1.3 General Control Theory....................................................................1–3 1.4 Block Diagram....................................................................................1–4 2 Pre-Flight Procedures...................................................................................2–1 2.1 Pre-Flight Test....................................................................................2–3 3 In-Flight Procedures......................................................................................3–1 3.1 Selector / Alerter Operation..............................................................3–3 3.1.1 Data Entry.............................................................................3–3
    [Show full text]
  • Exec Summary (PDF)
    BEECHCRAFT® AT-6 The Future of Light Attack is Here. Capable. Affordable. Sustainable. Interoperable. One platform with multiple missions: initial pilot training, weapons training, operational NetCentric ISR and Light Attack capabilities for irregular warfare. The Beechcraft AT-6 is a multi-role, multi-mission aircraft system designed to meet a wide spectrum of warfighter needs: • Based on the proven Beechcraft USAF T-6A and USN T-6B • Designed to accommodate 95% of the aircrew population; widest range in its class • Lockheed Martin plug-and-play mission system architecture adapted from A-10C • Sensor suite adapted from the MC-12W • Flexible, reconfigurable hardpoints with six external store stations Unparalleled attributes with • Long persistence with two aircrew and weapons; up to 1,485 nm self-deployment range a wide range of options. • Extensive variety of weapons including general purpose, laser guided and inertially-aided munitions AIRFRAME AND POWERPLANT • 1,600 shaft horsepower engine • The only fixed-wing aircraft to fire laser guided rockets • ISR suite and six external store hardpoints • Light armor COMBAT MISSION SYSTEMS • Mission systems by Lockheed Martin • NVIS cockpit • Helmet-mounted cueing system • Infrared missile warning and countermeasures COMMUNICATIONS SUITE • Secure voice and data • Rover-compatible full motion video • SADL/Link-16 compatible • SATCOM ISR SUITE • MX-15Di WEAPONS INTEGRATION • 17 60 capable stores management system • .50 Cal Gun • 20mm Gun • 250/500 lb. laser guided GPS or GP bombs • Laser guided missiles • Laser guided rockets • Small 1760 weapons Learn more. Call +1.316.676.0800 or visit Beechcraft.com 13LSAT6HW Specifications and performance are subject to change without notice.
    [Show full text]
  • Propeller Aerodynamics CONSTANT-SPEED PROPELLER
    Constant-speed propeller Centrifugal twisting force. This is the opposing force to the aerodynamic twist- ing moment. Because this force is greater, it tries to move the blades toward a reduced blade angle. A propeller is designed to withstand the effect of these forces, but the forces are nonetheless important factors in design and operation. The effect of these forces accu- mulates across the length of the blade with the greatest stress at the hub. As the rota- tional speed of the propeller increases, so too do the stresses acting upon it. Given the various forces acting upon a propeller, it is not difficult to understand the serious prob- lem associated with even small nicks or scratches that could weaken the integrity of the propeller. Propeller aerodynamics To understand how a propeller moves an aircraft through the air, it is necessary to look at it from an aerodynamic rather than a mechanical perspective. Figure 5-6 depicts the side view of a propeller detailing the blade path, blade chord, and relative wind. The illustration reveals two types of motion associated with the propeller blades: rota- tional and forward. As a blade moves downward, it simultaneously moves forward. This has a significant effect on the relative wind making it strike the blade at an angle that is between straight ahead and straight down. This angle that the relative wind strikes the blade is called the angle of attack. The relative wind hitting the descending blade is deflected rearward causing the dynamic pressure on the engine side of the blade to be greater than the pressure on the back of the blade.
    [Show full text]
  • How Doc Draper Became the Father of Inertial Guidance
    (Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla.
    [Show full text]
  • Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
    PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they sometimes fail. Some of these failures and malfunctions cannot be duplicated well in the simulator, which can cause recognition difficulties when they happen in actual operation. This text is not meant to replace other instructional texts. However, completion of the material can provide pilots with additional understanding of turbopropeller operation and the handling of malfunctions. GENERAL PROPELLER PRINCIPLES Propeller and engine system designs vary widely. They range from wood propellers on reciprocating engines to fully reversing and feathering constant- speed propellers on turbine engines. Each of these propulsion systems has the similar basic function of producing thrust to propel the airplane, but with different control and operational requirements. Since the full range of combinations is too broad to cover fully in this summary, it will focus on a typical system for transport category airplanes - the constant speed, feathering and reversing propellers on turbine engines. Major propeller components The propeller consists of several blades held in place by a central hub. The propeller hub holds the blades in place and is connected to the engine through a propeller drive shaft and a gearbox. There is also a control system for the propeller, which will be discussed later. Modern propellers on large turboprop airplanes typically have 4 to 6 blades. Other components typically include: The spinner, which creates aerodynamic streamlining over the propeller hub. The bulkhead, which allows the spinner to be attached to the rest of the propeller.
