Title: oncoEnrichR: cancer-dedicated gene set interpretation Authors: Sigve Nakken1,2,*, Sveinung Gundersen3, Fabian L. M. Bernal3, Eivind Hovig1,4, Jørgen Wesche1,2 Affiliations: 1Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Norway 2Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway 3ELIXIR Norway, Department of Informatics, University of Oslo, Norway 4Centre for Bioinformatics, Department of Informatics, University of Oslo, Norway *Corresponding author:
[email protected] Abstract Summary: Interpretation and prioritization of candidate hits from genome-scale screening experiments represent a significant analytical challenge, particularly when it comes to an understanding of cancer relevance. We have developed a flexible tool that substantially refines gene set interpretability in cancer by leveraging a broad scope of prior knowledge unavailable in existing frameworks, including data on target tractabilities, tumor-type association strengths, protein complexes and protein-protein interactions, tissue and cell-type expression specificities, subcellular localizations, prognostic associations, cancer dependency maps, and information on genes of poorly defined or unknown function. Availability: oncoEnrichR is developed in R, and is freely available as a stand-alone R package. A web interface to oncoEnrichR is provided through the Galaxy framework (https://oncotools.elixir.no). All code is open-source under the MIT license, with documentation, example datasets and and instructions for usage available at https://github.com/sigven/oncoEnrichR/ Contact:
[email protected] 1 Introduction The search for novel cancer-implicated genes is currently fueled by different types of genome-scale screening experiments, exemplified by gene silencing through siRNA and CRISPR/cas-9, protein interaction screens, or differential gene expression from RNA-seq.