Mechanisms and Evidence of Genital Coevolution: the Roles of Natural Selection, Mate Choice, and Sexual Conflict

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms and Evidence of Genital Coevolution: the Roles of Natural Selection, Mate Choice, and Sexual Conflict Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Mechanisms and Evidence of Genital Coevolution: The Roles of Natural Selection, Mate Choice, and Sexual Conflict Patricia L.R. Brennan1,2 and Richard O. Prum3 1Departments of Psychology and Biology, University of Massachusetts, Amherst, MA 01003 2Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 3Department of Ecology and Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520 Correspondence: [email protected] Genital coevolution between the sexes is expected to be common because of the direct interaction between male and female genitalia during copulation. Here we review the diverse mechanisms of genital coevolution that include natural selection, female mate choice, male–male competition, and how their interactions generate sexual conflict that can lead to sexually antagonistic coevolution. Natural selection on genital morphology will result in size coevolution to allow for copulation to be mechanically possible, even as other features of genitalia may reflect the action of other mechanisms of selection. Genital coevo- lution is explicitly predicted byat least three mechanisms of genital evolution: lock and key to prevent hybridization, female choice, and sexual conflict. Although some good examples exist in support of each of these mechanisms, more data on quantitative female genital variation and studies of functional morphology during copulation are needed to understand more general patterns. A combination of different approaches is required to continue to advance our understanding of genital coevolution. Knowledge of the ecology and behavior of the studied species combined with functional morphology, quantitative morphological tools, experimental manipulation, and experimental evolution have been provided in the best-studied species, all of which are invertebrates. Therefore, attention to vertebrates in any of these areas is badly needed. f all the evolutionary interactions between shown to covary in many taxa (Sota and Ku- Othe sexes, the mechanical interaction of bota 1998; Ilango and Lane 2000; Arnqvist and genitalia during copulation in species with in- Rowe 2002; Brennan et al. 2007; Ro¨nn et al. ternal fertilization is perhaps the most direct. 2007; Kuntner et al. 2009; Tatarnic and Cassis For this reason alone, coevolution between 2010; Cayetano et al. 2011; Evans et al. 2011, genital morphologies of males and females is 2013; Simmons and Garcı´a-Gonza´lez 2011; Yas- expected. Morphological and genetic compo- sin and Orgogozo 2013; and see examples in nents of male and female genitalia have been Table 1). Editors: William R. Rice and Sergey Gavrilets Additional Perspectives on The Genetics and Biology of Sexual Conflict available at www.cshperspectives.org Copyright # 2015 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a017749 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a017749 1 Downloaded from http://cshperspectives.cshlp.org/ P.L.R. Brennan and R.O. Prum 2 Table 1. Examples of coevolution found in a variety of taxa with emphasis on more recent literature and model systems Taxa Male structures Female structures Evidence Likely mechanism References Mollusks Land snails Spermatophore- Spermatophore-receiving Comparative among SAC or female choice Sauder and Hausdorf (Xerocrassa) producing organs organs species 2009 Satsuma Penis length Vagina length Character displacement Lock and key Kameda et al. 2009 Arthropods Arachnids (Nephilid Multiple Multiple Comparative among SAC Kuntner et al. 2009 spiders) species Pholcidae spiders Cheliceral apophysis Epigynal pockets Comparative (no Female choice Huber 1999 onSeptember28,2021-PublishedbyColdSpringHarborLaboratoryPress phylogenetic analysis) Harvestmen Hardened penes and Sclerotized pregenital Comparative among SAC Burns et al. 2013 (Opiliones) loss of nuptial gifts barriers species Millipedes Cite this article as Parafontaria Gonopod size Genital segment size Comparative in species Mechanical Sota and Tanabe 2010 tonominea complex incompatibility resulting from Intersexual selection Antichiropus variabilis Gonopod shape and Accesory lobe of the vulva and Functional copulatory Lock and key Wojcieszek and size distal projection morphology Simmons 2012 Cold Spring Harb Perspect Biol Crustacean Fiddler crabs, Uca Gonopode Vulva, vagina, and spermatheca Two-species