    [Show full text]
  • Air Force Airframe and Powerplant (A&P) Certification Program
    Air Force Airframe and Powerplant (A&P) Certification Program Introduction: Most military aircraft maintenance technicians are eligible to pursue the Federal Aviation Administration (FAA) Airframe & Powerplant (A&P) certification based on documented evidence of 30 months practical aircraft maintenance experience in airframe and powerplant systems per Title 14, Code of Federal Regulations (CFR), Part 65- Certification: Airmen Other Than Flight Crew Members; Subpart D-Mechanics. Air Force education, training and experience and FAA eligibility requirements per Title 14, CFR Part 65.77. This FAA-approved program is a voluntary program which benefits the technician and the Air Force, with consideration to professional development, recruitment, retention, and transition. Completing this program, outlined in the program Qualification Training Package (QTP), will assist technicians in meeting FAA eligibility requirements and being better-prepared for the FAA exams. Three-Tier Program: The program is a three-tier training and experience program. These elements are required for program completion and are important for individual development, knowledge assessment, meeting FAA certification eligibility, and preparation for the FAA exams: Three Online Courses (02AF1-General, 02AF2-Airframe, & 02AF3-Powerplant). On the Job Training (OJT) Qualification Training Package(QTP). Documented evidence of 30 months practical experience in airframe and powerplant systems. Program Eligibility: Active duty, guard and reserve technicians who possess at least a 5-skill level in one of the following aircraft maintenance AFSCs are eligible to enroll: 2A0X1, 2A090, 2A2X1, 2A2X2, 2A2X3, 2A3X3, 2A3X4, 2A3X5, 2A3X7, 2A3X8, 2A390, 2A300, 2A5X1, 2A5X2, 2A5X3, 2A5X4, 2A590, 2A500, 2A6X1, 2A6X3, 2A6X4, 2A6X5, 2A6X6, 2A690, 2A691, 2A600 (except AGE), 2A7X1, 2A7X2, 2A7X3, 2A7X5, 2A790, 2A8X1, 2A8X2, 2A9X1, 2A9X2, and 2A9X3.
    [Show full text]
  • Propulsion Systems for Aircraft. Aerospace Education II
    . DOCUMENT RESUME ED 111 621 SE 017 458 AUTHOR Mackin, T. E. TITLE Propulsion Systems for Aircraft. Aerospace Education II. INSTITUTION 'Air Univ., Maxwell AFB, Ala. Junior Reserve Office Training Corps.- PUB.DATE 73 NOTE 136p.; Colored drawings may not reproduce clearly. For the accompanying Instructor Handbook, see SE 017 459. This is a revised text for ED 068 292 EDRS PRICE, -MF-$0.76 HC.I$6.97 Plus' Postage DESCRIPTORS *Aerospace 'Education; *Aerospace Technology;'Aviation technology; Energy; *Engines; *Instructional-. Materials; *Physical. Sciences; Science Education: Secondary Education; Textbooks IDENTIFIERS *Air Force Junior ROTC ABSTRACT This is a revised text used for the Air Force ROTC _:_progralit._The main part of the book centers on the discussion -of the . engines in an airplane. After describing the terms and concepts of power, jets, and4rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why theseare not used in airplanes. The discussion of the carburetor is followed byan explanation of the lubrication system. The chapter on reaction engines describes the operation of,jets, with examples of different types of jet engines.(PS) . 4,,!It********************************************************************* * Documents acquired by, ERIC include many informal unpublished * materials not available from other souxces. ERIC makes every effort * * to obtain the best copravailable. nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document" Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original.
    [Show full text]
  • Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering Mcgil
    Integrating Air Systems in Aircraft Multidisciplinary Design Optimization Ali Tfaily Department of Mechanical Engineering McGill University, Montreal August 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Engineering ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof. Michael Kokkolaras, for his support and guidance throughout my time as his student. I am honored to have worked along a supervisor that always helped me in my work and even my personal life. I am grateful to members of Bombardier’s Advanced Product Development department for their insights on aircraft design and optimization. Special acknowledgment is given to the Thermodynamics department at Bombardier Product Development Engineering, namely Sebastien Beaulac, Hongzhi Wang, Jean-Francois Reis, and Emmanuel Germaine, who provided expertise that greatly assisted this research. I would also like to thank Jean Brousseau for sharing his knowledge on air systems design. I am very grateful to John Ferneley, Susan Liscouët-Hanke, Pat Piperni, and Fassi Kafyeke who were supportive of my career goals and provided me the means to pursue these goals. Finally, I am grateful to my friends and family for their constant support and encouragement throughout the ups and downs of my studies. ABSTRACT The strong interactions between aircraft and air systems necessitate the integration of the latter to multidisciplinary design optimization (MDO) considerations of the former. This research presents such a methodology considering environmental control and ice protection systems. These systems consume pressurized bleed air from the aircraft’s engines to perform their respective functions. We first describe the models used to predict the behavior of these systems and then propose different approaches to their integration into an existing aircraft MDO environment.
    [Show full text]
  • Installation Manual, Document Number 200-800-0002 Or Later Approved Revision, Is Followed
    9800 Martel Road Lenoir City, TN 37772 PPAAVV8800 High-fidelity Audio-Video In-Flight Entertainment System With DVD/MP3/CD Player and Radio Receiver STC-PMA Document P/N 200-800-0101 Revision 6 September 2005 Installation and Operation Manual Warranty is not valid unless this product is installed by an Authorized PS Engineering dealer or if a PS Engineering harness is purchased. PS Engineering, Inc. 2005 © Copyright Notice Any reproduction or retransmittal of this publication, or any portion thereof, without the expressed written permission of PS Engi- neering, Inc. is strictly prohibited. For further information contact the Publications Manager at PS Engineering, Inc., 9800 Martel Road, Lenoir City, TN 37772. Phone (865) 988-9800. Table of Contents SECTION I GENERAL INFORMATION........................................................................ 1-1 1.1 INTRODUCTION........................................................................................................... 1-1 1.2 SCOPE ............................................................................................................................. 1-1 1.3 EQUIPMENT DESCRIPTION ..................................................................................... 1-1 1.4 APPROVAL BASIS (PENDING) ..................................................................................... 1-1 1.5 SPECIFICATIONS......................................................................................................... 1-2 1.6 EQUIPMENT SUPPLIED ............................................................................................
    [Show full text]
  • Comparison of Helicopter Turboshaft Engines
    Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle.
    [Show full text]