Semantics of Time-Varying Attributes and Their Use

Total Page:16

File Type:pdf, Size:1020Kb

Semantics of Time-Varying Attributes and Their Use Semantics of TimeVarying Attributes and Their Use for Temp oral Database Design Christian S Jensen Richard T Sno dgrass 1 Department of Mathematics and Computer Science Aalb org University Fredrik Ba jers Vej E DK Aalb org DENMARK csjiesdaucdk 2 Department of Computer Science University of Arizona Tucson AZ USA rtscsarizonaedu Abstract Based on a systematic study of the semantics of temp oral attributes of entities this pap er provides new guidelines for the design The notions of observation and up date of temp oral relational databases patterns of an attribute capture when the attribute changes value and when the changes are recorded in the database A lifespan describ es when an attribute has a value And derivation functions describ e how the values of an attribute for all times within its lifespan are computed from stored values The implications for temp oral database design of the semantics that may b e captured using these concepts are formulated as schema decomp osition rules Intro duction Designing appropriate database schemas is crucial to the eective use of rela tional database technology and an extensive theory has b een develop ed that sp ecies what is a go o d database schema and how to go ab out designing such a schema The relation structures provided by temp oral data mo dels eg the recent TSQL mo del provide builtin supp ort for representing the temp o ral asp ects of data With such new relation structures the existing theory for e eective use of tem relational database design no longer applies Thus to mak p oral database technology a new theory for temp oral database design must b e develop ed We have previously extended and generalized conventional normalization But the resulting concepts are still lim concepts to temp oral databases ited in scop e and do not fully account for the timevarying nature of data Thus additional concepts are needed in order to fully capture and exploit the timevarying nature of data during database design This pap er prop oses con cepts that capture the timerelated semantics of attributes and uses these as a foundation for developing guidelines for the design of temp oral databases The prop erties of timevarying attributes are captured by describing their lifespans their time patterns and their derivation functions Design rules subsequen tly al low the database designer to use the prop erties for view logical and physical schema design The pap er is structured as follows Section rst reviews the temp oral data mo del used in the pap er It then argues that the prop erties of attributes are rela they describ e and then intro duces surrogates for representing tive to the ob jects realworld ob jects in the mo del The following subsections address in turn dif ferent asp ects of timevarying attributesnamely lifespans time patterns and derivation functions Section is devoted to the implications of the attribute se mantics for logical schema physical schema and view design The nal section summarizes and p oints to opp ortunities for further research Capturing the Semantics of TimeVarying Attributes This section provides concepts that allow the database designer to capture more precisely and concisely than hitherto the timevarying nature of attributes in temp oral relations The temp oral data mo del employed in the pap er is rst describ ed Then a suite of concepts for capturing the temp oral semantics of attributes are intro duced A Conceptual Data Mo del We describ e briey the relation structures of the Bitemp oral Conceptual Data Mo del BCDM see for a more complete description that is the data mo del of TSQL and which is used in this pap er We adopt a linear discrete b ounded mo del of time with a time line com p osed of chronons The schema of a bitemp oral conceptual relation R consists of an arbitrary numb er eg n of explicit attributes and an implicit timestamp bitemp oral attribute T dened on the domain of sets of bitemp oral chronons A b t v t chronon c c c is an ordered pair of a transactiontime chronon c and a v b validtime chronon c A tuple x a a j t in a relation instance r a n of schema R thus consists of n attribute values asso ciated with a bitemp oral timestamp value An arbitrary subset of the domain of valid times is asso ciated with each tuple meaning that the information recorded by the tuple is true in the modeled reality during each validtime chronon in the subset Each individ ual validtime chronon of a single tuple has asso ciated a subset of the domain of transaction times meaning that the information valid during the particular ent in the relation during each of the transactiontime chronons chronon is curr in the subset Any subset of transaction times less than the current time may that while the denition of a bitemp oral b e asso ciated with a valid time Notice chronon is symmetric this explanation is asymmetric reecting the dierent semantics of transaction and valid time We have thus seen that a tuple has asso ciated a set of socalled bitemp oral chronons in the twodimensional space spanned by transaction time and valid time Such a set is termed a bitemporal element We assume that a do main of surrogate values is available for representing realworld ob jects in the database Example Consider the relation instance empDep shown next EName Dept T Bob Ship f g Bob Load f g The relation shows the employment information for an employee Bob and two departments Ship and Load contained in two tuples In the timestamps we assume that the chronons corresp ond to days and that the p erio d of interest is Throughout we use integers some given month in a given