comparison, Natural selection against Lautenschlager et al. shape correspondence fluid loss, lock and key, 2010 and sexual selection Hexapodes Odonates Clasping appendages Abdominal shape and Functional morphology, Lock and key via female Robertson and sensory hairs comparative among sensory system Paterson 1982; species McPeek et al. 2009 Insects Coleoptera: seed Spiny aedagus Thickened walls of Comparative among SAC Ro¨nn et al. 2007 2015;7:a017749 beetles copulatory duct species Callosobruchus: Damage inflicted Susceptibility to damage Full sib/half sib mating SAC Gay et al. 2011 Callosobruchus experiments maculatus Reduced spines No correlated response Experimental evolution SAC Cayetano et al. 2011 Continued Downloaded from http://cshperspectives.cshlp.org/ Cite this article as Table 1. Continued Taxa Male structures Female structures Evidence Likely mechanism References Carabid beetles Apophysis of the Vaginal appendix (pocket Cross-species matings Lock and key Sota and Kubota 1998; (Ohomopterus) endophallus attached to the vaginal Sasabi et al. 2010 Cold Spring Harb Perspect Biol apophysis) Dung beetle: Shape of the parameres Size and location of genital pits Experimental evolution Female choice Simmons and Garcı´a- Onthophagus in the aedagus Gonza´lez 2011 taurus Diptera: Drosophila Sclerotized spikes on Cavities with sclerotized Cross-species matings SAC Kamimura 2012 onSeptember28,2021-PublishedbyColdSpringHarborLaboratoryPress santomea and the aedagus platelets D. yakuba Drosophila Epandrial posterior Oviscapt pouches Comparative among SAC or female choice Yassin and Orgogozo melanogaster lobes species 2013 species complex 2015;7:a017749 Phallic spikes Oviscapt furrows Cercal teeth, phallic Uterine, vulval, and vaginal hook, and spines shields D. mauritiana and Posterior lobe of the Wounding of the female Mating with introgressed SAC Masly and Kamimura D. sechelia genital arch abdomen lines 2014 Stalk-eyed flies Genital process Common spermathecal duct Comparative among Female choice Kotrba et al. 2014 (Diopsidae) species and morphological Mechanisms of Genital Coevolution Tse-tse flies: Glossina Cercal teeth Female-sensing structures Experimental copulatory Female choice Bricen˜o and Eberhard pallidipes function 2009a,b Phelebotomine: Aedagal filaments, Spermathecal ducts length, Comparative among None specified Ilango and Lane 2000 sand flies aedagal sheaths base of the duct species Heteroptera: Bed bugs Piercing genitalia Spermalege (thickened Comparative among SAC Carayon 1966; Morrow (Cimiciidae) exosqueleton) species and Arnqvist 2003 Plant bugs Changes in male genital External female paragenitalia Comparative among SAC Tatarnic and Cassis (Coridromius) shape species 2010 Waterstriders Grasping appendages Antigrasping appendages Comparative among SAC Arnqvist and Rowe (Gerris sp.) species 2002 Gerris incognitus Grasping appendages Antigrasping appendages Comparative among SAC Perry and Rowe 2012 populations 3 Continued Downloaded from http://cshperspectives.cshlp.org/ P.L.R. Brennan and R.O. Prum 4 Table 1. Continued Taxa Male structures Female structures Evidence Likely mechanism References Bee assassins Aedagus Bursa copulatrix Comparative among None Forero et al. 2013 (Apiomerus) species Cave insects Male genital chamber Penis-like gynosome Comparative among Female competition (role Yoshizawa et al. 2014 (Psocodea), species reversal), coevolution Neotrogla SAC Butterflies Thickness of Signa: Sclerotized structure Comparative among SAC Sa´nchez and Cordero (Heliconiinae) spermatophore wall to break spermatophores species 2014 Fish onSeptember28,2021-PublishedbyColdSpringHarborLaboratoryPress Basking shark: Clasper claw Thick vaginal pads Morphological None Matthews 1950 Cetorhinus observation maximus Gambusia Gonopodial tips Genital papillae within Comparative among Strong character Langerhans 2011 openings species displacement Cite this article as Poecilia reticulata Gonopodium tip shape Female gonopore shape Comparative among SAC Evans et al. 2011 populations Reptiles Anoles Hemipene shape Vagina shape Shape correspondence, Sexual selection Ko¨hler et al. 2012 two species Cold Spring Harb Perspect Biol Several species Hemipene shape Vagina shape Shape correspondence Lock and key, female Pope 1941; Bo¨hme and choice, and SAC Ziegler 2009; King et al. 2009 Asiatic pit vipers Spininess in hemipenes Thickness of vagina wall Two-species comparison None Pope 1941 Garter snake: Basal hempene spine Vaginal muscular control Experimental SAC Friesen et al. 2014 Thamnophis sirtalis manipulation Birds Waterfowl Penis length Vaginal elaboration Comparative among SAC Brennan et al. 2007 species Tinamous Penis length/presence Vaginal elaboration Comparative among Female choice/natural PLR Brennan, K 2015;7:a017749 species selection Zyscowski, and RO Prum, unpubl. Continued Downloaded from http://cshperspectives.cshlp.org/ Cite this article as Table 1. Continued Taxa Male structures Female structures Evidence Likely mechanism References Cold Spring
Recommended publications
  • Coleoptera, Chrysomelidae, Galerucinae)
    A peer-reviewed open-access journal ZooKeys 720:Traumatic 77–89 (2017) mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis 77 doi: 10.3897/zookeys.720.13015 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Traumatic mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis (Coleoptera, Chrysomelidae, Galerucinae) Yoko Matsumura1, Haruki Suenaga2, Yoshitaka Kamimura3, Stanislav N. Gorb1 1 Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botani- schen Garten 1-9, D-24118 Kiel, Germany 2 Sunshine A205, Nishiachi-chô 833-8, Kurashiki-shi, Okayama Pref., 710-0807, Japan 3 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan Corresponding author: Yoko Matsumura ([email protected]) Academic editor: Michael Schmitt | Received 1 April 2017 | Accepted 13 June 2017 | Published 11 December 2017 http://zoobank.org/BCF55DA6-95FB-4EC0-B392-D2C4B99E2C31 Citation: Matsumura Y, Suenaga H, Kamimura Y, Gorb SN (2017) Traumatic mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis (Coleoptera, Chrysomelidae, Galerucinae). In: Chaboo CS, Schmitt M (Eds) Research on Chrysomelidae 7. ZooKeys 720: 77–89. https://doi.org/10.3897/zookeys.720.13015 Abstract Morphology of the aedeagus and vagina of Pyrrhalta maculicollis and its closely related species were inves- tigated. The internal sac of P. maculicollis bears hand saw-like spines, which are arranged in a row. Healing wounds were found on the vagina of this species, whose females were collected in the field during a repro- ductive season. However, the number of the wounds is low in comparison to the number of the spines.
    [Show full text]
  • Consequences of Evolutionary Transitions in Changing Photic Environments
    bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness.
    [Show full text]
  • 1997 Species Report Card: the State of U.S
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/269112191 1997 Species Report Card: The State of U.S. Plants and Animals Book · January 1997 CITATIONS READS 38 102 2 authors, including: Bruce A. Stein National Wildlife Federation 62 PUBLICATIONS 2,285 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Defenses In Action View project National Climate Assessment (3rd) View project All content following this page was uploaded by Bruce A. Stein on 05 December 2014. The user has requested enhancement of the downloaded file. 1997 Species Report Card The State of U.S. Plants and Animals IN COOPERATION WITH THE NATURAL HERITAGE NETWORK A NatureServe™ Publication 1997 Species Report Card The State of U.S. Plants and Animals Citation: Bruce A. Stein and Stephanie R. Flack. 1997. 1997 Species Report Card: The State of U.S. Plants and Animals. The Nature Conservancy, Arlington, Virginia. ISBN: 1-886765-08-1 This publication is available on The Nature Conservancy’s Web site at http://www.tnc.org/science/library. © 1997 The Nature Conservancy NATURESERVE: Science for Conservation Program Sponsor This publication is a product of NatureServe, which is made possible by Canon U.S.A.’s Clean Earth Campaign. The NatureServe program is designed to promote biodiversity conservation by raising public awareness and advancing scientific knowledge. Contents Summary ......................................................................................................
    [Show full text]
  • Coevolution of Male and Female Genital Morphology in Waterfowl Patricia L
    Coevolution of Male and Female Genital Morphology in Waterfowl Patricia L. R. Brennan1,2*, Richard O. Prum1, Kevin G. McCracken3, Michael D. Sorenson4, Robert E. Wilson3, Tim R. Birkhead2 1 Department of Ecology and Evolutionary Biology, and Peabody Natural History Museum, Yale University, New Haven, Connecticut, United States of America, 2 Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom, 3 Institute of Arctic Biology, Department of Biology and Wildlife, and University of Alaska Museum, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America, 4 Department of Biology, Boston University, Boston, Massachusetts, United States of America Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–.40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations.