year eg July as timestamp comp onents The reader may informally think of these integers as dates eg the integer in a timestamp represents the date July The current time is assumed to b e V alidtime relations and transactiontime relations are sp ecial cases of bitem p oral relations that supp ort only valid time and transaction time resp ectively or clarity we use the term snapshot relation for a conventional relation which F supp orts neither valid time nor transaction time This completes the description of the ob jects in the bitemp oral conceptual data mo delrelations of tuples timestamp ed with temp oral elements An asso ciated algebra and userlevel query language are dened elsewhere Using Surrogates An attribute is seen in the context of a particular realworld entity Thus when we talk ab out a prop erty eg the frequency of change of an attribute that prop erty is only meaningful when the attribute is asso ciated with a particular entity As an example the frequency of change of a salary attribute with re sp ect to a sp ecic employee in a company may reasonably b e exp ected to b e relatively regular and there will only b e at most one salary for the employee at each p oint in time In contrast if the salary is with resp ect to a department a signicantly dierent pattern of change may b e exp ected There will generally b e many salaries asso ciated with a department at a single p oint in time Hence it is essential to identify the reference ob ject when discussing the semantics of an attribute We employ surrogates for representing realworld entities in the database In this regard we follow the approach adopted in eg the TEER mo del by Elmasri Surrogates do not vary over time in the sense that two entities iden tied by identical surrogates are the same entity and two entities identied by dierent surrogates are dierent entities We assume the presence of surrogate attributes throughout logical design At the conclusion of logical design surro gate attributes may b e either retained replaced by regular key attributes or eliminated Lifespans of Individual TimeVarying Attributes In database design one is interested in the interactions among the attributes of the relation schemas that make up the database Here we provide a basis for relating the lifespans of attributes Intuitively the lifespan of an attribute for a sp ecic ob ject is all the times when the ob ject has inapplicable null for the attribute Note that lifespans a value distinct from i concern valid time ie are ab out the times when there exist some valid values To more precisely dene lifespans we rst dene an algebraic selection op er ator on a temp oral relation Dene a relation schema R A A jT and n b e a predicate dened on the A The let r b e an instance of this schema Let P i B B selection P on r r is dened by r fz j z r P z A A g n P P B It follows that r simply p erforms the familiar snapshot selection with the P addition that each selected tuple carries along its timestamp T Next we dene an auxiliary function vte that takes as argument a validtime relation r and v v returns the validtime element dened by vter fc j s s r c sTg The result validtime element is thus the union of all valid timestamps of the tuples in an argument validtime relation Let a relation schema R S A A j T b e given where S Denition n is surrogate valued and let r b e an instance of R The lifespan for an attribute A i n with resp ect to a value s of S in r is denoted lsr A s and is i i B dened by lsr A s vte r i s^A6? S i Lifespans are imp ortant b ecause attributes are guaranteed to not have any inapplicable null value during their lifespans Assume that we are given a relation EName Dept that records the names and departments schema empDep EmpS of employees represented by the surrogate attribute EmpS If employees always have a name
Recommended publications
  • A Logical Framework for Temporal Deductive Databases S
    A logical framework for temporal deductive databases S. M. Sripada Departmentof Computing Imperial College of Science& Technology 180 Queen’sGate, London SW7 2BZ Abstract researchers have incorporated time into conventional databasesusing various schemes Temporal deductive databases are deductive providing different capabilities for handling databaseswith an ability to representboth valid temporal information. In particular, work has time and transaction time. The work is basedon been done on adding temporal information to the Event Calculus of Kowalski & Sergot. Event conventionaldatabases to turn them into temporal Calculus is a treatment of time, based on the databases. However, no work is done on notion of events, in first-order classical logic handling both transaction time and valid time in augmentedwith negation as failure. It formalizes deductive databases.In this paper we propose a the semanticsof valid time in deductivedatabases framework for dealing with time in temporal and offers capability for the semantic validation deductivedatabases. of updates and default reasoning. In this paper, the Event Calculus is extended to include the Snodgrass dz Ahn [16,17] describe a concept of transaction time. The resulting classification of databasesdepending on their framework is capable of handling both proactive ability to represent temporal information. They and retroactive updates symmetrically. Error identify three different concepts of time - valid correction is achievedwithout deletionsby means time, transaction time and user-defined time. Of of negation as failure. The semantics of these, user-defined time is temporal transaction time is formalised and the axioms of information of some kind that is of interest to the the Event Calculus are modified to cater for user but does not concern a DBMS.