    [Show full text]
  • Mating Changes the Genital Microbiome in Both Sexes of the Common Bedbug
    bioRxiv preprint doi: https://doi.org/10.1101/819300; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Research article 2 3 4 Mating changes the genital microbiome in both sexes of the common bedbug 5 Cimex lectularius across populations 6 7 8 Running title: Mating-induced changes in bedbug genital microbiomes 9 10 11 Sara Bellinvia1, Paul R. Johnston2, Susan Mbedi3,4, Oliver Otti1 12 13 14 1 Animal Population Ecology, Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95440 15 Bayreuth, Germany 16 2 Institute for Biology, Free University Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany. 17 3 Museum für Naturkunde - Leibniz-Institute for Evolution and Biodiversity Research, Invalidenstraße 18 43, 10115 Berlin. 19 4 Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 1-3, 14195 20 Berlin, Germany. 21 22 23 Corresponding author: Sara Bellinvia 24 Phone: +49921552646, e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/819300; this version posted October 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Many bacteria live on host surfaces, in cells, and specific organ systems. Although gut microbiomes of 27 many organisms are well-documented, the bacterial communities of reproductive organs, i.e. genital 28 microbiomes, have received little attention. During mating, male and female genitalia interact and 29 copulatory wounds can occur, providing an entrance for sexually transmitted microbes.
    [Show full text]
  • The Cave-Inhabiting Beetles of Cuba (Insecta: Coleoptera): Diversity, Distribution and Ecology
    Stewart B. Peck, Amador E. Ruiz-Baliú and Gabriel F. Garcés González- The Cave-inhabiting Beetles of Cuba (Insecta: Coleoptera): Diversity, Distribution and Ecology. Journal of Cave and Karst Studies 60(3): 156-166. THE CAVE-INHABITING BEETLES OF CUBA (INSECTA: COLEOPTERA): DIVERSITY, DISTRIBUTION AND ECOLOGY STEWART B. PECK Department of Biology, Carleton University, Ottawa, Ontario, K1S 5B6 CANADA, [email protected] AMADOR E. RUIZ-BALIÚ Departmento de Biología, Universidad de Oriente, Santiago de Cuba, CUBA GABRIEL F. GARCÉS GONZÁLEZ Centro Oriental de Ecosystemas y Biodiversidad, Ministerio de la Ciencia, Tecnología y Medio Ambiente, Santiago de Cuba, CUBA The known cave-inhabiting beetle fauna of Cuba is summarized. Fifty-three species have been found in 70 low elevation caves in 11 provinces. Distribution of species by family is: Carabidae, 10; Dytiscidae, 4; Gyrinidae, 2; Hydrophilidae, 2; Histeridae, 5; Leiodidae, 2; Ptiliidae, 3; Staphylinidae, 1; Scarabaeidae, 4; Elateridae, 2; Lampyridae, 1; Nitidulidae, 1; Cerylonidae, 1; Tenebrionidae, 12; and Curculionidae, 3. Twenty-four of the species are judged to be accidental cave inhabitants. The remain- ing 29 species can be placed in the following ecological-evolutionary categories: trogloxenes, 3 species; first-level troglophiles, 21 species; second-level troglophiles (=unmodified neotroglobites), 5 species. No true troglobites are known (i.e., none of the species is morphologically specialized for cave life). About 59% of the non-accidental inhabitants are endemic to Cuba. The taxonomic composition is similar to that in caves in other West Indian Islands, and impoverished when compared to Neotropical continental caves. The abundance of food (bat guano) seems a prime factor preventing selection for cave-special- ization in lowland West Indian and continental Neotropical cave beetles.
    [Show full text]
  • Craters of the Moon: Life in a Volcanic Landscape
    Life in a CRATERS Volcanic OF THE Landscape MOON Division of Life in a Publications National Park CRATERS Volcanic Service U.S. Department Landscape of the Interior OF THE by 1978 MOON Vern Crawford We Idahoans have always recognized the many-faceted complexity and splen­ dor of our geography. But to many Americans, Idaho is a rather hazy entity. "Idaho" means big potatoes, and the familiar panhandle-shaped outline on maps; it evokes such historical associations as Lewis and Clark, Sacajawea, and the Oregon Trail; it calls up images of sparkling alpine lakes, deep river canyons, and conifer-clad mountains. Less familiar is one of our most fascinating and mysterious regions, the vast lava wilderness that occupies an area larger than Rhode Island north of the Snake River and south of the mountainous Panhandle. It is wild indeed and is often described further as barren and desolate. Yet this land is neither as life­ less nor as forbidding as one might think. One section of this lava realm, named "Craters of the Moon," has been set aside as a National Monument. Embracing picturesque buttes, symmetrical cinder cones, and many-colored lava flows, it is a unique scenic and scientific resource. Most of the Monument is protected from development by its status as Wilderness; but in the northwest sector, the National Park Service provides ac­ cess to some of the finest examples of lava-flow phenomena and to panoramic vistas of great beauty. The story of how the plants and animals have adapted to the aridity, the tem­ perature extremes, the exposure, and the meagerness of soil here is an in­ triguing one.
    [Show full text]
  • Minds in the Cave: Insect Imagery As Metaphors for Place and Loss
    AJE: Australasian Journal of Ecocriticism and Cultural Ecology, Vol. 3, 2013/2014 ASLEC-ANZ ! Minds in the Cave: Insect Imagery as Metaphors for Place and Loss HARRY NANKIN RMIT University 1. The Australian Alps In 1987 I authored a photographic book celebrating the Australian Alps. Its opening paragraph read, in part: Cool, rolling and serene, the High Country . is an assemblage of landforms and living things unlike any other. This crumpled arc of upland, the southeastern elbow of the continent . contains . the only extensive alpine and sub-alpine environments on the Australian mainland . ‘One climbs . and finds, not revelation, but simply range upon range upon range stretching . into distance, a single motif repeating itself to infinity . Climax? . Calm . ’ (Nankin, Range 11). ! Fig. 1 Mount Bogong, Victoria from Range Upon Range: The Australian Alps by Harry Nankin, Algona Publications / Notogaea Press, 1987 A quarter century after these words were published the regions’ serried topography remains unchanged but it no longer connotes serenity or calm. During the summers of 2003 and 2006-7 bushfires of unprecedented ferocity and scale destroyed much of the region’s distinctive old growth sub-alpine snow gum Eucalyptus Pauciflora woodland, a species, which unlike most lowland eucalypts, recovers very slowly and sometimes not at all from fire [Fig. 2]. The extent to which the rising average temperatures and declining snow falls of the last few decades or the more recent drought and heat waves precipitating Harry Nankin: Minds in the Cave: Insect Imagery as Metaphors for Place and Loss these fires were linked to anthropogenic climate change is uncertain.
    [Show full text]
  • TEACHING INSECTS: a Four Lesson Plan to Introduce Insects to Kids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2019 TEACHING INSECTS: A Four Lesson Plan to Introduce Insects to Kids Heather Wilkins Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Thesis is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TEACHING INSECTS A Four Lesson Plan to Introduce Insects to Kids APRIL 23, 2019 MASTERS DEGREE PROJECT FOR UNIVERSITY OF NEBRASKA- LINCOLN ENTOMOLOGY DEPARTMENT Work by Heather Wilkins Table of Contents Introduction 2 Teaching Standards 4 Key points and Vocabulary 6 Lesson 1- Introduction and Anatomy 9 Lesson 2- Insect Development and Survival 13 Lesson 3- Insect Movement and Senses 18 Lesson 4 Habitats and “Jobs” 25 Printables 29 1 | P a g e We have all of us, men and animals, some special gift. One child takes to music… another is quick with figures. It is the same with insects. One kind of Bee can cut leaves, another builds clay houses…. In human beings, we call the special gift genius. In an insect, we call it instinct. Instinct is the animal’s genius. -Jean-Henri Fabre Introduction This teaching guide is meant to be flexible for grades, time, and scope. The lesson plan is designed for grades 2 – 3, but with additional materials can be expounded on for higher grades or simplified for lower grades.