    [Show full text]
  • Temporal Metadata for Discovery
    Temporal Metadata for Discovery A review of current practice Makx Dekkers AMI Consult SARL Massimo Craglia (Editor) European Commission DG JRC Institute for Environment and Sustainability EUR 23209 EN - 2008 The mission of the Institute for Environment and Sustainability is to provide scientific-technical support to the European Union’s Policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Makx Dekkers Address: AMI Consult Société à responsabilité limitée B.P. 647 2016 Luxembourg E-mail: [email protected] Massimo Craglia (Editor) Address: European Commission Joint Research Centre Institute for Environment and Sustainability Spatial Data Infrastructures Unit TP262, Via Fermi 2749 I-21027 Ispra (VA) ITALY E-mail: [email protected] Tel.: +39-0332-786269 Fax: +39-0332-786325 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 42620 EUR 23209 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Table of contents 1 BACKGROUND AND RATIONALE ....................................................................
    [Show full text]
  • Dealing with Granularity of Time in Temporal Databases
    DEALING WITH GRANULARITY OF TIME IN TEMPORAL DATABASES Gio Wiederhold t Department of Computer Science Stanford University, Stanford, CA 94305-2140, U.S.A. Sushil Jajodia Department of Information Systems and Systems Engineering George Mason University, Fairfax, VA 22030-4444, U.S.A. Witold Litwin* I.N.R.I.A. 78153 Le Chesnay, France ABSTRACT A question that always arises when dealing with temporal informa- tion is the granularity of the values in the domain type. Many different approaches have been proposed; however, the community has not yet come to a basic agree- ment. Most published temporal representations simplify the issue which leads to difficulties in practical applications. In this paper, we resolve the issue of temporal representation by requiring two domain types (event times and intervals), formal- ize useful temporal semantics, and extend the relational operations in such a way that temporal extensions fit into a relational representation. Under these considera- tions, a database system that deals with temporal data can not only present con- sistent temporal semantics to users but perform consistent computational sequences on temporal data from diverse sources. 1. Introduction Large databases do not just collect data about the current state of objects but retain infor- marion about past states as well. In the past, when storage was costly, such data was often not retained online. Aggregations of past information might have been kept, and detail data was archived. Certain applications always required that an adequate history be kept. In medical data- base systems a record of past events is necessary to avoid repeating ineffective or inappropriate treatments, and in other applications legal or planning requirements make keeping of a history desirable.
    [Show full text]
  • A Centralized Ledger Database for Universal Audit and Verification
    LedgerDB: A Centralized Ledger Database for Universal Audit and Verification Xinying Yangy, Yuan Zhangy, Sheng Wangx, Benquan Yuy, Feifei Lix, Yize Liy, Wenyuan Yany yAnt Financial Services Group xAlibaba Group fxinying.yang,yuenzhang.zy,sh.wang,benquan.ybq,lifeifei,yize.lyz,[email protected] ABSTRACT certain consensus protocol (e.g., PoW [32], PBFT [14], Hon- The emergence of Blockchain has attracted widespread at- eyBadgerBFT [28]). Decentralization is a fundamental basis tention. However, we observe that in practice, many ap- for blockchain systems, including both permissionless (e.g., plications on permissioned blockchains do not benefit from Bitcoin, Ethereum [21]) and permissioned (e.g., Hyperledger the decentralized architecture. When decentralized architec- Fabric [6], Corda [11], Quorum [31]) systems. ture is used but not required, system performance is often A permissionless blockchain usually offers its cryptocur- restricted, resulting in low throughput, high latency, and rency to incentivize participants, which benefits from the significant storage overhead. Hence, we propose LedgerDB decentralized ecosystem. However, in permissioned block- on Alibaba Cloud, which is a centralized ledger database chains, it has not been shown that the decentralized archi- with tamper-evidence and non-repudiation features similar tecture is indispensable, although they have been adopted to blockchain, and provides strong auditability. LedgerDB in many scenarios (such as IP protection, supply chain, and has much higher throughput compared to blockchains. It merchandise provenance). Interestingly, many applications offers stronger auditability by adopting a TSA two-way peg deploy all their blockchain nodes on a BaaS (Blockchain- protocol, which prevents malicious behaviors from both users as-a-Service) environment maintained by a single service and service providers.