    [Show full text]
  • Animal Cells Usually Have an Irregular Shape, and Plant Cells Usually Have a Regular Shape
    Cells Information Booklet Cell Structure Animal cells usually have an irregular shape, and plant cells usually have a regular shape Cells are made up of different parts. It is easier to explain what these parts are by using diagrams like the ones below. Animal cells and plant cells both contain: cell membrane, cytoplasm, nucleus Plant cells also contain these parts, not found in animal cells: chloroplasts, vacuole, cell wall The table summarises the functions of these parts. Part Function Found in Cell membrane Controls what substances can get into and out of the cell. Plant and animal cells Cytoplasm Jelly-like substance, where chemical reactions happen. Plant and animal In plant cells there's a thin lining, whereas in animal cells cells most of the cell is cytoplasm. Nucleus Controls what happens inside the cell. Carries genetic Plant and animal information. cells Chloroplast Where photosynthesis happens – chloroplasts contain a Plant cells only green substance called chlorophyll. Vacuole Contains a liquid called cell sap, which keeps the cell Plant cells only firm. Cell wall Made of a tough substance called cellulose, which Plant cells only Part Function Found in supports the cell. Immune System Defending against infection Pathogens are microorganisms - such as bacteria and viruses - that cause disease. Bacteria release toxins, and viruses damage our cells. White blood cells can ingest and destroy pathogens. They can produce antibodies to destroy pathogens, and antitoxins to neutralise toxins. In vaccination pathogens are introduced into the body in a weakened form. The process causes the body to produce enough white blood cells to protect itself against the pathogens, while not getting diseased.
    [Show full text]
  • Journal of Cave and Karst Studies Editor Louise D
    December 1998 JOURNAL OF Volume 60 Number 3 ISSN 1090-6924 CAVE AND KARST STUDIES Journal of Cave and Karst Studies Editor Louise D. Hose Volume 60 Number 3 December 1998 Environmental Studies Program Westminster College CONTENTS Fulton, MO 65251-1299 (573) 573-5303 Voice (573) 592-2217 FAX Articles [email protected] Tubular Lava Stalactites and Other Related Segregations Production Editor Kevin Allred and Carlene Allred 131 James A. Pisarowicz Wind Cave National Park Hot Springs, SD 57747 History and Status of the Moiliili Karst, Hawaii (605) 673-5582 William R. Halliday 141 [email protected] Gypsum Speleothems of Freezing Origin BOARD OF EDITORS Victor V. Korshunov and Elena V. Shavrina 146 Earth Sciences-Journal Index Ira D. Sasowsky Geochemistry of Fluorite and Related Features of the Department of Geology University of Akron Kugitangtou Ridge Caves, Turkmenistan Akron, OH 44325-4101 Vladimar Maltsev and Viktor Korshunov 151 (330) 972-5389 [email protected] The Cave-inhabiting Beetles of Cuba (Insecta: Coleoptera): Diversity, Distribution and Ecology Conservation Stewart B. Peck, Amador E. Ruiz-Baliú and George Huppert Department of Geography Gabriel F. Garcés González 156 University of Wisconsin, LaCrosse LaCrosse, WI 54601 Spatial and Temporal Variations in the Dissolved Organic [email protected] Carbon Concentrations in the Vadose Karst Waters of Marengo Cave, Indiana Life Sciences Veronica A. Toth 167 David Ashley Department of Biology Missouri Western State College The Current Status and Habitats of the Illinois Cave St. Joseph, MO 64507 Amphipod, Gammarus acherondytes Hubricht and (816) 271-4334 Mackin (Crustacea: Amphipoda) [email protected] D.W.
    [Show full text]
  • Sexual Conflict and Secondary Sexual Traits in West Australian Riffle Bugs (Insecta: Hemiptera: Veliidae)
    Sexual conflict and secondary sexual traits in West Australian Riffle Bugs (Insecta: Hemiptera: Veliidae). An overview of the relationship between morphology and behaviour Paige Maroni (BSc) 32202683 This thesis is presented for the degree of Bachelor of Science Honours (Biological Science) School of Veterinary and Life Sciences Murdoch University 2017 Supervisors: Dr. Kate Bryant Dr. Nikolai Tatarnic With support from: I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Paige J. Maroni Abstract How and why an animal chooses its mate is characteristic of morphological and behavioural adaptations developed to maximize reproductive success. This thesis compares patterns of sexual dimorphism (through micro-CT analyses) in three Veliidae species (Microvelia oceanica, Nesidovelia peramoena and N. herberti) and aims to explain these in the context of sexual conflict. Sexually antagonistic morphological and behavioural traits were also of interest and were documented through examinations of male-female reproductive interactions of N. peramoena via video recordings and micro-CT scan outputs of interlocked pairs, frozen in copula. Interlocked pairs were captured through a new technique for snap freezing surface dwelling insects, which was developed within this thesis. In all three species, females were found to be generally larger than males and macropters larger overall than apters, as is often the case with insects. All specimens examined were documented to express some form of a secondary sexual trait which are likely to be coevolving in an evolutionary arms race. In females, these resistance traits variously included connexival convergence, genital concealment and setal tufts.
    [Show full text]