    [Show full text]
  • Time, Points and Space - Towards a Better Analysis of Wildlife Data in GIS
    Time, Points and Space - Towards a Better Analysis of Wildlife Data in GIS Dissertation zur Erlangung der naturwissenschaftlichen Doktorw¨urde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Z¨urich von Stephan Imfeld von Lungern OW Begutachtet von Prof. Dr. Kurt Brassel Prof. Dr. Bernhard Nievergelt Dr. Britta Allg¨ower Prof. Dr. Peter Fisher Z¨urich 2000 Die vorliegende Arbeit wurde von der Mathematisch-naturwissenschaftlichen Fakult¨at der Universit¨at Z¨urich auf Antrag von Prof. Dr. Kurt Brassel und Prof. Dr. Robert Weibel als Dissertation angenommen. How to Catch Running Animals with GIS and See What They’re up to i Abstract Geographical Information Systems are powerful instruments to analyse spatial data. Wildlife researchers and managers are always confronted with spatial data analysis and make use of these systems for various tasks. One important characteristic of the animals unter investigation is their locomotion. Thus the temporal aspects are important, but unfortunately GIS are almost ignorant concerning the analysis of the temporal domain. This thesis is trying to provide a new perspective on how to analyse moving point objects within GIS. A conceptual shift is performed from a space centered view to a way of analysing spatial and temporal aspects in an equally balanced way. For this purpose the family of analytical Time Plots was developed. They represent a completely new approach of how to analyse moving point objects. They transform the data originating from an animal’s movements into a repre- sentation with two time axes and one spatial axis that allows for an effective recognition of spatial patterns within the data.
    [Show full text]
  • SQL and Temporal Database Research: Unified Review and Future Directions
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 SQL and Temporal Database Research: Unified Review and Future Directions Rose-Mary Owusuaa Mensah1, Vincent Amankona2 1Postgraduate Student, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 2 Postgraduate Student, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Several attempts to incorporate temporal In the early 1990s, a renowned researcher in the database extensions into the Structured Query Language, SQL, one of community, Richard Snodgrass, proposed that temporal the most popular query languages for databases date back extensions to SQL be developed because few of them to the nineteenth and twentieth century. Although a lot of existed. In response to his proposal [1], a committee was work and research has been done on temporal databases formed to consolidate past research and suggestions from and SQL, there exist very limited literature clearly outlining the research community in order to design temporal the various events which have taken place with regards to extensions to the 1992 edition of the SQL standard. Those temporal extensions of SQL over the years till the present extensions, known as TSQL2, were then developed by this state in a concise document. Consequently, researchers need committee and in 1993, they presented proposals to the to gather several pieces of literature before they can obtain ANSI SQL Technical Committee. Based on responses to the a vivid pictorial timeline of the history and the current state proposals, changes were made to the Language, and the of these temporal extensions for research and software definitive version of the TSQL2 Language Specification development purposes.
    [Show full text]
  • The Multi-Temporal Database of Planetary Image Data (Muted): New Features to Study Dynamic Mars
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1001.pdf THE MULTI-TEMPORAL DATABASE OF PLANETARY IMAGE DATA (MUTED): NEW FEATURES TO STUDY DYNAMIC MARS. T. Heyer1, H. Hiesinger1, D. Reiss1, J. Raack1, and R. Jaumann2, 1Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany, 2German Aerospace Center (DLR), Berlin, Germany. ([email protected]) Introduction: The Multi-Temporal Database of Structure: MUTED is based on open source Planetary Image Data (MUTED) is a web-based tool to software and standards from the Open Geospatial support the identification of surface changes and time- Consortium (OGC). Metadata of the planetary image critical processes on Mars. The database enables scien- datasets are integrated from the Planetary Data System tists to quickly identify the spatial and multi-temporal (PDS) into a relational database (PostGreSQL). In coverage of orbital image data of all major Mars mis- order to provide the multi-temporal coverage, addi- sions. Since the 1970s, multi-temporal spacecraft tional information, e.g., the geometry, the number and observations have revealed that the martian surface is time span of overlapping images are derived for each very dynamic [e.g., 1-3]. The observation of surface image respectively. A Geoserver translates the metada- changes and processes, including eolian activity [e.g., ta stored in the relational database into web map ser- 5, 6], mass movement activities [e.g., 6, 7, 8], the vices (WMS) and web features services (WFS). Using growth and retreat of the polar caps [e.g., 9, 10], and Common Query Language (CQL), the web services crater-forming impacts [11] became possible by the can be filtered by date, solar longitude, spatial resolu- increasing number of repeated image acquisitions of tion, incidence angle, and spatial extend.
    [Show full text]
  • Self-Organizing Networks and GIS Tools Cases of Use for the Study of Trading Cooperation (1400-1800)
    Journal of Knowledge Management, Economics and Information Technology Self-organizing Networks and GIS Tools Cases of Use for the Study of Trading Cooperation (1400-1800) Ana Crespo Solana and David Alonso García (coords.) Copyright © 2012 by Scientific Papers and individual contributors. All rights reserved. Scientific Papers holds the exclusive copyright of all the contents of this journal. In accordance with the international regulations, no part of this journal may be reproduced or transmitted by any media or publishing organs (including various websites) without the written permission of the copyright holder. Otherwise, any conduct would be considered as the violation of the copyright. The contents of this journal are available for any citation, however, all the citations should be clearly indicated with the title of this journal, serial number and the name of the author. Edited and printed in France by Scientific Papers @ 2012. Editorial Board: Adrian GHENCEA, Claudiu POPA This publication has been sponsored by the Research Project: “Geografía Fiscal y Poder financiero en Castilla” Ref. HAR2010-15168, MICINN, Spain, and GlobalNet, Ref. HAR2011-27694, MICINN, Spain. Self-organizing Networks and GIS Tools Cases of Use for the Study of Trading Cooperation (1400-1800) Summary: 1. J. B. “Jack” Owens, Dynamic Complexity of Cooperation-Based Self-Organizing Commercial Networks in the First Global Age (DynCoopNet): What’s in a name? 2. Monica Wachowicz and J. B. “Jack” Owens, Dynamics of Trade Networks: The main research issues on space-time representations. 3. Adolfo Urrutia Zambrana, María José García Rodríguez, Miguel A. Bernabé Poveda, Marta Guerrero Nieto, Geo-history: Incorporation of geographic information systems into historical event studies.
    [Show full text]
  • 8. Time in GIS and Geographical Databases
    735450_ch08.qxd 2/4/05 1:00 PM Page 91 8 Time in GIS and geographical databases D J PEUQUET Although GIS and geographical databases have existed for over 30 years, it has only been within the past few that the addition of the temporal dimension has gained a significant amount of attention. This has been driven by the need to analyse how spatial patterns change over time (in order to better understand large-scale Earth processes) and by the availability of the data and computing power required by that space–time analysis. This chapter reviews the basic representational and analytical approaches currently being investigated. 1 INTRODUCTION increasingly encountering the issue of how to keep a geographical database current without overwriting Representations used historically within GIS assume outdated information. This problem has come to be a world that exists only in the present. Information known as ‘the agony of delete’ (Copeland 1982; contained within a spatial database may be added to Langran 1992). The rapidly decreasing cost of or modified over time, but a sense of change or memory and the availability of larger memory dynamics through time is not maintained. This capacities of all types is also eliminating the need to limitation of current GIS capabilities has been throw away information as a practical necessity. In receiving substantial attention recently, and the addition, the need within governmental policy- impetus for this attention has occurred on both a making organisations (and subsequently in science) theoretical and a practical level. to understand the effects of human activities better On a theoretical level GIS are intended to provide on the natural environment at all geographical scales an integrated and flexible tool for investigating is now viewed with increasing urgency.
    [Show full text]
  • Time in Database Systems
    30th January 2004 16:9 WorldScientific/ws-b9-75x6-50 book-timeai Chapter 19 Time in Database Systems Jan Chomicki David Toman Department of Comp. Sci. and Eng. School of Computer Science University at Buffalo, U.S.A. University of Waterloo, Canada [email protected] [email protected] 19.1 Introduction Time is ubiquitous in information systems. Almost every enterprise faces the problem of its data becoming out of date. However, such data is often valuable, so it should be archived and some means of accessing it should be provided. Also, some data may be inherently historical, e.g., medical, cadastral, or ju- dicial records. Temporal databases provide a uniform and systematic way of dealing with historical data. This chapter develops point-based data models and query languages for temporal databases in the relational framework. The models provide a separa- tion between the conceptual data (what is stored in the database) and the way the data is compactly represented in the temporal relations (how it is stored). This approach leads to a clean and elegant data model while still providing an efficient implementation path. The foundations of the approach can be traced to the constraint database technology [Kanellakis et al., 1995]: constraint rep- resentation is used as the basis for a space-efficient representation of temporal relations. We first study how logics of time can be used as query and integrity con- straint languages in the above setting and the differences resulting from choos- ing a particular logic as a query language for temporal data. Consequently, model-theoretic notions, particularly formula satisfaction in a fixed model, are of primary interest.
    [Show full text]
  • Preference-Aware Integration of Temporal Data
    Preference-aware Integration of Temporal Data Bogdan Alexe Mary Roth Wang-Chiew Tan IBM Almaden IBM Almaden and UCSC UCSC [email protected] [email protected] [email protected] ABSTRACT hanced if temporal information from different sources is also care- A complete description of an entity is rarely contained in a single fully accounted for [31, 34] in order to determine when facts about data source, but rather, it is often distributed across different data entities are true. sources. Applications based on personal electronic health records, For example, patients typically visit multiple medical profes- sentiment analysis, and financial records all illustrate that signifi- sionals/facilities over the course of their lifetime, and often even cant value can be derived from integrated, consistent, and query- simultaneously. While it is important for each medical facility to able profiles of entities from different sources. Even more so, such maintain medical history records for its patients to provide more integrated profiles are considerably enhanced if temporal informa- comprehensive diagnosis and care, there is even greater value for tion from different sources is carefully accounted for. both the patient and the medical professionals to have access to an integrated profile derived from the histories kept by each institu- We develop a simple and yet versatile operator, called PRAWN, that is typically called as a final step of an entity integration work- tion. Through the integrated profile, one could understand when a drug was administered and taken by a patient and for how long. flow. PRAWN is capable of consistently integrating and resolv- ing temporal conflicts in data that may contain multiple dimen- In turn, one could determine whether drugs with adverse interac- sions of time based on a set of preference rules specified by a tions have been unintentionally prescribed to a patient by different institutions at the same time.
    [Show full text]
  • Dissertation.Pdf
    2 This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. 3 Abstract Like many modern humanities computing projects, Ramon Llull’s Ars Magna, a system of inscripted, manipulable wheels dating to the thirteenth century, asserts that interpretation can be aided by mechanism without being generated mathematically or mechanically. That this assertion is sometimes lost on the larger academic community is not simply a failure of the devices scholar-technologists produce (although, as the work outlined here seeks to demonstrate, we could do a better job of anticipating and incorporating patently interpretive or subjective forms of interaction on the part of our users into the systems we create for them). Instead, it betrays our failure to articulate the humanistic and hermeneutic value of algorithmic work to a lay audience. This dissertation uses Llull’s Ars Magna to introduce the relationships of algorithm, ars combinatoria, aesthetic provocation, diagrammatic reasoning, and ludic practice to the work of humanities scholarship and then presents two major case studies in the design of digital instruments and environments that open themselves to performance and intervention on the part of interpretive agents. The first is the Temporal Modelling PlaySpace, a composition tool for sketching subjective and inflected timelines that (like temporal relations in humanities data generally) are not necessarily unidirectional, homogenous, or continuous. Temporal Modelling’s innovation lies in its extraction for re-purposing of well-formed XML from users’ intuitively-designed and even 4 deliberately ambiguous diagrammatic models.
    [Show full text]